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The booming mudflat aquaculture poses an accumulation of organic matter

and a certain environmental threat. Protease-producing bacteria are key players

in regulating the nitrogen content in ecosystems. However, knowledge of the

diversity of protease-producing bacteria in coastal mudflats is limited. This

study investigated the bacterial diversity in the coastal mudflat, especially

protease-producing bacteria and their extracellular proteases, by using

culture-independent methods and culture-dependent methods. The clam

aquaculture area exhibited a higher concentration of carbon, nitrogen, and

phosphorus when compared with the non-clam area, and a lower richness

and diversity of bacterial community when compared with the clam naturally

growing area. The major classes in the coastal mud samples were Bacteroidia,

Gammaproteobacteria, and Alphaproteobacteria. The Bacillus-like bacterial

community was the dominant cultivated protease-producing group, accounting

for 52.94% in the non-clam area, 30.77% in the clam naturally growing area,

and 50% in the clam aquaculture area, respectively. Additionally, serine protease

and metalloprotease were the principal extracellular protease of the isolated

coastal bacteria. These findings shed light on the understanding of the microbes

involved in organic nitrogen degradation in coastal mudflats and lays a foundation

for the development of novel protease-producing bacterial agents for coastal

mudflat purification.

KEYWORDS

bacterial community, protease-producingbacteria, diversity, clamnaturally growing area,
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Introduction

The coastal mudflat is a complex and dynamic ecological system, which is deeply

influenced by the geological, physicochemical, and biological factors of marine and

terrestrial land. Previous studies have reported that the spatiotemporal dynamics of bacterial

abundance, diversity, and activity in tidal flat sediments were significantly affected by the
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biogeochemical heterogeneity of salinity, pH, carbon, nitrogen,

sulfur, and phosphorus (Taylor et al., 2014; Soares et al., 2018;

Zhang G. et al., 2021; Niu et al., 2022; Zhang et al., 2022).

The seasonality and sediment depth also affected the bacterial

communities in the mudflat (Böer et al., 2009; Gobet et al., 2012).

Moreover, bacteria were found to be deeply involved in carbon

fixation and carbon-containing compound degradation, as well as

nitrogen cycling processes including nitrogen fixation, ammonium

oxidation, and nitrite and nitrous oxide reduction in the coastal

mudflats (Hou et al., 2013; Zhou et al., 2018; Li et al., 2021; Li Q.

et al., 2022).

Coastal mudflats are of great significance in regulating regional

climate and sustaining ecological balance. In recent years, mudflat

planting, mudflat aquaculture, and eco-tourism are flourishing in

coastal areas, which have promoted economic growth, but also

posed serious environmental threats (Long et al., 2016). With the

expansion of human activities, the contents of organic carbon and

nitrogen in coastal mudflats were significantly increased, resulting

in a large amount of organic matter entering the sea and the

atmosphere (Hu et al., 2019; Li T. et al., 2022). The nitrogen cycle is

a main component of global biochemical cycles, and the nitrogen

budget plays an important role in keeping ecological balance

(Zhang X. et al., 2020; Hutchins and Capone, 2022). Current studies

of bacterial functions in the nitrogen cycle mainly focused on

nitrogen fixation, anaerobic ammonia oxidation, nitrification, and

denitrification (Zhou et al., 2018; Li et al., 2021; Li Q. et al., 2022).

Protease is an important participant in the degradation of

organic nitrogen, and protease-producing bacteria have been

reported as the main microflora that regulate the nitrogen content

in ecosystems (Zhou et al., 2013; Zhang et al., 2015; Tornkvist et al.,

2019; Zhang Y. Z. et al., 2020). Related studies based on culture-

dependent methods have been conducted in a tropical aquaculture

environment (Wei et al., 2021), in the coastal sediments and soils

of Antarctica (Zhou et al., 2013; Liu et al., 2021), the sediments

of the Bohai Sea, Yellow Sea, and South China Sea (Zhou et al.,

2009; Zhang et al., 2019), and the sediments of Jiaozhou Bay

(Zhang et al., 2015), showing the diversity of protease-producing

bacteria and their extracellular protease in various environments.

In addition, a variety of microorganisms with enzyme-producing

capacities have been isolated from coastal mudflats (Das, 2012;

Suthindhiran et al., 2013; Gaonkar and Furtado, 2020). To the best

of our knowledge, reports on the diversity of protease-producing

bacteria in coastal mudflats are relatively rare. We speculated that

an abundant and diverse protease-producing bacteria community

existed in the coastal mudflats, especially in mudflat aquaculture

with a high content of organic nitrogen. Therefore, it is necessary

to study the diversity of protease-producing bacteria in coastal

mudflats that are heavily influenced by anthropogenic activity.

Jiaozhou Bay is a representative semi-enclosed bay of China’s

Yellow Sea. Under the influence of dense and long-time human

activities, the ecological factors of Jiaozhou Bay have changed

significantly (Zhang L. et al., 2021; Lin et al., 2022). Eutrophication

and high organic nitrogen content occurred in the coastal

sediments of the bay due to terrestrial inputs (Liu et al., 2010;

Li H. et al., 2019; Zhang L. et al., 2021), all of which make it an

ideal area for studying the organic nitrogen biodegradation in the

coastal mudflats. In this study, mud samples were collected from

three stations in the coastal mudflat of Jiaozhou Bay, including

the non-clam area, the clam naturally growing area, and the clam

aquaculture area. The variation of bacterial taxonomy composition

of different loci was investigated by culture-independent methods.

In addition, protease-producing bacteria were isolated from these

samples by culture-dependent methods, and the diversity of

both the bacteria and the extracellular proteases as well as

their distribution in different stations were further analyzed.

Our research provides experimental evidence to elucidate the

ecological role of microorganisms in organic nitrogen degradation

by decomposing protein in coastal mudflats and lays a foundation

for the development of measures to protect the coastal mudflat.

Materials and methods

Sampling and geochemical characteristics
detection

Mud samples were collected from the coastal mudflat of

Jiaozhou Bay, including three stations: the non-clam area (sample

D1-3, hereafter collectively referred to as sample D), the clam

naturally growing area (sample F1-3, hereafter collectively referred

to as sample F), and the clam aquaculture area (sample H1-

3, hereafter collectively referred to as sample H) on 18 March

2021. The geographic location of sampling sites is shown in

Supplementary Figures S1–S4. The surface mud of each station was

removed, and then, a deeper mud sample (5–10 cm) was collected

aseptically using stainless-steel sterile shovels. Three replicates of all

samples were taken from each station. The collected mud samples

were stored in airtight sterile plastic bags at 4◦C for subsequent

geochemical characteristics detection and microbiological analysis.

The salinity of the mud samples was measured using a soil salt

meter PNT3000 (STEPS, Germany). The pH, total carbon content

(TC), total nitrogen content (TN), and total phosphorus content

(TP) of each sample were measured according to NY/T 1121.2-

2006, NY/T1121.6-2006, NY/T1121.24-2012, and NY/T88-1988,

respectively. The paired sample t-test was applied to evaluate the

statistical significance between different variables of this study. The

level of significance was set to a p-value of <0.05.

DNA extraction, Illumina sequencing, and
analysis

The total genomic DNA of the mud samples was extracted

with OMEGA-soil DNA Kit (Omega Bio-Tek, USA). The V3–V4

regions of bacterial 16S rRNA gene were amplified using TransStart

FastPfu Polymerase (TransGen Biotech, China), with Barcoded

sequencing primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′)

and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The generated

PCR mixtures were then sequenced on an Illumina Miseq PE300

sequencing platform (Shanghai Majorbio, China). The obtained

large short-read libraries were merged and trimmed, and the

standard quality control was performed with Usearch 8.0.161

by the sequencing company. The remaining reads of the three

samples were then pooled, dereplicated, and finally assigned to
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each OTU using a 97% identity. OTU clustering and taxonomy

assignment were processed by mapping the reads of each sample

to representative OTU sequences using a Perl script, followed

by comparing with a 16S rRNA gene database (RDP Release

11.1 http://rdp.cme.msu.edu/) at an 80% confidence threshold.

The data were analyzed on the online Majorbio Cloud Platform

(www.majorbio.com) developed by Shanghai Majorbio Bio-pharm

Technology Co. Ltd. (Ren et al., 2022). Statistical analysis of

alpha diversity was conducted via t-test at a significance level of

5% (p < 0.05).

Screening of protease-producing bacteria

Synthetic sea salt was purchased from Qingdao Sea-Salt

Aquarium Technology Co. Ltd. and then dissolved at a

concentration of 3% to make artificial seawater. The screening solid

medium was prepared by adding 1% casein, 2% gelatin, 0.2% yeast

extract, and 1.5% agar into artificial seawater with a final pH of 8.0.

Protease-producing bacteria were screened using the dilution-plate

method according to previous studies, with minor modifications

(Zhang et al., 2015; Liu et al., 2021). In brief, approximately 1 g of

mud sample was diluted serially 10 times to 10−6 using artificial

seawater. Aliquots of 100 µl of each diluted sample were spread on

the screening plates for subsequent incubation at 20◦C until visible

hydrolytic zones were formed. Colonies of different morphology

with hydrolytic zone were further repeatedly streaked on the same

medium at least three times to obtain a pure strain.

16S rRNA gene amplification, sequencing,
and phylogenetic analysis

The 16S rRNA gene of culturable bacteria was amplified

by colony PCR technique using a Colony PCR kit (Mei5

Biotechnology, China) with the universal primers 27F

(5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-

GGTTACCTTGTTACGACTTC-3′), and then, the PCR products

were sequenced by Shanghai Tsingke Biotechnology Co. Ltd.,

China. Isolates with at least two different nucleotides in their

16S rRNA gene sequences were identified as different strains.

Phylogenetic trees were constructed using MEGA 11 with the

neighbor-joining method. The GenBank accession numbers

of 16S rRNA gene sequences in this study were OQ625902,

OQ625903, OQ625905–OQ625912, OQ625916, OQ625917,

OQ625921, OQ625938, OQ625939, OQ625941, OQ625993–

OQ625996, OQ626000–OQ626019, OQ626205-OQ626214,

OQ626220, OQ626221, OQ626228, OQ629890, OQ629902,

OQ629992–OQ629994, OQ642131, OQ651245, and OQ690495.

The strains’ corresponding accession numbers are shown in

Supplementary Table 1.

Protein substrate specificity test

The protease hydrolysis ability of the pure strains toward

different substrates, including milk powder, casein, and gelatin,

was detected using the method of Zhou et al. (2009), with minor

modifications. Protein substrate solid media were prepared by

mixing each protein substrate (1.0% milk powder, 0.5% casein,

or 0.5% gelatin) with 0.2% yeast extract, 1.5% agar, and artificial

seawater and adjusting the final pH to 8.0. The bacterial strains were

streaked on the substrate plates and then incubated at 20◦C for 4

days. The specific value of the diameter of the formed hydrolytic

zone divided by the diameter of the colony, and the H/C ratio was

measured and calculated.

Protease inhibitor assay

The bacterial strain was cultured in a liquid screening medium

at 20◦C and 200 rpm for 4 days. The supernatant of the bacterial

culture was collected after centrifugation at 12,000 rpm at 4◦C for

10min and then used for subsequent protease inhibitor assay. The

inhibitors contained phenylmethylsulfonyl fluoride (PMSF, Sigma)

at a concentration of 1.0mM, 1,10-phenanthroline (OP, Sigma)

at a concentration of 1.0mM, E64 (Merck) at a concentration

of 0.1mM, and pepstatin A (PA, Merck) at a concentration of

0.1mM. The supernatant was properly diluted with 50mM Tris-

HCl (pH 8.0), followed by incubating with each inhibitor at 4◦C

for 60min, and then, the residue protease activity was measured by

the digestion of casein as formerly described (Chen et al., 2003).

In brief, 100 µl of diluted solution and 100 µl of 2% casein in

50mM Tris-HCl (pH 8.0) were mixed and incubated at 25◦C for

20min. To stop the reaction, 200 µl of 0.4M TCA was added

to the reaction mixture. After centrifugation at 12,000 rpm and

4◦C for 5min, the supernatant was collected and every 100 µl of

supernatant was incubated with 500 µl of 0.4M Na2CO3 and 100

µl of Folin–Ciocalteu’s phenol reagent at 40◦C for 10min, and

then, the absorbance was measured at 660 nm. One unit of protease

activity was defined as the amount of enzyme that released 1 µg

of tyrosine per milliliter of reaction mixture per minute. A sample

without the addition of an inhibitor was set as the negative control.

The difference between the relative residue activity of each sample

and the negative control was taken as the inhibition ratio (%).

Results

Geochemical characteristics of the mud
samples

The mud samples were collected from three stations in a

coastal mudflat of Jiaozhou Bay, including the non-clam area

(sample D), the clam naturally growing area (sample F), and the

clam aquaculture area (sample H). The results of the geochemical

analysis are shown in Table 1. All mud samples exhibited slightly

alkaline pH (8.21–8.74). The salinity ranged from 4.75 to 6.25 g/kg,

with the highest observed in sample H and the lowest in sample

D. The contents of TC, TN, and TP in the samples ranged from

9.64–22.42 g/kg (TC), 0.52–0.79 g/kg (TN), and 0.31–0.62 g/kg

(TP), respectively. The highest values were found in sample H

(TC and TP) and sample F (TN), while the lowest were found

in sample D (TC, TN, and TP). The carbon content, nitrogen

content, and phosphorus content in the clam naturally growing
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TABLE 1 Characteristics of the mud sampling stations in the coastal mudflat of Jiaozhou Bay1.

Station Sample Location Temperature pH Salinity TC TN TP

(E, N) (◦C) (g/kg) (g/kg) (g/kg) (g/kg)

Non-clam area D 120◦15’60”, 15.8 8.51± 0.11a 4.75± 0.18a 9.64± 0.04a 0.52± 0.01a 0.31± 0.02a

36◦10’55”

Clam naturally

growing area

F 120◦16’1”, 15.8 8.74± 0.08b 5.85± 0.20c 16.39± 0.53c 0.79± 0.11b 0.42± 0.03b

36◦10’56”

Clam

aquaculture

area

H 120◦16’22”, 15.8 8.21± 0.15b 6.25± 0.31c 22.4± 0.08c 0.76± 0.04c 0.62± 0.10b

36◦11’6”

1T-test was applied to evaluate the statistical differences between the studied variables compared to their corresponding variable of the non-clam area. Different letters in the same column are

significantly different at a p-value of <0.05 (ab) and at a p-value of <0.01 (ac) between the non-clam area and the other stations.

area and the clam aquaculture area were significantly higher than

the corresponding values in the non-clam area, indicating that

the artificial culture and growth of clams may be relevant to

eutrophication in a tidal area.

Bacterial taxonomy composition analysis

The microbial community of the mud samples was investigated

by using culture-independent methods based on Illumina high-

throughput sequencing. A total of 113,717 effective sequence reads

were obtained, and the sequencing coverage rate exceeded 97%.

A total of 5,135 OTUs were assigned, which were arranged from

high to low as sample F (2,090), sample D (1,574), and sample

H (1,471). The alpha diversity indexes are shown in Table 2.

The estimators Ace and Chao reveal the richness of the bacterial

community. Sample F showed higher Ace and Chao values than

samples D and H, indicating higher bacterial richness in sample

F. The estimators Shannon and Simpson express the diversity

of the microbial community, with a positive correlation between

Shannon and a negative correlation between Simpson. Sample F,

again, exhibited the highest Shannon value and the lowest Simpson

value, implying that the microbial diversity of Sample F was the

highest of all the samples analyzed. The richness and diversity of

the bacterial community in the clam naturally growing area were

significantly higher than that of the clam aquaculture area and the

non-clam area. However, the results of statistical analysis indicated

that there are no statistically significant differences in microbial

richness and diversity between the clam aquaculture area and the

non-clam area.

In total, 52 phyla, 136 classes, 304 orders, 468 families, and

833 genera were identified in the three mud samples. Figure 1

shows the top phyla and classes of the mud samples. It seems

that the bacterial diversity of sample F was the highest and that

of H was the lowest (Figure 1), which was consistent with the

above alpha diversity estimators. The phylum with more than 5%

was considered the dominant phylum. Proteobacteria (44.47%) and

Bacteroidota (27.26%) were definitively dominant in sample D,

with a sum of 71.73% (Figure 1A), while in sample F, the major

phyla were Proteobacteria (22.76%), Desulfobacterota (17.92%),

Bacteroidota (13.44%), Chloroflexi (10.14%), and Acidobacteriota

(7.45%), with a sum of 71.71% (Figure 1A). The dominant phyla

constituted 89.76% of the bacterial community in sample H, which

were Proteobacteria (29.13%), Bacteroidota (23.40%), Firmicutes

(21.03%), Desulfobacterota (9.93%), and Campilobacterota (6.27%)

(Figure 1A). On class level, Bacteroidia, Gammaproteobacteria,

and Alphaproteobacteria were dominant in the mud samples,

contributing to a sum of 70.92, 36.40, and 52.35% of the bacterial

community in samples D, F, and H, respectively. It is noted

that Bacilli with an abundance of 11.38% and Clostridia with an

abundance of 9.34% were two major classes in sample H but were

barely found in sample D and sample F (Figure 1B). On the genus

level, Woeseia and Loktanella were the major bacterial genera in

the non-clam area, Woeseia was dominant in the clam naturally

growing area, and Trichococcus, Lutibacter, and Psychrobacter were

dominant in the clam aquaculture area (Supplementary Figure 5).

Diversity of cultivable protease-producing
bacteria

Protease is a key factor involved in nitrogen recycling (Zaman

et al., 1999; Kamimura and Hayano, 2000). To further study

the microbe-associated organic nitrogen degradation in coastal

mudflats, we examined the cultivable protease-producing bacterial

communities inmud samples by using culture-dependentmethods.

Moreover, culture-dependent methods have been commonly used

for the discovery of novel species and bacterial products, which

may further develop as protease-producing microbial agents for

depollution of the environment. In general, the cultivability of

the microbial community in the coastal area ranges from 0.1 to

0.01% (Al-Mailem et al., 2014; Rajeev et al., 2019). A number

of colonies appeared on the screening plates of the 10−1-10−4

diluted mud samples after cultivation. The bacterial abundance

reached 104 cells/g mud in the non-clam area (sample D) and

the clam aquaculture area (sample H) and 105 cells/g mud in

the clam naturally growing area (sample F). Clear hydrolytic

zones were found around approximately 60% of the colonies

on the screening plates. These results indicated that a large

quantity of protease-producing bacteria inhabited the studied

coastal muds.

The pure strain of the above colonies was obtained by repeated

streaking cultivation. The nearly full-length 16S rRNA genes of

the isolates were amplified and sequenced, and isolates with
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TABLE 2 Alpha diversity estimators of the bacterial community in the mud samples1.

Station Sample Coverage OTUs Bacterial richness index Bacterial diversity index

(%) Ace Chao Shannon Simpsonx 10−3

Clam naturally

growing area

F 97.74 2,055± 50a 2,509± 37a 2,469± 42a 6.28± 0.005a 5.72± 0.32a

Clam

aquaculture

area

H 97.95 1,493± 31c 2,087± 73b 2,005± 61b 5.47± 0.25b 19.15± 0.30b

Non-clam area D 97.97 1,545± 41c 2,018± 74b 1,991± 104b 5.73± 0.01c 8.68± 0.36b

1Statistical analysis was made by t-test. Different lower cases in the same column represent significance at a p-value of <0.05 (ab) and at a p-value of <0.01 (ac) between the clam naturally

growing area and the other studied stations.

FIGURE 1

Composition of the bacterial community of the mud samples on phylum level (A) and class level (B). The mud samples were taken from the

non-clam area (sample D), the clam naturally growing area (sample F), and the clam aquaculture area (sample H). The microbial community was

investigated by culture-independent methods. The column stands for di�erent mud samples, and the row represents the relative percentage of each

bacterial type, which is depicted by di�erent colors.

two or more different nucleotides in their 16S rRNA gene were

considered as different strains. Finally, a total of 61 different

protein hydrolyzing bacterial strains were isolated; 17 strains

from sample D, 26 strains from sample F, and 18 strains from

sample H (Supplementary Table 2). The 61 strains were classified

into three phyla, four classes, nine families, and 18 genera

(Figure 2). On the phylum and class level of the culturable

fraction, the phyla Firmicutes and Proteobacteria and the classes

Bacilli and Gammaproteobacteria were the largest groups in

the three studied areas (Figure 2A). On the family level of the

culturable fraction, Bacillaceae was the major family in all the

studied areas and the dominance of Pseudoalteromonadaceae

exists only in the clam naturally growing area (Figure 2B). The

family Bacillaceae contains Bacillus-like species, including the five

genera Bacillus,Alkalihalobacillus, Rossellomorea,Halobacillus, and

Cytobacillus, with an abundance of 52.94% in sample D, 30.77%

in sample F, and 50% in sample H, implying a dominance of

Bacillus-like bacteria in the analyzed culturable fraction from

coastal mudflats (Figures 2B, C). Pseudoalteromonas dominated in

sample F (34.62%), meanwhile only a minor genus dominated in

sample D (5.88%) and sample H (5.6%) (Figure 2C). In addition,

the isolated protease-producing bacteria of sample F affiliated with

13 genera were apparently more diverse than that of sample D with

seven genera and sample H with eight genera (Figure 2C), which

was consistent with the findings of bacterial diversity by the above

culture-independent methods.

In addition, neighbor-joining phylogenetic trees of the

protease-producing strains with different genera based on

16S rRNA gene sequences were constructed (Figure 3).

The relationship between the strains isolated from the

non-clam area, the clam naturally growing area, and

the clam aquaculture area is shown in Figures 3A–C,

respectively. Alkalihalobacillus strain H1-7 illustrated a

distant relationship with other recognized species and may
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FIGURE 2

Diversity and distribution of culturable protease-producing bacteria of mud samples on class level (A), family level (B), and genus level (C). The mud

samples were taken from the non-clam area (sample D), the clam naturally growing area (sample F), and the clam aquaculture area (sample H), and

the microbial community was investigated by culture-dependent methods. Each color represents the percentage of the taxon in the total isolates.

represent a new taxonomic unit worthy of further research

and investigation.

Diversity analysis of bacterial extracellular
proteases

Furthermore, the diversity of the bacterial extracellular protease

was investigated by protein substrate specificity testing and

protease inhibitor assay. Among the total 61 isolated strains,

the extracellular proteases from 59, 55, and 55 strains could

hydrolyze milk powder, casein, and gelatin, respectively, forming

clear hydrolytic zones (Supplementary Table 2). The difference in

the H/C ratios of the bacterial strains reflected their variation in

substrate specificity. There was a certain variety in the activity

of extracellular protease toward different protein substrates. The

extracellular proteases secreted from Alkalihalobacillus strains F4-

9 and H1-7, Bacillus strains D1-8, F1-2, and F2-3, Halobacillus

strain F1-13, Jeotgalibacillus strain D2-1, and Psychrobacter strains

H1-5 had high hydrolytic activity toward milk powder, with H/C

ratios higher than five. The proteases from the Alkalihalobacillus

strain D1-12, Bacillus strains D1-8 and F1-2, and Planococcus

strain H1-3 showed high hydrolytic activity toward casein. The

proteases from the Bacillus strain D2-9, Halobacillus strain F1-13,

and Psychrobacter strains D2-13, D1-1, and H1-5 exhibited high

hydrolytic activity toward gelatin.

In addition, the diversity of bacterial extracellular proteases

was further investigated by detecting the inhibition ratios of

PMSF (serine protease inhibitor), OP (metalloprotease inhibitor),

Pepstatin A (aspartic protease inhibitor), and E64 (cysteine

protease inhibitor). The 61 strains were cultivated in the liquid

screening medium, and only 20 strains affiliated with the

genera Alkalihalobacillus, Bacillus, Planococcus, Rossellomorea,

Halobacillus, Jeotgalibacillus, Psychrobacter, Pseudoalteromonas,

and Shewanella were able to produce enough extracellular

proteases for protease inhibitor assay (Table 3). The extracellular

protease activities of all 20 strains were inhibited by PMSF

at the degree of 8.77–68.97%, indicating that all the coastal

mudflat strains produced serine proteases. OP inhibited the

protease activities of 16 strains by more than 10%, indicating

that a majority of the isolated strains produced extracellular

metalloproteases. In particular, an inhibition ratio as high as 84.97%

was observed in the Alkalihalobacillus strain F1-12, suggesting that

the Alkalihalobacillus strain F1-12 mainly produced extracellular

metalloproteases. In contrast, Pepstatin A inhibited extracellular

protease activity by 20% or less, indicating that these strains

secrete very little aspartic or cysteine proteases. Moreover, E64

exhibited little inhibitory effect on the extracellular protease

activities, with the exception of the Alkalihalobacillus strain F1-

12, Bacillus strains D1-8 and D1-9, and Halobacillus strain F1-

13, demonstrating that only a minority of the strains produced

extracellular cysteine protease.

Discussion

Investigating microbial diversity and functionality is of crucial

importance in demonstrating “who’s there and what do they do.”

The culture-dependent method is the traditional way to explore
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FIGURE 3

Neighbor-joining phylogenetic tree based on 16S rRNA sequencing of protease-producing bacteria isolated from three stations of coastal mudflat in

Jiaozhou Bay using MEGA 11. The stations were the non-clam area (A), the clam naturally growing area (B), and the clam aquaculture area (C).

Strains a�liated with di�erent genera are shown in di�erent colors.
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TABLE 3 Inhibition ratios of inhibitors on bacterial extracellular proteases.

Phyla Genera Strains Inhibition ratio (%)a

PMSF (1.0mM) OP (1.0mM) Pepstatin A (0.1mM) E64 (0.1mM)

Firmicutes Alkalihalobacillus D1-3 28.83 52.28 11.66 6.1

F1-12 36.58 84.97 10.87 25.59

H1-7 24.31 29.13 13.72 4.93

H2-9 8.77 28.02 — —

Bacillus D1-8 38.56 56.64 2.59 21.82

D1-9 53.12 19.51 18.94 22.03

D2-9 48.08 4.24 — —

F2-3 18.01 57.52 20.06 11.66

Planococcus F1-30 37.17 41.78 4.53 1.67

H1-3 53.21 18.68 — —

H1-2 61.22 33.83 — —

Metaplanococcus H2-13 10.26 28.16 — —

Rossellomorea D3-7 21.66 10.3 — —

D3-5 29.33 11.88 — —

Halobacillus F1-26 52.25 4.2 — —

F1-13 41.18 66.2 15.92 27.24

Jeotgalibacillus D2-1 68.97 — — —

Proteobacteria Psychrobacter D1-1 27.6 32.65 14.98 2.18

Pseudoalteromonas F4-2 51.61 5.01 — 4.7

Shewanella H3-5 44.28 28.31 — —

aInhibition ratio refers to the difference between the relative residue activity of each sample after incubation with and without an inhibitor.

and discover novel bacterial strains and products (Chen et al.,

2003; Zhang et al., 2015). In recent years, the microbial diversity

of environmental samples has been commonly investigated by

culture-independent methods based on the rapid development of

Illumina sequencing (Li Q. et al., 2022; Zhang et al., 2022). In

this study, culture-dependent methods and culture-independent

methods were interrelated for a better understanding of the

bacterial diversity in the coastal mudflat, especially the protease-

producing bacteria and their extracellular proteases.

The coastal mudflats are the transition zone of marine and

terrestrial land, serving as an indispensable member of the global

biogeochemical system. Excessive anthropogenic nitrogen input

is a key factor influencing the coastal ecosystem (Li K. et al.,

2019). Nitrogen loading caused eutrophication of the tidal flat

environment, leading to hypoxia, red tides, and sediment loss

(Cui et al., 2013; Cheng et al., 2020). In addition to inorganic

nitrogen, environmental organic matters contain nitrogen mostly

as protein. The organic feed and fertilizers applied in farming and

aquaculture, animal feces and carcasses, as well as plant debris,

contained a large amount of protein, an excess of which is an

organic pollutant in coastal areas (Hodge et al., 2000; Davies et al.,

2022). Soil enzymatic activity, especially soil hydrolase enzymes

including protease, serves as a biological indicator to examine

soil health (Maliang et al., 2020; Farooq et al., 2021). Microbes

that inhabit coastal sediments play an important part in coastal

biochemical cycling (Jiao et al., 2018). The protease-producing

bacteria participated in the protection of coastal mudflats by

secreting protease and degrading the protein in coastal mud.

It has been reported that nitrogen and phosphorus were

released from an aquaculture farm and introduced pollution and

eutrophication to the surrounding environments (Kawasaki et al.,

2016). Consistently, in our study, the total concentrations of

carbon, nitrogen, and phosphorus in the clam aquaculture area

were 22.4 g/kg, 0.76 g/kg, and 0.62 g/kg, respectively, all of which

were significantly higher than the corresponding values in the

non-clam area of 9.64 g/kg (TC), 0.52 g/kg (TN), and 0.31 g/kg

(TP). Recent studies have reported that 57% of nitrogen and

76% of phosphorus in aquatic feed were lost to the aquaculture

water environment (Kong et al., 2020), and that the total nitrogen

concentrations in the contaminated seawater of fishing harbors

were two times higher than those of uncontaminated samples

(Cheffi et al., 2022). All the related studies demonstrated that the

fast-growing aquaculture industry had a great influence on the

biogeochemistry factors of the surrounding areas.

We found that Proteobacteria was the most abundant

phylum (44.47%) of the non-clam area in the coastal mudflat

of Jiaozhou Bay, and the dominant class Gammaproteobacteria

constituted 23.23% of the bacterial community. The dominance of

Proteobacteria in the microbiota of various coastal environments

has been reported in previous studies. Proteobacteria was found
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to be the most abundant phylum in two Atlantic coastal areas

of France and Portugal, representing 89.3 and 82.3% of the total

microbiota, respectively (Leite et al., 2017), as well as in the

surrounding seawater of cultivation farms along coastal areas of the

Yellow Sea (35.25%) (Ahmed et al., 2021), and in three Kerkennian

fishing harbors (51.02–66.7%) (Cheffi et al., 2022). The bacterial

community of Jiaozhou Bay sediments was also investigated, and

the results showed that Proteobacteria was the most dominant

phylum (61.3%), among which Gammaproteobacteria constituted

the most abundant class (32.8%) (Liu et al., 2014). In addition,

Proteobacteria and Gammaproteobacteria predominantly existed

in the clam naturally growing area and the clam aquaculture

area, with the composition of Proteobacteria accounting for 22.76

and 29.13%, as well as Gammaproteobacteria accounting for

16.37 and 17.51%. This was consistent with previous reports on

the prevalence of Proteobacteria in the microbiota of marine

invertebrates, such as oysters and hydroid (Fernández et al., 2013;

Guo et al., 2017). On the other hand, we investigated the cultivable

protease-producing bacteria in the studied areas and found an

abundant bacterial community in the phylum Proteobacteria,

especially in the class Gammaproteobacteria, which was affiliated

with four genera Pseudoalteromonas, Vibrio, Psychrobacter, and

Shewanella. Proteobacteria accounted for 41.18% in the non-clam

area, 46.15% in the clam naturally growing area, and 27.78% in the

clam aquaculture area of the total culturable protease-producing

bacteria, which was consistent with the findings of the culture-

independent approaches.

Members of Firmicutes were found as a minor phylum in the

sediments of Jiaozhou Bay (Liu et al., 2014), which was consistent

with our findings that Firmicutes only account for 0.37% of the

microbial biomass in the non-clam area. However, the amount

of Firmicutes increased to 1.85% in the clam naturally growing

area and even to 21.03% in the clam aquaculture area. These

findings are in line with the reports of Zhao et al. (2022), who

observed Firmicutes as the most abundant phylum of the core

bacterial communities in clams, with a composition of 26.2%. The

prevalence of Firmicutes has also been shown in the microbiota of

several marine invertebrates and aquatic environments of different

geographic locations, such as the marine ark shell in the Japan

Sea (Romanenko et al., 2009), the Easter oyster in the coastal

Bay of USA (King et al., 2012), and the sponge in the Western

Mediterranean Sea (Bauvais et al., 2015).

On the genus level, we found that Woeseia, Loktanella,

Trichococcus, Lutibacter, and Psychrobacter were dominant genera

in the studied mudflat areas. Woeseia genus was considered a core

member of the microbial community in the marine ecosystem,

which is characterized by the ability to assimilate inorganic carbon

(Dyksma et al., 2016).Woeseia strains have been frequently isolated

from coastal sediments and coastal seawaters (Du et al., 2016;

Xu et al., 2022). Loktanella was reported to be a dominant genus

in the coastal microbial community (Cardoso et al., 2019), and

large numbers of Loktanella strains have been isolated from tidal

flat sediments (Park et al., 2013, 2014; Tanaka et al., 2014).

Trichococcus strains were characterized by their psychrotolerant

ability, which was commonly isolated from environments at

low temperatures such as cold spring (Zakharyuk et al., 2021).

Lutibacter was reported to be predominant in shallow water marine

sediment (Kerfahi et al., 2014), and some strains have been isolated

from tidal flat sediments (Choi and Cho, 2006). However, except

for a Trichococcus pasteurii strain that was isolated from freshwater

crawfish and has been reported to produce alkaline proteases

to degrade the myofibrillar protein (Qiu et al., 2022), no other

studies report on the protease-producing ability of these four

genera. What is different is the Psychrobacter genus. Psychrobacter

strains were also known for psychrophilic characteristics, and some

strains have been reported to produce cold-active protease (Amato

and Christner, 2009; Perfumo et al., 2020). In this study, the

Psychrobacter genus was found to be the third in abundance in

sample H and the 35th in sample D based on the results of culture-

independent methods. Correspondingly, as a result of culture-

dependent methods, Psychrobacter was found to be a predominant

genus of the analyzed culturable fraction in coastal mudflats, with

an abundance of 17.65% in sample D, 5.6% in sample H, and 6.56%

in total.

Bacillus genus, as a member of the phylum Firmicutes, has

been frequently reported because of their bioremediation potentials

of organic and inorganic compounds, which are also essential in

the clam aquaculture area (Hsieh et al., 2020; Kumar et al., 2022;

Liu et al., 2023). Zhang et al. (2015) isolated sixty-six protease-

producing bacteria from Jiaozhou Bay sediments. Of all these

cultivable protease-producing bacteria, Bacillus was found to be

a major group (25.8%) (Zhang et al., 2015). Correspondingly,

in our study, Bacillus-like bacterial communities in the class

Bacilli and family Bacillaceae that were affiliated with five genera,

including Bacillus, Alkalihalobacillus, Rossellomorea, Halobacillus,

and Cytobacillus, accounted for 52.94% in the non-clam area,

30.77% in the clam naturally growing area, and 50% in the clam

aquaculture area. Analogously, Bacillus-like species were also found

as one of the dominant groups in other marine habits, e.g.,

sediments of mangrove wetlands in Hainan, China (Liu et al.,

2017), the coast of South India (Sinimol et al., 2016), and the

continental slope of eastern Arabian Sea (Farha et al., 2019). In

addition, members of the genus Bacillus and related genera were

widespread in terrestrial environments and exhibited rapid growth

in high protein media (Manktelow et al., 2020), which may also

cause the high composition of Bacillus-like species isolated from

the studied areas, originating from surrounding terrestrial habits.

Additionally, according to the inhibitor assay on protease, we

found that serine protease and metalloprotease were secreted by

the isolated bacteria of the studied area as the principal types

of proteases, generally similar to previous studies on sediments

of the Antarctic Sea, sediments of the South China Sea, soils of

the Antarctica South Shetland Islands, and sediments of Jiaozhou

Bay (Zhou et al., 2009; Hou et al., 2013; Zhang et al., 2015; Liu

et al., 2021). Relatively few strains isolated from Jiaozhou Bay

sediments were found to secrete cysteine proteases (Zhang et al.,

2015), and a minority of bacterial strains isolated from the soils

of the Antarctica South Shetland Islands were reported to secrete

aspartic and/or cysteine proteases (Liu et al., 2021). In this study,

we also found that a small quantity of aspartic protease and cysteine

protease was produced by a few strains isolated from the non-

clam area and the clam naturally growing area. These bacterial

extracellular protease findings may shed light on the understanding

of organic nitrogen degradation in coastal mudflat areas and the
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development of microbial protease agents to prevent pollution

and eutrophication.

Conclusion

In summary, this study analyzed the bacterial taxonomy

composition of different clam-growing areas in the coastal mudflats

of Jiaozhou Bay, especially protease-producing bacteria and their

extracellular protease. The results showed that the diversity of the

bacterial community and the protease-producing bacteria of the

clam naturally growing area was higher than that of the non-

clam area and the clam aquaculture area. Bacillus-like species,

including the genera Bacillus, Alkalihalobacillus, Rossellomorea,

Halobacillus, and Cytobacillus, were the dominant cultivated

protease-producing groups in the Jiaozhou Bay coastal mudflats,

and serine proteases and metalloproteases were the principal types

of proteases produced by the bacteria. These findings contribute

to a better understanding of the function of protease-producing

bacteria in organic nitrogen degradation in coastal mudflat areas

and the development of bacterial protease agents to improve the

coastal aquaculture quality.
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