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Antimicrobial resistance (AMR) is arguably one of the major health and economic

challenges in our society. A key aspect of tackling AMR is rapid and accurate

detection of the emergence and spread of AMR in food animal production, which

requires routine AMR surveillance. However, AMR detection can be expensive

and time-consuming considering the growth rate of the bacteria and the most

commonly used analytical procedures, such asMinimum Inhibitory Concentration

(MIC) testing. To mitigate this issue, we utilized machine learning to predict

the future AMR burden of bacterial pathogens. We collected pathogen and

antimicrobial data from >600 farms in the United States from 2010 to 2021 to

generate AMR time series data. Our prediction focused on five bacterial pathogens

(Escherichia coli, Streptococcus suis, Salmonella sp., Pasteurella multocida, and

Bordetella bronchiseptica). We found that Seasonal Auto-Regressive Integrated

Moving Average (SARIMA) outperformed five baselines, including Auto-Regressive

Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA).

We hope this study provides valuable tools to predict the AMR burden not only of

the pathogens assessed in this study but also of other bacterial pathogens.
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1. Introduction

The discovery of antimicrobials is one of the best advances in therapeutic medicine

in humans and animals. Over time, microbes have evolved and developed resistance

mechanisms against these antimicrobial compounds. Increasing resistance to the available

antimicrobials and stagnation of developing novel antimicrobials limit treatment options for

patients with infectious diseases. Therefore, the emergence, dissemination, and persistence

of microbes that are resistant to existing antimicrobials pose an enormous threat to public

and animal health. Antimicrobials are extensively used in the food animal industry to treat

bacterial infections and promote health, welfare, and production. According to Food and

Drug Administration (FDA), ∼80% of all antibiotics in the United States in 2011 were

sold for use in animal husbandry, and ∼70% of them belonged to the antibiotic classes

used in human medicine (medically important antibiotics; FDA Department of Health and

Human Services, 2011). Pig farming is one of the leading sectors using antimicrobials. Thus,

increased levels of AMR are anticipated in swine farms due to the selective pressure of these
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antimicrobials and can spread via pork, direct contact with pigs, or

discharge of swine waste into the environment.

A key to preventing AMR emergence and spread is early

and accurate detection of potential AMR, which promotes

selecting appropriate antimicrobials and facilitating the prompt

investigation of drug-resistant disease outbreaks. Routine

monitoring and surveillance can enable exemplary stewardship by

detecting AMR emergence, tracing AMR patterns, and effectively

targeting antimicrobial interventions and mitigation strategies.

Currently, antimicrobial susceptibility testing (AST) is the primary

method for detecting AMR and selecting effective antimicrobials

against bacterial pathogens, which involves culturing the bacteria

in the presence of a panel of various antimicrobials. Effective

antimicrobials can be determined by detecting Minimum

Inhibitory Concentration (MIC), where antimicrobials with lower

MIC values are considered more effective (susceptible) because less

of the drug is needed to inhibit bacterial growth. However, these

procedures can be expensive and time-consuming, depending

on the growth rate of the bacteria and MIC testing procedures.

Alternative methods, such as DNA sequencing technologies,

are increasingly used to detect AMR at the molecular level,

but they require robust bioinformatics tools to evaluate the

genomic structure of the microbial resistomes. Thus, most clinical

laboratories still depend primarily on conventional AST to conduct

clinical therapy and observe AMR over time. Nevertheless, most

farmsmay not have the resources (e.g., time and budget) to perform

routine testing to detect AMR and quantify the AMR burden in

field settings. Therefore, developing a tool to predict AMR

burden based on available data, such as prior AMR information

(susceptible/resistance) against common antimicrobials, could be

very useful to better inform decision-making about antimicrobial

use at the farm level, which consequently helps mitigate AMR.

Machine learning has been widely employed for studying

AMR, highlighting its importance in predicting resistance levels

mainly using features directly from genotypes (Pesesky et al., 2016;

Nguyen et al., 2018, 2019; Wang et al., 2022). However, there

are situations where we do not obtain genomic data to predict

AMR levels but only preserve historical phenotype information.

Time series analysis is a great solution to relevant tasks for such

situations. Time series has shown great performances in studying

AMR (López-Lozano et al., 2000; Hsueh et al., 2005; Aldeyab

et al., 2008; Guo et al., 2019; Jeffrey et al., 2021; Strahlberg,

2021), and sometimes their methods are limited to Auto-

regressive Integrated Moving Average (ARIMA; Chatfield, 2003)

or subcategory methods that cannot properly incorporate seasonal

behavior of AMR levels. Among many time series approaches, the

Seasonal Auto-regressive Integrated Moving Average (SARIMA;

Chatfield, 2003) has received significant attention because of

its outstanding performance in time series forecasting. SARIMA

shows its usefulness when some degrees of seasonality-periodic

fluctuations occur repeatedly in the time series.

In this study, we used the SARIMA algorithm to predict

the future burden of AMR (AMR proportions) of five bacterial

pathogens (Escherichia coli, Streptococcus suis, Salmonella sp.,

Pasteurella multocida, and Bordetella bronchiseptica) prevalent in

the studied swine farms using the prior resistance information.

The data included the number of tested pathogens with confirmed

resistance (based on MIC interpretations) to their corresponding

antimicrobials. Instead of direct use of binary (susceptible and

resistance) classified data, we generated integrated time series

data, i.e., quarterly-based AMR proportions for each of the

study pathogens. This approach enabled us to overcome the

limitations of missing data over time. We also compared the

performance of SARIMA to that of Auto-Regressive Moving

Average (ARMA;Wold, 1938), Auto-Regressive Integrated Moving

Average (ARIMA; Chatfield, 2003), and three other forecasting

baseline methods as follows: Naïve, Seasonal Naïve, and one-lagged

prediction (Ryu and Sanchez, 2003; Reza Hoshmand, 2009). These

three baselines were selected as benchmarks in our study because

they are often used in forecasting tasks and are simple yet effective.

We believe that predicting AMR proportions using time series

models can provide valuable information to facilitate the selection

of appropriate antimicrobials against pathogens and the prompt

investigation of drug-resistance disease outbreaks.

2. Materials and methods

In this section, we discuss the workflow, time series analysis

methods, and experimental design. Workflow after data collection

includes data processing (irregular binary data to quarterly time

series data) and time series analysis (model parameter selection and

model train/test; Figure 1).

2.1. Data collection

In this study, we used pathogen and antimicrobial information

from >600 farms owned by two swine production systems

in the United States. The samples were collected from pigs

infected with one of five bacterial pathogens (Escherichia coli,

Streptococcus suis, Salmonella sp., Pasteurella multocida, and

Bordetella bronchiseptica) from 2010 to 2021 and tested for AMR

against a panel of antimicrobials (Table 1). The resistance level of

each pathogen against antimicrobials was detected by determining

MIC and classified into two groups as follows: susceptible (S)

and resistant (R), based on an interpretation report received from

the American Association of Veterinary Laboratory Diagnosticians

(AAVLD) accredited laboratory in the United States.

2.2. Data processing for time series analysis

For each pathogen, different groups of antimicrobials were

employed for experiments (see Table 1). One challenge is that there

were missing data points between certain time periods. To tackle

this, we constructed a quarterly time series dataset by integrating

the data points every quarter. We converted our data points to a

quarterly basis dataset and define Res(Pathogen,Antimicrobial) the

resistance time series for each pathogen and antimicrobial as below.

Res(Pathogen,Antimicrobial) = (r1, r2, · · · , rn), (1)

where ri = Proportion(R) =
# of R

# of (R + S)
over the ith quarter (R

and S stand for resistant and susceptible, respectively). Figure 1

shows how we processed our dataset. Figure 2 shows examples
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of quarterly based time series constructed for pathogens and

antimicrobials, and all of the time series examples are presented

as solid lines in Supplementary Figures 1–5. With the constructed

data, we focused on predicting AMR proportions in times series for

each Res(Pathogen,Antimicrobial) in our data.

We also output the mean and the standard deviations of

Res(Pathogen,Antimicrobial) which can be an indicator for the

averaged AMR proportions and dynamics of each time series

(Table 1). We also observed different degrees of fluctuation in

the processed dataset. For example, Res(Escherichia coli,Ampicillin)

changes more dynamically than Res(Escherichia coli,Tiamulin)

(Figure 2 and Table 1).

2.3. AR(I)MA, SARIMA, and three baselines

2.3.1. ARMA and ARIMA
Auto-Regressive Moving Average (ARMA) model consists of

two parts, such as autoregressive (AR) and moving average (MA)

parts (Wold, 1938). The model is usually referred to asARMA(p, q),

where p and q are the order of the AR and MA parts, respectively

(Valipour et al., 2012). AR part takes previous observations as

inputs to predict future values. MA part uses previous errors

between predicted and observed as predictors for future values.

ARIMA model consists of three parts, such as AR, MA, and the

integrated (I) parts (Chatfield, 2003). The model is usually referred

to as ARIMA(p, d, q), where p and q are the same as for the ARMA

model, and d is the degree of differencing. The integrated part refers

to the differencing of observations to allow time series to become

stationary.

2.3.2. SARIMA
Seasonal Auto-regressive Integrated Moving Average

(SARIMA) model (Chatfield, 2003), as an advanced method

of ARIMA with a seasonal component, overcomes the limitation

that ARIMA cannot tackle data with periodic behavior properly. In

this study, we employed SARIMA to predict AMR proportions for

bacterial pathogens considering AMR proportions vary over time

with a potential seasonality.

A typical SARIMA model has seven parameters, referred

to as SARIMA(p, d, q)(P,D,Q)S, where (p, q) and (P,Q) are the

order of the non-seasonal and seasonal (autoregressive, moving)

models, respectively, d and D are the numbers of non-seasonal and

seasonal differences, respectively, and S is the periodic seasonality

term. Choosing appropriate parameters is a key process for the

optimal SARIMA performance. To this end, autocorrelation and

partial autocorrelation functions are utilized. To be precise, we

first determine non-seasonality components (p, d, q), and then, we

find proper seasonal parameters (P,D,Q)S using autocorrelation

function and partial autocorrelation function. Time series datasets

often have trends in time series and changes in the statistical

structure of the series, which means non-stationarity. To find non-

seasonality parameters, trend and seasonality in time series should

be removed using differencing techniques. After the removal of

trend and seasonality, the autocorrelation function and partial

autocorrelation function help determine non-seasonal parameters.

Additionally, we also check the p-value between time series data

and its lagged time series, and the number of lags with the lowest p-

value determines seasonality parameter S for the SARIMA model.

However, these steps do not always guarantee finding a specific

set of parameters for the optimal SARIMA model. In many cases,

parameter exploration using grid search is required, which means

that we set some possible candidates for parameters and check the

SARIMA model performance to find sets of parameters with the

best performance.

2.3.3. Three baselines
Naïve method is the simplest time series forecasting method

where all remaining forecast is set equal to the observation made

in the last timestamp as below.

FT+t = YT for t > 0, (2)

where F and Y are forecasting and observed times series,

respectively. T and T + t are the timestamps of the last observation

and the forecast time, respectively.

Seasonal Naïve method is an extension of the Naïve method

with a seasonality. It predicts the forecasts based on the same

timestamp in the previous cycle as below.

FT+t = YT+t−s(k−1) for t > 0, (3)

where s is seasonality and k is completed cycles.

One-lagged prediction methods rely on the most recently

acquired data (Ryu and Sanchez, 2003). One-lagged prediction

utilizes the data from the previous timestamp to forecast the current

timestamp as shown below.

FT+1 = YT for t > 0. (4)

2.4. Experiments

2.4.1. Parameter selection for SARIMA
For accurate AMR time series prediction, it is crucial

to find appropriate SARIMA parameters (Ma et al.,

2021). We selected Escherichia coli and Neomycin because

Res(Escherichia coli,Neomycin) provides the largest number of

data points to work with, and it shows visible seasonality. We have

seven parameters to determine as follows: (p, d, q), (P,D,Q), and

S. After using the differencing method to find parameter d and

to remove the trend component in Res(Pathogen,Antimicrobial),

autocorrelation function, partial autocorrelation function, p-value

analysis, and parameter exploration were attempted to assessing

SARIMA parameters. We choose optimal SARIMA parameters

that predict Res(Escherichia coli,Neomycin) with the lowest error.

2.4.2. ARMA and ARIMA parameter selection
Similar to SARIMA, we also employed parameter exploration

to find the optimal parameters for ARMA and ARIMA.

Res(Escherichia coli,Neomycin) was utilized for this process. We
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FIGURE 1

Workflow chart. Data processing example [from irregular binary data to quarterly based time series: Res(Pathogen,Antimicrobial)] and time series

analysis.

TABLE 1 Full data of antimicrobial and pathogens used for study.

Escherichia
coli

Streptococcus
suis

Salmonella
sp.

Pasteurella
multocida

Bordetella
bronchiseptica

Clindamycin 1.0/0.0 0.8/0.18 1.0/0.0 1.0/0.01 1.0/0.0

Tiamulin 0.99/0.03 0.16/0.1 1.0/0.01 0.58/0.29 1.0/0.01

Tylosin – – – 0.98/0.06 –

Ampicillin 0.71/0.22 0.03/0.06 0.58/0.27 0.03/0.07 1.0/0.02

Gentamicin 0.32/0.16 – 0.51/0.39 – 0.04/0.1

Oxytetracycline 0.88/0.13 0.93/0.1 – 0.23/0.26 0.03/0.1

Penicillin 1.0/0.0 0.18/0.13 1.0/0.0 0.19/0.28 1.0/0.0

Spectinomycin 0.9/0.22 – – – –

Tilmicosin 0.99/0.03 0.73/0.21 1.0/0.0 0.21/0.31 –

Chlortetracycline 0.88/0.13 0.93/0.1 – 0.03/0.07 0.04/0.11

Sulphadimethoxine – 0.61/0.22 – – 0.97/0.08

Ceftiofur – 0.04/0.06 – 0.0/0.02 –

Enrofloxacin 0.34/0.25 0.07/0.07 0.29/0.38 0.0/0.02 –

Florfenicol 0.84/0.09 0.03/0.07 0.9/0.14 0.02/0.07 0.83/0.17

Neomycin 0.34/0.25 0.73/0.17 0.57/0.39 0.07/0.14 –

Sulfa./trimethoprim 0.26/0.27 – 0.32/0.32 – 0.89/0.14

Tulathromycin – – – 0.0/0.01 0.04/0.1

Note that – indicates that corresponding data are not used in the experiments.

Two numbers provided indicate mean and standard deviation of data, i.e., an indicator for averaged AMR proportions and how dynamically (uncertain) the time series is changing, respectively.

conducted two experiments for ARMA and ARIMA independently

because ARMA does not take parameter d into account while

ARIMA considers it.

2.4.3. Time series-based AMR proportions
prediction

We selected seven combinations of parameters from

previous analysis on Res(Escherichia coli,Neomycin) and

applied the chosen seven combinations of parameters to other

Res(Pathogen,Antimicrobial) to predict the AMR proportions.

Specifically, for each Res(Pathogen,Antimicrobial), seven

experiments with different parameter sets were conducted.

Each experiment returned a rooted mean squared error as

a performance measurement. We also used three baselines

as follows: Naïve, Seasonal Naïve (we set four as the

seasonality period), and one-lagged prediction. All baselines

also outputted root mean squared error values for each
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FIGURE 2

Examples of our processed quarterly based AMR proportions time series. (A) Res(Escherichia coli, Ampicillin), (B) Res(Escherichia coli, Gentamicin),

(C) Res(Escherichia coli, Tiamulin), and (D) Res(Escherichia coli, Sulfamethoxazole/trimethoprim).

FIGURE 3

Autocorrelation function and partial autocorrelation function analysis for parameter selection. (A) Autocorrelation function plot, (B) partial

autocorrelation function plot, and (C) AMR time series for Escherichia coli and Neomycin, i.e., Res(Escherichia coli, Neomycin).
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Res(Pathogen,Antimicrobial). All experiments were conducted in

Python (version 3.7.6).

3. Results

3.1. Seven selected sets of SARIMA
parameters

As shown in Figure 3, the autocorrelation function and

partial autocorrelation function provided information on choosing

the right parameters for SARIMA. P-value analysis for the

Res(Escherichia coli,Neomycin) and its lagged time series with a

different number of lags were also used to find the seasonal

parameter S. From these, we can determine our parameter S = 12,

but other parameters were not found properly from autocorrelation

function and partial autocorrelation function analysis. There were

no significant patterns of gradual decay or recurring cycles

observed in either the autocorrelation or partial autocorrelation

plots (Figure 3). Specifically, there is no data point with a lag value

greater than zero that fell outside the confidence interval (blue

shade area) in either plot (Figure 3), resulting inmaking it unable to

estimate the appropriate parameters for a moving average (MA) or

autoregressive (AR) models. From these analyses, the parameters

of the time series model could not be satisfactorily determined

without a parameter search.

In this regard, we explore the set of parameters that output

the lowest error estimation measured by rooted mean squared

error. In other words, we conducted trial and error for finding

appropriate undetermined parameters remained. Our parameter

exploration includes integers from 0 to 5 for three parameters p,

d, q, and from 0 to 6 for the other three parameters P, D, Q,

for which we end up having 6373 combinations to attempt. For

each attempt with a combination of parameters, SARIMApredicted

Res(Escherichia coli,Neomycin), i.e., tried to predict the 10% of

the last values in Res(Escherichiacoli,Neomycin) after being trained

with the first 90% of the Res(Escherichia coli,Neomycin), and a

prediction error was reported. With outputted errors, we selected

seven parameter combinations that return the lowest rooted mean

squared error values because the next best one after these seven has

a relatively big gap in the errors from the first seven parameters, and

interestingly, our three parameters (P,D,Q)S are fixed as (1, 0, 1)12
while seven different (p, d, q) are acquired from Table 2.

3.2. Seven parameter sets for ARMA and
ARIMA

To find the parameter sets that predicted

Res(Escherichia coli,Neomycin) with the lowest errors, we

explored integers from 0 to 5 for all parameters (p, q) and (p, d, q)

for ARMA and ARIMA, respectively. Each experiment requires 63

and 62 iterations to search independently. In the end, seven sets of

(p, d, q) and (p, q) that outputted the lowest rooted mean squared

error were selected (Table 2).

3.3. Error estimation for AMR proportions
prediction

For each Res(Pathogen, Antimicrobial) time series prediction

using SARIMA, the seven previously selected SARIMA parameter

sets were applied. Each experiment outputted a rooted mean

squared error value which represents how good the prediction

is, i.e., the lower the rooted mean squared error value, the

more accurate the method (Figure 4). The lowest error value

was provided among seven errors from seven experiments

of SARIMA for each Res(Pathogen, Antimicrobial). For each

ARMA and ARIMA, seven parameters were conducted, and

the lowest rooted mean squared error values were outputted

among seven different experiments. We observed that our

SARIMA method showed lower rooted mean squared error values

compared to ARMA, ARIMA, and the other three baselines in

general. The rooted mean squared error gap between SARIMA

and three baselines became bigger when the AMR proportion

time series [Res(Pathogen,Antimicrobial)] have greater deviation

values (equivalently, more dynamical). This is because higher

deviation implies more fluctuation in AMR proportion time

series that are harder to predict. For example, rooted mean

squared error values were similar between SARIMA and three

baselines for Res(Escherichia coli,Tilmicosin) (standard deviation:

0.03), while root mean squared error gap became bigger

for Res(Escherichia coli,Enrofloxacin) (standard deviation: 0.03;

Figure 4 and Table 1).

4. Discussion

This study investigated the plausibility of executing data-

driven forecasting of the future AMR burden using the available

resistance data in >600 swine farms in the United States from

2010 to 2021. AMR burden was quantified quarterly by calculating

the proportions of resistant strains of five crucial bacterial

pathogens (Escherichia coli, Streptococcus suis, Salmonella sp.,

Pasteurella multocida, and Bordetella bronchiseptica) against their

corresponding antimicrobials. The bacterial species assessed in this

study were the most prevalent swine bacterial pathogens dispersed

within the studied farms, significantly affecting their health,

welfare, and productivity. These pathogens can cause various

infections in pigs, including respiratory, gastrointestinal, and/or

systemic infections, and antimicrobials are the primary mode

of therapy and prevention of these infectious diseases (Robbins

et al., 2014). Therefore, early and accurate detection of potential

AMR of these pathogens is essential to determine the appropriate

antimicrobials to use against andmonitor for drug-resistant disease

outbreaks. In this study, we used threemachine learning-based time

series analyses to predict the future AMR proportions in the studied

farms and compared their performances to select the most efficient

and accurate approach for future use. According to our findings,

SARIMApredicted AMRproportions accurately and outperformed

ARMA, ARIMA, and three baselines according to the rooted mean

squared error value. However, parameter exploration remains a

light limitation due to the potential computational burden because

the key to prediction using SARIMA was to find appropriate
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TABLE 2 Seven selected parameters of SARIMA, ARMA, and ARIMA used for overall AMR proportions prediction acquired from Res(Escherichia coli,

Neomycin) analysis.

SARIMA ARMA ARIMA

No. p d q P D Q S No. p q No. p d q

#1 1 1 4 1 0 1 12 #1 3 2 #1 3 2 1

#2 2 2 3 1 0 1 12 #2 3 0 #2 2 2 3

#3 3 0 4 1 0 1 12 #3 3 1 #3 2 2 1

#4 3 1 4 1 0 1 12 #4 1 0 #4 3 2 2

#5 4 0 0 1 0 1 12 #5 1 1 #5 3 1 0

#6 4 3 4 1 0 1 12 #6 1 2 #6 2 1 0

#7 4 2 4 1 0 1 12 #7 1 3 #7 2 2 2

FIGURE 4

Rooted mean squared errors for five pathogens with corresponding antimicrobials. (A) Escherichia coli, (B) Streptococcus suis, (C) Salmonella sp., (D)

Bordetella bronchiseptica, and (E) Pasteurella multocida.

parameters which cannot always be acquired from the general

process using partial autocorrelation function.

According to this study, we observed distinct temporal

trends in AMR proportions for the five pathogens against

their corresponding antimicrobials during the study period

(Supplementary Figures 1–5). For example, pathogens, such as

Escherichia coli and Salmonella sp., showed very high or increasing

trends of AMR proportions against Enrofloxacin, Neomycin,
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Sulfamethoxazole/trimethoprim, and Clindamycin, etc., while

Streptococcus suis exhibited low resistance to ampicillin, ceftiofur,

enrofloxacin, florfenicol, and tiamulin. Most of the studied

antimicrobials are effective against Pasteurella multocida, whereas

Bordetella bronchiseptica displayed higher resistance levels against

most antimicrobials assessed in our study. Nevertheless, these

quarterly based-AMR proportions showed frequent fluctuations

in most pathogens against their corresponding antimicrobials

throughout the study period (Supplementary Figures 1–5).

However, our SARIMA models were able to correctly capture all

these individual trends and predict the future AMR proportions

with high accuracy. Specifically, our study demonstrated that

SARIMA works well for dynamic time series, such as AMR

proportion time series for the studied five pathogens even if it is

difficult to fairly compare our results to those from other relevant

studies, as each system has its unique data samples and methods. In

addition, this method could be applied to predict other unexplored

pathogens unless the available data are limited. In other words, this

work can be generalized to AMR proportion time series for any

pairs of pathogens and antimicrobials. Furthermore, our SARIMA

model can also be applied to other time series analyses in the

domain, such as swine mortality rate.

Early detection of emerging AMR and future prediction of

AMR burden and trends are vital to comprehend the extent of the

threat and implement appropriate antimicrobial interventions and

mitigation strategies. Numerous studies have explored various ML

algorithms to study AMR using available phenotypic data (López-

Lozano et al., 2000; Hsueh et al., 2005; Aldeyab et al., 2008; Guo

et al., 2019; Jeffrey et al., 2021; Strahlberg, 2021) and genotypes

(Pesesky et al., 2016; Nguyen et al., 2018, 2019; Wang et al.,

2022). Specifically, the recent advancements in affordable and rapid

DNA sequencing technologies (e.g., whole genome sequencing)

combined with ML approaches have drastically transformed AMR

surveillance and prediction prospects. Predicting pathogens that

might express AMR by using their genomics data has shown great

promise in the real-time detection of AMR determinants. However,

this process requires robust bioinformatics tools and advanced

analytical skillsets to assess the microbial genomic structure and

the resistomes, and these limitations still preclude cost-effective,

user-friendly, and rapid antimicrobial resistance surveillance. In

addition, phenotyping approaches provide direct visual evidence of

interaction between a bacterial strain and an antimicrobial. Thus,

most clinical laboratories, to date, rely mainly on traditional AST

to guide clinical therapy and monitor AMR over time. Therefore,

the SARIMA model we proposed in our study will be an efficient

and practical alternative to predict AMR burden, especially for

situations where we do not have genomic data but only have

historical phenotype information.

There are a few limitations to our study. The AMR data used

for prediction were comprised of data from multiple swine farms

within the United States. Although these farms were managed

under two major swine production systems, individual farms

can have different management practices, biosecurity measures,

treatment protocols, etc. Previous studies disclosed various factors,

such as transportation, farm management, housing conditions,

metals consumption, feeding strategies, antimicrobial usage, and

co-infections that can affect the spread of antimicrobial-resistant

bacteria and the AMR levels in a farm (Mathew et al., 2003;

Dewulf et al., 2007; Medardus et al., 2014; Luiken et al., 2022;

Odland et al., 2022). However, we did not incorporate these factors

in our study. Thus, the future AMR burden (proportions) can

vary from the predicted levels due to the variations in these farm

factors. Since the AMR predictions were made using a limited

number of swine farms in the United States, we cannot generalize

our findings to the entire swine population in the United States.

Therefore, we cannot generalize our findings to the entire swine

population in the United States. However, our results depict the

potential of using time series analysis to predict AMR levels within

a farm or geographical region. In this study, we transformed

the AMR data into a binary variable (susceptible/resistance)

using breakpoints acquired from the interpretation report from

AAVLD-accredited laboratories in the United States. Some of

these breakpoints were extrapolated from other species (e.g.,

human and canine) if swine-specific breakpoints were not

available for a pathogen–antimicrobial combination (Watts et al.,

2018; Lubbers et al., 2020). Breakpoint MICs depend on the

clinical pharmacology of antimicrobials and are generally specific

for bacterial-antimicrobial-host-disease-tissue-dosing regimen

combinations (Watts et al., 2018; CLSI, 2019; Lubbers et al., 2020);

thus, different testing laboratories may use different standards for

resistance classifications, which may cause misclassifications of

pathogens. Nevertheless, predicting AMR burden directly from

MIC values will minimize these misclassifications or classification

errors. Hence, future studies are suggested to perform time series

analysis based on the raw MIC data.

5. Conclusion

This study proposed to use time series methods for the

prediction of future AMR burden by constructing the quarterly

based AMR proportion times series. The SARIMA approach

showed low errors in terms of rooted mean squared error

compared with ARMA, ARIMA, and three other forecasting

baselines, and it worked even for highly dynamic time series. We

believe that our time series prediction can help to advise using

appropriate antimicrobials and reduce the risk related to AMR

events by predicting anticipation of AMR occurrences in farms or

geographical regions. Furthermore, our study may also contribute

to the analysis of similar problems and scenarios.
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