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Trichoderma is mainly used to control soil-borne diseases as well as some 
leaf and panicle diseases of various plants. Trichoderma can not only prevent 
diseases but also promotes plant growth, improves nutrient utilization efficiency, 
enhances plant resistance, and improves agrochemical pollution environment. 
Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly 
biocontrol agent for different crop species. In this study, we  introduced the 
biological control mechanism of Trichoderma in plant fungal and nematode 
disease, including competition, antibiosis, antagonism, and mycoparasitism, as 
well as the mechanism of promoting plant growth and inducing plant systemic 
resistance between Trichoderma and plants, and expounded on the application 
and control effects of Trichoderma in the control of various plant fungal and 
nematode diseases. From an applicative point of view, establishing a diversified 
application technology for Trichoderma is an important development direction 
for its role in the sustainable development of agriculture.
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Introduction

In the traditional crop cultivation process, the excessive use of pesticides and chemical 
fertilizers, as well as the long-term large-scale planting of a single crop, has led to the destruction 
of the farmland ecological environment, plant diseases, insect pest problems, crop pesticide 
residues, and soil and water environment pollution (Bardin et al., 2015). With green agricultural 
development, people are urgently seeking safe, effective, and environmentally friendly plant 
disease control measures. Biological control is mainly used to control harmful organisms in 
plants through beneficial organisms and their products to control plant diseases and effectively 
reduce the application of chemical fertilizers and pesticides (Harman et al., 2021). Trichoderma, 
a biological fungus widely used for plant pest control, mainly exists in the soil, air, plant surface, 
and other ecological environments and can effectively control a variety of plant diseases 
(Haouhach et al., 2020; Zheng et al., 2021; Wang R. et al., 2022). Trichoderma is mainly used to 
control soil-borne diseases in various plants and some leaf and spike diseases (Samuels et al., 
2006; Vicente et al., 2020; Abbas et al., 2022). Trichoderma can prevent disease, promote plant 
growth, improve nutrient utilization efficiency, enhance plant resistance, and repair agrochemical 
pollution (Tilocca et al., 2020; Fontana et al., 2021; Sánchez-Montesinos et al., 2021; Al-Surhanee, 
2022; Tyśkiewicz et al., 2022).
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Trichoderma belonging to Eumycota, Deuteromycotina, 
Hyphomycetes, Hyphomycetales, and Moniliaceae (Kubicek et  al., 
2019). Its sexual stage includes the Ascomycota, Sordariomycetes, 
Hypocreales, Hypocreaceae, and Trichoderma ssp. (Sun et al., 2012). 
There are more than 370 Trichoderma spp. including T. harzianum, 
T. viride, T. asperellum, T. hamatum, T. atroviride, T. koningii, 
T. longibrachiatum, and T. aureoviride (Sánchez-Montesinos et al., 
2021; Sun et  al., 2022). Trichoderma has been used in biological 
control research, including T. harzianum, T. hamatum, 
T. longibrachiatum, T. koningii, T. viride, T. polysporum, and 
T. asperellum (Di Marco et al., 2022). Many studies have shown that 
most Trichoderma spp. can produce bioactive substances and have 
antagonistic effects on plant-pathogenic fungi and plant-pathogenic 
nematodes (Druzhinina et  al., 2018). These bioactive substances, 
including secondary metabolites and cell wall-degrading enzymes, can 
effectively improve crop resistance, reduce plant diseases, and promote 
plant growth (Kubicek et  al., 2019). Professor Harman of Cornell 
University isolated and purified T. harzianum T22 strain and 
systematically studied its application in biological control of plant 
pests and commercial development of biological control technology 
(Harman, 2000). This study systematically and comprehensively 
elaborated on the research progress on Trichoderma spp. and its role 
in plant disease control, its application as a biological control and its 
mechanism, as well as preliminarily discussed the problems and 
prospects of Trichoderma as a biological control agent, providing a 
reference for future research and application.

Application and mechanism of action 
of Trichoderma in plant fungal disease 
control

Application of Trichoderma in biological 
control of plant fungal diseases

Trichoderma is a biocontrol fungus widely distributed worldwide. 
Trichoderma has a huge application value and potential in the field of 
biological control of plant diseases (Tyśkiewicz et al., 2022). Research 
on the use of Trichoderma to control plant diseases has been reported 
worldwide. T. viride and T. harzianum have different degrees of 
inhibitory effects on 29 species of plant pathogenic fungi belonging to 
18 genera, including Botrytis, Fusarium, and Rhizoctonia. Trichoderma 
has control effects on a variety of plant pathogenic fungi, such as 
Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, Sclerotinia 
sclerotiorum, Botrytis cinerea, Pseudocercospora spp. and 
Colletotrichum spp. (Tian et al., 2016, 2018; Saravanakumar et al., 
2017; Debbi et al., 2018; Li et al., 2018; Bubici et al., 2019; Filizola et al., 
2019; Herrera-Téllez et al., 2019; Álvarez-García et al., 2020; Andrade-
Hoyos et al., 2020; Carro-Huerga et al., 2020; Damodaran et al., 2020; 
Zhang et  al., 2020, 2021; Al-Askar et  al., 2021; Chen et  al., 2021; 
Degani and Dor, 2021; Dugassa et al., 2021; Intana et al., 2021; Zhang 
C. et al., 2022; Zhang Y. et al., 2022). Trichoderma has been widely 
used for the biological control of cotton verticillium wilt, crop gray 
mold, tomato gray mold, melon wilt, potato dry rot, tobacco root rot, 
and other plant diseases (Rashmi et al., 2016; Andrade-Hoyos et al., 
2020; Alfiky and Weisskopf, 2021; Lazazzara et al., 2021; Leal et al., 
2021; Manganiello et al., 2021; Degani et al., 2021a; Pollard-Flamand 
et al., 2022; Rees et al., 2022; Risoli et al., 2022). T. longibrachiatum T6 

biocontrol agent has a good control effect on pepper damping off and 
can effectively control the spread of pepper disease (Girma, 2022). The 
control effect was up to 54.8%, which is 12.5% higher than that of the 
chemical pesticide carbendazim (Yuan et al., 2019; Al-Askar et al., 
2022). T. harzianum has a good control effect on pepper and potato 
Phytophthora blight. It can inhibit the growth of Phytophthora blight 
in soil, reduce the number of pathogenic fungi, and effectively reduce 
the rate of dead seedlings and disease index of plants (Guzmán-
Guzmán et al., 2017; Kappel et al., 2020; Mahmoud et al., 2021; Liu 
Y. et al., 2022). The control effect of 50× T. asperellum fungal fluid on 
apple canker reached 88.24%, which was significantly higher than that 
of benziothiazolinone (Ruangwong et al., 2021a). T. asperellum has 
different effects on different pathogenic fungi, among which its 
inhibitory effect on the pathogen causing corn leaf spot is the best, at 
up to 77.91%, followed by Pythium and Fusarium; and the worst 
inhibition effect is on corn sheath blight (Guo et al., 2019; Intana et al., 
2022). Therefore, using Trichoderma to prevent and control plant 
diseases can not only inhibit the growth of pathogenic fungi, which is 
conducive to plant growth but can also reduce the use of chemical 
pesticides, which is conducive to protecting the ecological environment.

Storage resistance and processing 
technology of Trichoderma products

The commercial application of biocontrol Trichoderma depends 
to a large extent on the stress resistance (such as high temperature, 
drying, ultraviolet radiation, etc.) and storage resistance (more than 
1 year at normal temperature) of the Trichoderma preparation (Alfiky 
and Weisskopf, 2021). At present, there are two main technologies: on 
the one hand, reducing acidity and regulating oxygen utilization to 
induce Trichoderma to produce stress-resistant chlamydospores; on 
the other hand, some chemical additives (such as copper) are added 
to the preparation. Monfil and Casas-Flores (2014) increased the 
resistance of Trichoderma to high temperature (35 ~ 40°C) and 
ultraviolet radiation by adding trehalose to Trichoderma. Monfil and 
Casas-Flores (2014) added glycerin to the Trichoderma preparation as 
a humectant to prolong its shelf life. Special packaging design, vacuum 
drying, and low-density polyethylene packaging materials can extend 
the shelf-life to 15 months. In the field of Trichoderma preparation 
form processing, Chen et  al. (2021) developed the Trichoderma 
conidia powder agent and obtained a patented technology for 
inducing Trichoderma to produce chlamydospores. With the 
increasingly mature biological control technology, the types of 
commercial preparations for Trichoderma spp. are also becoming 
diverse. There are four main categories: (1) Wettable powders, which 
are made by mixing conidia powder, powdery carriers, and humectant. 
(2) Granules are made by mixing and stirring conidia and carrier. (3) 
A mixture consisting of spore powder and chemical fungicides mixed 
in proportion on a suitable carrier. (4) Suspenso-emulsion is prepared 
by suspending conidia in a lotion composed of vegetable oil, mineral 
oil, emulsifier, etc. In the current market for Trichoderma biological 
agents, T. Harzianum is the largest, followed by T. viride and 
T. koningii. Trichoderma agents widely used in plant disease control 
mainly include Trichodex (Makhteshim Chemical Works Ltd., Israel), 
a commercial preparation of T. harzianum T-39; RootShield 
(Bioworks, USA), a commercial preparation of T. harzianum T-22; 
Binab TF (Binab Bio Innovation AB, Sweden), a mixed-agent of 
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T. harzianum and T. polyspora; Sentinel (Novozymes, Denmark), a 
commercial preparation of T. atrovilide; And Supervivit (Borregaard 
Bioplant, Denmark), a commercial preparation of T. harzianum.

Mechanism of Trichoderma-induced 
endophytic microbiome synergistically 
stimulating plant immune response

Competitive role of Trichoderma
Trichoderma are saprophytic fungi with fast mycelial growth and 

strong adaptability to the environment. It can seize the invasive part 
of the pathogenic fungi in the root of a plant, thus hindering the 
invasion of the pathogen fungi. It can also rapidly absorb the nutrients 
required for the growth of the pathogen fungi, resulting in nutrient 
deficiency and inhibiting the growth and reproduction of the pathogen 
fungi (Guo et al., 2019; Bazghaleh et al., 2020; Halifu et al., 2020; 
Figure 1A). Trichoderma has strong adaptability to the environment 
(Köhl et al., 2019; Morán-Diez et al., 2019; Pescador et al., 2022; Xu 
et al., 2022). Through its rapid growth and reproduction, it can seize 
nutrients and space near the plant rhizosphere, consume oxygen in 
the air, and weaken the growth of plant pathogenic fungi (Basińska-
Barczak et al., 2020; Oszust et al., 2020; Panchalingam et al., 2022). The 
growth rate of Trichoderma is much faster than that of plant-
pathogenic fungi; therefore, it can effectively inhibit the growth of 
plant-pathogenic fungi (Mohiddin et al., 2021). After entering the soil 
for 24 h, Trichoderma can quickly adsorb to the roots of crops for 
propagation, and the hyphae quickly wrap the roots of crops to form 

a protective layer, protect the roots of crops from the invasion of 
pathogens, and kill the nearby pathogens. Risoli et al. (2022) found 
that the growth rate of T. harzianum was 2.0 to 4.2 times faster than 
that of B. cinerea. Trichoderma mycelium competed with Fusarium 
graminearum by clinging, twining, inter-penetration, and other 
mechanisms, which caused the mycelium of F. graminearum to 
deform and eventually disappear (Dugassa et al., 2021). Trichoderma 
can capture water and nutrients, occupy space, and consume oxygen, 
etc. through rapid growth and reproduction, to weaken and exclude 
the gray mold pathogen in the same habitat (Herrera-Téllez 
et al., 2019).

Mycoparasitism of Trichoderma
Mycoparasitism is one of the important mechanisms in the 

biological control of Trichoderma (Figure  1B). Trichoderma can 
parasitize about 18 genera of Pythium, Phytophthora, Rhizoctonia, and 
Peronospora. They directly invade or wound the mycelium, causing 
the pathogen cells to expand, deform, shorten, become round, shrink 
the protoplasm, and break the cell wall. Trichoderma TM can invade 
the hyphae of Sclerotinia sclerotiorum, attach to and wrap around the 
hyphae of pathogenic fungi, and break the hyphae of S. sclerotiorum 
until it disintegrates (Shaw et al., 2016). Risoli et al. (2022) found that 
Trichoderma can form putrescence in a specific environment, which 
has a mycoparasitic effect on Botrytis cinerea. It forms a large number 
of branches and sexual structures after entering the host hyphae, thus 
inhibiting the appearance of grape B. cinerea symptoms (Aswani et al., 
2022). Trichoderma can degrade the cell wall of pathogenic fungi by 
secreting chitin-degrading enzymes, so as to better invade the interior 
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FIGURE 1

(A–F) Schematic diagram of the mechanism of action of Trichoderma in plant fungal disease control (Martínez-Medina et al., 2013; Lamdan et al., 2015; 
Morán-Diez et al., 2020; Manzar et al., 2022; Tamizi et al., 2022).
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of pathogenic fungi. Trichoderma mycelium hyperparasitized 
Fusarium graminearum by clinging, twining, inter-penetration, and 
other mechanisms, which caused the mycelium of F. graminearum to 
deform and eventually disappear (Tian et al., 2018). Chitinase secreted 
by T. harzianum plays an important role in promoting cell wall 
dissolution, mycelial autolysis, chitin assimilation, fungal parasitism, 
and inhibiting spore germination, mycelial growth, and spore 
formation (Saravanakumar et al., 2017). T. koningiopsis can invade the 
hyphae of Sclerotinia sclerotiorum, attach to and wrap around the 
hyphae of pathogenic fungi, and break the hyphae of S. sclerotiorum 
until it disintegrates (Shaw et al., 2016).

Antibiosis effect of Trichoderma
Antibiosis mainly refers to the ability of Trichoderma to inhibit the 

growth of plant pathogenic fungi by secreting antagonistic substances 
(Kottb et al., 2015; Izquierdo-García et al., 2020; Morán-Diez et al., 
2020; Shobha et  al., 2020; El-Hasan et  al., 2022; Figure  1C). 
Trichoderma can produce hundreds of antimicrobial secondary 
metabolites, including trichomycin, gelatinomycin, chlorotrichomycin, 
and antibacterial peptides (Maruyama et al., 2020). These secondary 
metabolites can act as antibacterial agents, promote plant growth, and 
provide rich materials for the development of agricultural antibiotics 
(Nawrocka et al., 2018). Naglot et al. (2015) found that the metabolites 
of T. viride had a significant inhibitory effect on the wilt-specific form 
of F. oxysporum, with an inhibition rate of 54.81%. Manganiello et al. 
(2018) found that the volatile secondary metabolites secreted by 
T. viride TG050 609 can cause the mycelium of P. nicotianae to grow 
irregularly, break, or even dissolve, proving that T. viride has an 
antibiosis effect on P. nicotianae. In addition, most Trichoderma 
strains can produce antimicrobial substances such as pentaibols, 
which can inhibit a variety of plant pathogenic fungi and can also 
cooperate with cell wall-degrading enzymes on pathogenic fungi to 
effectively inhibit their growth (Debode et al., 2018; Mayo-Prieto et al., 
2019; Kovács et al., 2021; Martínez-Salgado et al., 2021; Tamizi et al., 
2022). Some studies have shown that some Trichoderma spp. can 
produce volatile metabolites, which can inhibit the growth of colonies 
to varying degrees, and some of them can inhibit the growth of 
colonies by more than 80% (Navazio et al., 2007; Vos et al., 2015; 
Samuelian et al., 2016; Marik et al., 2019; Thambugala et al., 2020; 
Kong et al., 2022; Li M. et al., 2022).

In recent years, research on the genome, transcriptome, proteome, 
and metabolome of Trichoderma has developed rapidly (Zhang 
Y. et al., 2022). Genome and EST sequencing, and microarray and 
microarray based expression profiling have become important tools 
for exploring Trichoderma genes and studying the mechanism of 
action (Tamizi et al., 2022). In genomics research, a cDNA library of 
T. harzianum EST has been constructed, and multiple new genes have 
been identified (Ferreira Filho et al., 2020). The researchers completed 
the genome sequencing of T. reesei, T. virens, and T. atroviride. Rubio 
et al. (2014) used high-density oligonucleotide (HDO) microarray 
technology and bioinformatics analysis to detect and analyze: after 
20 h of interaction between T. hamatum T7 and tomato, there were 
200 differentially expressed genes, of which 166 were up-regulated and 
34 were down-regulated; 43.14% of genes are related to molecular 
function, 56.86% are related to biological processes, and 32.0% are 
related to cell component formation. Shoresh and Harman (2010) 
identified the changes of 27 endochitinase genes and 4 exochitinase 
genes in maize after interaction between T. harzianum T22 and maize 

using proteomic methods and EST libraries and discovered a new 
specific chitinase. Chen et al. (2021) used proteomic techniques to 
identify proteins related to resistance to root rot in maize, among 
which chitinase, SOD, isoflavone reductase, and PR protein are 
associated with resistance to root rot in maize seedlings.

Induced systemic resistance of Trichoderma
Trichoderma can induce host plants to produce defense responses. 

While inhibiting the growth and reproduction of pathogenic fungi, it 
can also induce crops to produce self-defense systems to obtain local 
or systemic disease resistance (Figure 1D). Trichoderma-induced plant 
disease resistance is achieved through two approaches: one is to 
regulate the plant disease resistance response by regulating elicitors or 
effectors; second, the cell wall-degrading enzyme produced by 
Trichoderma releases oligosaccharides that can induce plant resistance 
(Gomes et al., 2015). At present, there are more than 10 elicitors of 
Trichoderma that induce plant resistance, including Sm1, QID74 
hydrophobic protein, chitin-degrading enzyme, MRSP1, xylanase, 
cellulase, endopolygalacturonase, sucrase, and antibacterial peptides. 
These substances are mainly derived from five Trichoderma species: 
T. asperellum, T. viride, T. atroviride, and T. harzianum (Karimi 
Aghcheh et al., 2013; Lamdan et al., 2015; Ngo et al., 2021; Matas-Baca 
et al., 2022; Zaid et al., 2022; Zhu et al., 2022). Saravanakumar et al. 
(2016) found that the activities of peroxidase (POD) and phenylalanine 
ammonia lyase (PAL) of corn seeds coated with Trichoderma increased 
significantly, and the plants were resistant to curvularia leaf spot 
of corn.

Antagonism of Trichoderma
The antagonism of Trichoderma is often considered the result of 

simultaneous or sequential action of more than two mechanisms 
(Saravanakumar et al., 2016; Sui et al., 2022; Figures 1E,F). Based on 
multiple mechanisms, Trichoderma has synergistic capabilities 
(Alonso-Ramírez et al., 2014; Moreno-Ruiz et al., 2020; Stracquadanio 
et al., 2020; Alukumbura et al., 2022; Chung et al., 2022; Kappel et al., 
2022). Jogaiah et  al. (2018) found that the synergistic use of 
T. harzianum and fungicides can effectively inhibit tomato gray mold, 
and the inhibition rate was higher than that of both fungicides alone. 
Zhang et al. (2017) found that the fermentation metabolites of T. viride 
CCTCC-SWB0199 and brassinolide in a certain proportion had a 
higher effect on the control of tomato gray mold than when the two 
were applied separately. Jogaiah et al. (2018) found that the biocontrol 
effect of Trichoderma spp. against plant pathogens fungi are often the 
result of a combination of multiple mechanisms, and different strains 
have different emphasis on biocontrol mechanisms. Monfil and Casas-
Flores (2014) used transcriptology and metabolomics to study the 
tripartite interactions of Arabidopsis, Trichoderma, and Pseudomonas 
syringae tomato varieties. The results showed that the treatment of 
Arabidopsis roots with Trichoderma for 48 h induced more than 300 
gene expression changes in the roots, but the changes in leaf genes 
were different from those in the roots (Monfil and Casas-Flores, 2014). 
Trichoderma induces the differential expression of host plant genes, 
mainly at the level of quantity (Viterbo et al., 2005; Malmierca et al., 
2012; Park et  al., 2019). A metabolomics study found that 27 
compounds were related to induced resistance in Arabidopsis thaliana 
(Monfil and Casas-Flores, 2014). The biocontrol effect of Trichoderma 
on plant pathogenic fungi is often the result of multiple mechanisms, 
and different strains have different biocontrol mechanisms (De Zotti 
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et al., 2020; Cai et al., 2021; Ji et al., 2021; Ruangwong et al., 2021b; 
Figure 1).

Application and mechanism of action 
of Trichoderma in plant nematode 
disease control

Application of Trichoderma in the control 
of plant nematodes

At present, the reported Trichoderma with nematicidal activity 
mainly includes T. longibrachiatum, T. viride, T. harzianum, 
T. Hamatum, T. atroviride, and T. koningii (Zhu et al., 2022). The 
fermentation broth of T. longibrachiatum T6 has a strong lethal effect 
on the eggs and second-instar larvae of cereal cyst nematodes in wheat 
(Zhu et al., 2022). The relative inhibition rate of the two concentrated 
fermentation broths on egg hatching was 46.47%, and the corrected 
mortality rate for the second-instar larvae was 44.45% (Sokhandani 
et al., 2016). Microscopic observation showed that the fermentation 
liquid of T. longibrachiatum T6 could digest the contents of nematode 
eggs and body cavities of the second instar larvae (Zhu et al., 2022). 
Khan et al. (2020) used inducers to make T. koningiopsis UFSMQ40 
produced fermentation broth containing a large amount of chitinase, 
and its lethal rate to root-knot nematodes of South China and Java was 
90.4 and 63.2%, respectively. Baazeem et  al. (2021) analyzed the 
transcriptional activity of chi18-5 and chi18-12 genes of T. harzianum 
FB10 in Trichoderma egg parasitism. Compared to the control, the 
expression of chi18-5 and chi18-12 genes during parasitism increased 
significantly, indicating that the chitinase content increased, which 
could provide favorable conditions for egg cleavage (Baazeem 
et al., 2021).

Mechanism of Trichoderma resistance to 
nematode disease

The mechanism by which Trichoderma inhibits nematode disease 
remains unclear. Some studies suggest that the serine protease pr1 of 
Trichoderma has similar biochemical characteristics to the protein Pr1 
of nematicidal fungi, so it has a certain nematode inhibition effect 
(Forghani and Hajihassani, 2020). The antimicrobial peptides 
produced by Trichoderma also have nematicidal effects (Fan 
et al., 2020).

Mycoparasitism effect of Trichoderma

Trichoderma mycoparasitism is an important mechanism for 
controlling nematodes and includes identification, contact, 
entanglement, penetration, and parasitism (Li et al., 2020; Figure 2). 
Trichoderma mycelium penetrates the eggshell or cuticle of larvae and 
adults of nematodes, colonizes, absorbs nutrients from nematodes, 
and causes nematode death (Marraschi et  al., 2019). Trichoderma 
mycoparasitic nematode processes involve the production and 
co-secretion of various degrading enzymes (Moo-Koh et al., 2022). 
The induction of Trichoderma activities of β-1, 3-glucanase, chitinase, 
and protease are increased, which can enhance the immunity of plants 

to nematodes (Poveda et  al., 2020). The hyperparasitic process is 
mainly regulated by heterotrimeric G protein, cAMP, and MAPK 
motif signals, and secretes extracellular chitinase, glucanase, xylanase, 
cellulase, and protease, among which chitinase and protease are 
particularly important and can degrade the cyst, egg, larva, and adult 
body wall of nematodes (Li et  al., 2020). Trichoderma secretes 
glucosidases NAG1 and NAG2, which act on the extracellular and 
self-cell walls, respectively, and their main function is to degrade 
chitin so that they can protect their cell walls from degradation during 
the process of hyperparasitism (Poveda et al., 2020).

Antibiosis effect of Trichoderma

Trichoderma can inhibit the growth and reproduction of 
nematodes by secreting antagonistic substances (Moo-Koh et  al., 
2022). Trichoderma produces a variety of secondary metabolites, 
including trichomycin, gliotoxin, viridin, antibacterial peptide, β-1, 
3-glucanase, chitinase, polypeptides, polyketones, butyrolactones, 
sesquiterpene heptadecarboxylic acid, terpenes, and some volatile 
substances (hydrocarbons, alcohols, furans, aldehydes, alkanes, 
olefins, esters, aromatic compounds, heterocyclic compounds, and 
various terpenoids) (Kappel et  al., 2020). Contina et  al. (2017) 
reported for the first time that T. harzianum ThzID1-M3 labeled with 
GFP significantly inhibited the reproduction of potato cyst nematodes, 
with a cyst decline rate of 60%. The inhibition rates of the fermentation 
broth of T. hamatum HZ-9 and T. virens HZ-L9 on the hatching of 
soybean cyst nematode eggs were 80.6 and 79.4%, respectively 
(Contina et al., 2017). The secondary metabolites produced by the 
same Trichoderma species in different media have different effects on 
nematode resistance (Forghani and Hajihassani, 2020). The inhibition 
rate of T. viride secondary metabolites on wheat medium and solid 
medium on egg hatching of southern root knot nematode was 71.6 
and 67.3%, respectively (Baazeem et al., 2021). Baazeem et al. (2021) 
detected and analyzed the T. hamatum FB10 secondary metabolite 
nematicidal active ingredient; thirteen kinds of chemical substances 
were obtained, including 6-amyl-α-pyranone. The inhibition rate of 
egg hatching of Meloidogyne incognita was 78.26%.

Toxicity effect of Trichoderma

Trichoderma produces toxic secondary metabolites that directly 
come into contact with nematodes, which is an important direct 
biological control mechanism (Khan et al., 2020). It has been found 
that the toxic secondary metabolites produced by Trichoderma are 
divided into two categories, one is small molecules and volatile 
substances, including aromatic compounds, polyketides, 
butenolactones, and terpenoids, etc.; the other is macromolecular 
metabolites, including peptides, enzymes, etc. (Khan et al., 2020). It 
has been reported that the main nematicidal substances isolated from 
Trichoderma are trichodermin, acetic acid, gliotoxin, and peptide 
cyclosporin A (Fan et al., 2020). Meanwhile, Moo-Koh et al. (2022) 
used GC–MS to detect and analyze the nematicidal active components 
of Trichoderma TUV-13 strain and obtained more than 40 chemical 
components, among which of which the main alkanes are the most, 
in addition to organic acids, esters, ketones, steroids, and other organic 
compounds. Li et al. (2020) summarized and analyzed the secondary 
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metabolites and activities of 20 species of Trichoderma, including 
T. aureoviride, T. arundinaceum, T. brevicompactum, T. citrinoviride, 
T. gamsii, T. polysporum, T. saturnisporum, T. spirale, T. cremeum, 
T. pesudokoningii, and T. lignorum. There were 390 non-volatile 
secondary metabolites, among which wickerol A, harziandione, 
trichodermin, and cyclonerodiol exhibited nematicidal activity (Khan 
et al., 2020). The T. virens B3 fermentation broth has strong toxic 
activity against cereal cyst nematodes, and the killing rate is as high as 
86.2% (Forghani and Hajihassani, 2020). The fermentation broth can 
maintain good stability for a long time. The fermentation broth of 
T. citrinoviride，T. harzianum，T. acroviride, and T. koningiopsis had 
a strong toxic effect on the southern root-knot nematode J2, with a 
mortality rate of more than 85% (Du et al., 2020).

Induced resistance effect of Trichoderma

Induced resistance is the response of plants to stress, which is 
stimulated by external factors. Trichoderma-colonized plant roots 
cause physiological and metabolic changes and produce a variety of 
secondary metabolites that act as elicitors (Al-Hazmi and 
TariqJaveed, 2016). At present, there are more than 20 elicitors 
produced by Trichoderma that induce plant resistance, including 
antitoxins, polypeptides, lipopeptides, cellulases, hydrophobic 
proteins, non-toxic gene proteins, terpenoids, phenol derivatives, 
glycosidic ligands, and flavonoids (Pocurull et  al., 2020). These 
secondary metabolites induce plant defense responses and promote 
plant growth. The interaction between Trichoderma and plants 
increases the synthesis of defense-related enzymes and substances. 
T. hamatum can induce the activities of phenylalanine ammonia 
lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD), 
which are related to tobacco defense reaction, to increase 
significantly (Al-Hazmi and TariqJaveed, 2016). In tomatoes treated 

with T. harzianum, the control effect against M. incognita was 
61.88%. Further studies have shown that the levels of reactive 
oxygen species (ROS), superoxide (O2−), hydrogen peroxide (H2O2), 
and malondialdehyde (MDA) in tomatoes were significantly 
increased, and the defense-related genes PAL, C4H, 4CL, CAD, 
LPO, CCOMT, Tpx1, and G6PDH were upregulated, thus inducing 
the defense response of tomatoes to M. incognita (Pocurull et al., 
2020). Plant-induced resistance mainly involves signal transduction 
pathways such as those of salicylic acid (SA), jasmonic acid (JA), 
and ethylene (ET). In the interaction between Trichoderma and 
Arabidopsis, tomato, and cucumber, JA, SA, and ET contents 
increased to varying degrees, indirectly improving plant resistance 
(Hinterdobler et al., 2021). This process is also related to activating 
chitinase and glucanase activities and inhibiting the plant 
antioxidant enzyme system. The expression of ETR1 and LOX1 
genes of jasmonic acid and the ethylene signal pathway increased 
significantly in T. asperellum DQ-1 irrigated tomato, which 
enhanced tomato resistance (Agbessenou et al., 2022). Some volatile 
secondary metabolites of Trichoderma are important elicitors that 
induce plant resistance (Al-Hazmi and TariqJaveed, 2016). The 
volatile substances produced by T. harzianum and T. asperellum act 
as elicitors to stimulate the up-regulated expression of Arabidopsis-
induced resistance-related transcription factor MYB72, which 
triggers a JA-regulated defense response (Agbessenou et al., 2022). 
At present, the interaction mechanisms and signal transduction 
pathways between Trichoderma volatile secondary metabolites and 
plants have not been thoroughly studied. The active substances 
produced by Trichoderma are recognized by plants, thus activating 
the signal transduction pathway and inducing the production of 
plant system resistance. The microbial determinants recognized by 
microorganisms are called microbe-associated molecular patterns 
(MAMPs) (Baazeem et al., 2021). After Trichoderma infects plant 
roots, it releases a variety of MAMPs to activate immune response 

FIGURE 2

Schematic diagram of the mechanism of action of Trichoderma in plant nematode disease control (Sokhandani et al., 2016; Forghani and Hajihassani, 
2020; Khan et al., 2020).
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(MTI), thus inducing plant systemic resistance (ISR) (Li X. et al., 
2022). Abdelkhalek et al. (2022) showed that T. hamatum strain 
Th23 promotes tomato growth and induces systemic resistance 
against tobacco mosaic virus.

Application and mechanism of action 
of Trichoderma in promoting crop 
growth and repairing environment

Application of Trichoderma in promoting 
plant growth and repairing environment

Trichoderma can produce plant growth stimulators, such as 
indoleacetic acid (IAA) and harzianolide, to promote the development 
and growth of plant roots by secreting phytase and ferritin to promote 
the absorption of P and Fe by plants; decomposes soil organic matter; 
increases the supply of soil nutrients; improves crop photosynthetic 
efficiency; improves plant height, stem diameter, and other agronomic 
traits; and increases production (Lombardi et al., 2020a). Many studies 
have shown that most Trichoderma spp. can produce bioactive 
substances and have antagonistic effects on plant-pathogenic fungi 
and plant-pathogenic nematodes (Şesan et  al., 2020; Abdelkhalek 
et al., 2022; Organo et al., 2022; Rao et al., 2022). Bioactive substances, 
including secondary metabolites and cell wall-degrading enzymes, can 
effectively improve the resistance of crops, reduce plant diseases, and 
promote plant growth (Domínguez et al., 2016; Viriyasuthee et al., 
2019; Jaiswal et al., 2020; Tseng et al., 2020).

Trichoderma can improve soil nutrient availability and utilization 
efficiency. The aboveground biomass of cucumber seedlings 
inoculated with Trichoderma MF-2 increased by 39.07%, with a 
significant growth-promoting effect, and an increased number of 
beneficial microorganisms in the soil (Singh et al., 2019; Ye et al., 
2020). Different Trichoderma strains had different degrees of 
antagonism to F. oxysporum, and the combination of Trichoderma 
wettable powder treatment significantly increased banana yield 
(Samuelian, 2016; Bubici et al., 2019; Damodaran et al., 2020). Li et al. 
(2020) found that the biocontrol agent Trichoderma GYXM-1p1 strain 
had a strong growth-promoting effect through pot cultivation. After 
treatment with this strain, the root length, plant height, root fresh 
weight, dry weight, total fresh weight, and total dry weight of cabbage 
plants were significantly improved compared to the water control 
(p < 0.05), and the total fresh weight and total dry weight of cabbage 
plants were increased by 417. 60% and 762. 69%, respectively, 
compared with water control. Ruan et  al. (Intana et  al., 2021; 
Nuangmek et al., 2021) found that the application of nitrogen fertilizer 
with Trichoderma promoted the quality of muskmelon. After the 
application of Trichoderma, the soluble sugar content of muskmelon 
fruit increases significantly, improving the quality of muskmelon. The 
application of Trichoderma can increase the SPAD value of chlorophyll 
in peanut leaves, improve the main agronomic traits of peanuts, 
significantly increase the activity of protective enzymes in peanut 
roots, stems, and leaves, and reduce the content of MDA (Kovács et al., 
2021; Al-Askar et al., 2022). When 1.5 kg/666.7 m−2 was applied, the 
number of pods per plant, pod weight, seed kernel weight, 100 fruit 
quality, 100 fruit kernel quality, and yield per plant of peanut increased 
by 24.63, 20.22, 14.10, 4.86, 7.63, and 12.85%, respectively, compared 
with the control (Al-Askar et al., 2022).

Mechanism of Trichoderma in promoting 
plant growth and repairing environment

Trichoderma can promote plant growth, produce substances that 
can promote plant growth, improve the solubility of nutrients in the 
soil, and improve plant rhizosphere microecology, thereby promoting 
plant absorption and growth (Karuppiah et al., 2019a; Kakabouki 
et  al., 2021; Marra et  al., 2021; Figure  3). Trichoderma plant 
interactions can not only induce resistance but also improve the 
resistance of plants to abiotic stress factors (salt, high temperature, 
UV). Treatment of cucumber seeds with T. asperellum T203 improved 
the plant’s salt tolerance, and the activities of Mn/Cu SOD and catalase 
(CAT), and significantly reduced ascorbic acid in the plant (Illescas 
et al., 2022). Trichoderma can significantly enhance the Na+ efflux 
from the root system of Lycium barbarum and its transport to the 
upper ground, ensure K+ absorption and maintain the ion balance in 
the plant, thus reducing the damage of PSII caused by ion toxicity and 
oxidative stress, protecting photosynthetic pigments, maintaining the 
photosynthetic performance of L. barbarum under salt stress, and 
reducing biomass loss (Brotman et al., 2013).

The synthesis of plant growth hormones, such as IAA, ABA, ET, 
GA, and CK is the main mechanism of Trichoderma (Karuppiah et al., 
2019b; Wang et al., 2021; Degani et al., 2021b; Agbessenou et al., 
2022). T. asperellum induced cucumber to produce IAA, GA, and ABA 
to promote growth (Liu H. et al., 2022). The height, stem diameter, 
soluble sugar content, and absorption rate of available nitrogen of 
tomato seedlings treated with T. asperellum were significantly 
increased, and the expression of tomato hormone signal transduction-
related genes JAR1, MYC2, NPR1, PR1, and GH3 was significantly 
increased (Rawal et al., 2022). Another study showed that T. asperellum 
can upregulate the expression of xylanase genes in poplar and has a 
significant growth-promoting effect (Karuppiah et  al., 2019b). 
T. harzianum regulates tricarboxylic acid cycle (TAC) and hexose 
monophosphate pathway (HMP) to promote tomato growth by 
enhancing succinate dehydrogenase and glucose-6-phosphate 
dehydrogenase activities (Manganiello et  al., 2018). Trichoderma 
produces acidic substances that can dissolve insoluble trace elements 
in soil and provide more nutrition to plants (Samuelian, 2016). 
T. asperellum can transform insoluble phosphate in the soil into 
effective phosphorus and promote the absorption and utilization of 
cucumbers (Karuppiah et  al., 2021; Figure  3). T. koningiopsis can 
produce organic acids that dissolve insoluble tricalcium phosphate 
under high alkaline stress and can also produce alkaline phosphatase 
under drought stress to solubilize phosphorus and improve the 
utilization of nutrients by plants (You et al., 2022). Many experiments 
have verified that Trichoderma promotes plant growth (Mayo et al., 
2015; Bononi et al., 2020; Lombardi et al., 2020b; Swain et al., 2021; 
Velasco et al., 2021; Bridžiuvienė et al., 2022; Joo and Hussein, 2022; 
Li X. et al., 2022); under complex field production conditions, the 
mechanism by which Trichoderma promotes plant growth requires 
more systematic research.

Conclusion and future perspectives

At present, chemical control is the main method used for plant 
disease control and is achieved by spraying pesticides and fungicides. 
Although the effect of chemical control is good and helpful in 
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increasing agricultural production, the unscientific use of chemical 
pesticides has caused serious pollution to the environment and 
enhanced pathogens’ resistance to and chemical pesticides. Several 
experiments have proven that Trichoderma has good biological control 
effects and can reduce the use of chemical pesticides. However, there 
are still few biocontrol agents against Trichoderma on the market, and 
more effective and suitable strains need to be  found to join the 
biocontrol team (Nieto-Jacobo et al., 2017; Fiorentino et al., 2018; 
López et al., 2019; Nawrocka et al., 2019; Poveda et al., 2019; Cabral-
Miramontes et al., 2022). Although Trichoderma has great prospects 
for agricultural applications, there are still some problems in the 
development and utilization of Trichoderma (Rubio et al., 2014; Zhang 
et al., 2018; Phoka et al., 2020; Santos et al., 2020; Wang H. et al., 2022). 
Because the spore preparation of Trichoderma is generally a living 
fungal preparation, which is often affected by various natural factors 
such as humidity, temperature, soil acidity, alkalinity, and the soil 
microbial community when it is applied in the field, the field test 
performance is unstable, and the biological control effect is weakened. 
In addition, the shelf life of biological control agents is relatively short, 
and some microorganisms must be  stored at low temperatures to 
ensure the concentration of live microorganisms when they 
are applied.

There are still several problems to be solved in the application of 
Trichoderma in the biological control of plant diseases (Caruso et al., 
2020; He et al., 2020; Boamah et al., 2021; González-López et al., 
2021). The first is to explore and produce efficient strains, which can 
be  screened through genetic engineering technology to produce 
Trichoderma biocontrol-engineered strains that are resistant to 
chemical pesticides and low temperatures. At the same time, it is 
necessary to develop effective Trichoderma agents suitable for use with 
various application methods to enhance the control effect and improve 

the processing technology of Trichoderma agents to extend the shelf 
life of biological control agents. Second, exploring the combined 
effects of Trichoderma spp. and other microorganisms is necessary. 
The development of Pesticides with volatile and non-volatile 
secondary metabolites secreted by Trichoderma as the main active 
ingredient will be the focus of future research and the development of 
new Pesticides. To improve the quality of Trichoderma biopesticides, 
in addition to monitoring traditional indicators such as pH, dissolved 
oxygen, and temperature in the fermentation process, it is also 
necessary to monitor its correlation with the yield of antagonistic 
substances at the level of the cell metabolic flow, genome, proteome, 
and metabolome (Mulatu et al., 2021). However, it is necessary to 
establish more scientific quality standards for Trichoderma products 
in vivo, such as increasing the content of antagonistic substances or 
activity indicators (Niu et al., 2020). The development of new dosage 
forms, such as cell microcapsules, water-in-oil emulsions, and other 
protective dosage forms, should be strengthened, and the molecular 
mechanism of chlamydospore production should be further studied 
(Table 1).

With further study of transgenic Trichoderma, a prospective 
study on the biological and environmental safety of transgenic 
Trichoderma should be conducted (Li et al., 2021). At present, the 
balance regulation of Trichoderma colonizing host and plant 
immune response, long-distance and trans-growth period 
transduction mechanism of systematically induced plant disease 
resistance and its defense signals, identification of Trichoderma 
elicitors to recognize plant targets or receptors, and mechanism of 
Trichoderma-induced plant endophytic microbiome to 
synergistically stimulate plant immune response has become an 
international research topic of interest. Studies on miRNA 
regulation of Trichoderma colonization host process and plant 

FIGURE 3

Schematic diagram of the mechanism of action of Trichoderma in promoting crop growth and repairing the environment (Jaiswal et al., 2020; 
Lombardi et al., 2020a; Şesan et al., 2020; Karuppiah et al., 2021).
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immune response, and the regulation mechanism of cross-border 
miRNA transduction between Trichoderma, plants, and pathogenic 
microorganisms are emerging. The combination design or 
co-culture technology of Trichoderma and other microorganisms 
has become key for tapping new metabolites with specific functions 
of microorganisms, broadening the target spectrum of microbial 
metabolites, and developing new biopesticides and biostimulants 
based on metabolites (Wang Y. et al., 2022). It is expected to become 
a new direction for the development of macromolecular 
biopesticides by molecular construction or modification of the 
Trichoderma multi-stimulator fusion protein and the development 

of new plant immune-activating protein pesticides. At present, it is 
urgent to reveal the synergistic interactions among Trichoderma, 
plants, and pathogenic microorganisms in induced disease 
resistance on a cross-genome scale, develop Trichoderma and other 
microbial symbiotic agents that can cure both diseases and pests, 
and develop new biostimulator products based on 
Trichoderma metabolites.

Compared with single-life biocontrol fungi, compound 
biocontrol fungi can better avoid the problems of weak adaptability 
to the environment, narrow range of disease resistance, and 
insufficient control effect. At present, there are many preparations 

TABLE 1 The main biological function of common species of Trichoderma.

Name of species Major function Reference

T. harzianum Induced systemic resistance to fungi disease and increased plant 

productivity; Nematode resistance; Improved plant growth and root 

architecture.

Saravanakumar et al. (2016), Poveda et al. (2019), Coppola et al. 

(2019)

T. asperellum Antifungal activities; Plant growth promotion; Stress resistance; 

Enrich soil fertility

Wang H. et al. (2022), AL-Askar et al. (2021), Degani et al. 

(2021b)

T. asperelloides Antifungal activities; Plant growth promotion; Stress resistance Ruangwong et al. (2021a), Phoka et al. (2020), Rawal et al. (2022)

T. atroviride Fungistatic activity, plant growth promotion; Antifungal and 

antibacterial activities; Plant growth promotion and nutrient 

assimilation; Induced systemic defense responses; Stress resistance

Coppola et al. (2019),  Zhang C. et al. (2022), González-López 

et al. (2021), Leal et al. (2021), Nawrocka et al. (2019)

T. hamatum Nematode resistance; Increased plant productivity; Antibacterial 

and antifungal activities; Plant growth promoting

Li X. et al. (2022), Velasco et al. (2021), Baazeem et al. (2021)

T. virens Antifungal activities; Plant growth promotion Jogaiah et al. (2018), Halifu et al. (2020)

T. viride Antifungal activities; Enhanced root development; Nematode 

resistance; Stress resistance

Al-Hazmi and TariqJaveed, (2016), Naglot et al. (2015), He et al. 

(2020)

T. longibrachiatum Antifungal activities; Improve salt resistance; Nematode resistance; 

Plant growth promotion; Induced systemic defense responses

Ngo et al. (2021), Boamah et al. (2021), AL-Askar et al. (2022), 

Degani et al. (2021b), Yuan et al. (2019)

T. ghanense Plant growth promotion; Enrich soil fertility Bridžiuvienė et al., 2022

T. tomentosum Plant growth promotion; Enrich soil fertility Bridžiuvienė et al. (2022)

T. volatiles Induced systemic resistance Pescador et al. (2022)

T. velutinum Plant growth promotion Mayo-Prieto et al. (2019)

T. phayaoense Antifungal activities; improve plant growth and root architecture Nuangmek et al. (2021)

T. koningiopsis Antifungal activities; Plant growth promotion Ruangwong et al. (2021b), You et al. (2022)

T. citrinoviride Antifungal activities; Nematode resistance Park et al. (2019), Fan et al. (2020)

T. reesei Antifungal activities Hinterdobler et al. (2021)

T. gamsii Antifungal activities; Affected herbivore feeding behavior Alukumbura et al. (2022), Zhou et al. (2018), Di Marco et al. 

(2022)

T. aggressivum Fungal diseases biological control Sánchez-Montesinos et al. (2021)

T. atrobrunneum Nematode resistance Hernández et al. (2018)

T. afroharzianum Plant growth promotion Kappel et al. (2022)

T. bissettii Antifungal activities Chung et al. (2022)

T. parareesei Improve plant quality Rubio et al. (2014)

T. lignorum Nematode resistance Daza et al. (2019)

T. taxi Antifungal activities Chen et al. (2021)

T. strigosellum Nematode resistance; Plant growth promotion Batista et al. (2021)

T. hebeiensis Antifungal activities; Plant growth promotion Swain et al. (2021)

T. erinaceum Antifungal activities; Plant growth promotion Swain et al. (2021)
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containing different kinds of Trichoderma, which are being used in 
sustainable agricultural crops, but the application of these 
preparations is still expensive, and not available to all farmers. The 
application of compatible or affinity multiple microorganisms for 
compounding has become a trend in the development of biocontrol 
agents. Trichoderma can form alliances with a variety of 
microorganisms such as bacteria and fungi to directly or indirectly 
improve the ability of plants to prevent and control diseases. The 
following aspects may be the main research focus of Trichoderma 
as a biocontrol fungus in the future: the molecular mechanism of 
the specific interaction between Trichoderma and plants; Molecular 
basis of plant immunity induced by Trichoderma; Improvement of 
Trichoderma fermentation process; Establishing diversified 
application technology models of Trichoderma. The commercial 
application of biocontrol Trichoderma depends largely on the stress 
resistance (such as high temperature, drying, ultraviolet radiation, 
etc.) and storage resistance (more than 1 year at normal 
temperature) of the Trichoderma agent. At present, there are two 
main technologies. One is to reduce the acidity and regulate the 
utilization of oxygen to induce Trichoderma to produce stress-
resistant chlamydospores, and the other is to add some chemical 
additives (such as copper) to the inoculum. How the effectors 
produced by Trichoderma interact with plant cell receptors has 
become the key to revealing the mechanism of Trichoderma 
inducing plant immunity. With the deepening of the research on 
transgenic Trichoderma, prospective research on the biological and 
environmental safety of transgenic Trichoderma should 
be carried out.
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