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A variety of bacteria in the environment can utilize xenobiotic compounds as 
a source of carbon and energy. The bacterial strains degrading xenobiotics are 
suitable models to investigate the adaptation and evolutionary processes of 
bacteria because they appear to have emerged relatively soon after the release 
of these compounds into the natural environment. Analyses of bacterial genome 
sequences indicate that horizontal gene transfer (HGT) is the most important 
contributor to the bacterial evolution of genetic architecture. Further, host 
bacteria that can use energy effectively by controlling the expression of organized 
gene clusters involved in xenobiotic degradation will have a survival advantage in 
harsh xenobiotic-rich environments. In this review, we  summarize the current 
understanding of evolutionary mechanisms operative in bacteria, with a focus 
on biphenyl/PCB-degrading bacteria. We then discuss metagenomic approaches 
that are useful for such investigation.
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Introduction

Xenobiotic compounds are man-made chemicals that are present at unnaturally high 
concentrations in the natural environment. A variety of bacteria in the environment can utilize 
various xenobiotic compounds as a source of carbon and energy (Van der Meer et al., 1992). 
Phylogenetically unrelated bacterial strains often share similar metabolic pathways and enzyme 
systems for the degradation of xenobiotic compounds. It is believed that bacteria have acquired 
the ability to degrade even xenobiotic compounds they have never encountered (Nagata et al., 
2015; Jeffries et al., 2018; Miglani et al., 2022). The bacterial strains degrading xenobiotics are 
suitable models to investigate the adaptation and evolutionary processes of bacteria because they 
appear to have emerged relatively soon after the release of these compounds into the 
natural environment.

Polychlorinated biphenyls (PCBs) are xenobiotic compounds in which the aromatic 
biphenyl carbon skeleton contains between one and 10 chlorine atoms. The high chemical 
stability, superhydrophobicity, and toxicity of PCBs make them some of the most serious and 
persistent environmental pollutants (Abraham et al., 2002; Furukawa and Fujihara, 2008). It 
is therefore somewhat surprising that many microbes that are capable of degrading PCBs have 
been identified. A number of biphenyl-utilizing bacteria with the ability to degrade PCBs have 
been isolated and characterized (Pieper and Seeger, 2008). Lignin is a complex substance with 
a phenylpropane structure; it contains various biphenyl molecules and is widely distributed 
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throughout the earth. Biphenyl-degrading bacteria are thought to 
be responsible for the final stage of lignin degradation (Iram et al., 
2021). Since biphenyl dioxygenase, the first enzyme in the biphenyl 
catabolic pathway, hydroxylates plant-derived flavonoids (Zubrova 
et al., 2021) and its homologous enzyme oxidizes dehydroabietic 
acid (Witzig et  al., 2007), a biphenyl-degrading pathway might 
be involved in the degradation of plant secondary metabolites other 
than lignin. Thus, the ancestry of biphenyl-utilizing bacteria and 
their catabolic genes is quite ancient, and the genes may 
be distributed across a wide range of bacteria. Further, they would 
have the potential to adapt to different aromatic compounds, 
including PCBs. Therefore, the biphenyl/PCB-degradation system in 
bacteria appear to be a suitable model for the study of microbial 
adaptive evolution.

Recently, many bacterial genomes and metagenomes derived from 
environments contaminated with xenobiotic compounds have been 
analyzed at an accelerated pace (Garrido-Sanz et al., 2018; Hirose 
et al., 2019; Miglani et al., 2022). Much evidence has been found to 
support the idea that different biphenyl/PCB-degrading bacteria have 
evolved in the environment through different processes. In this review 
manuscript, we summarize the diversity, recruitment, and expression 
of degradation genes for biphenyl/PCB, shedding light on the 
sophistication of degradation gene systems and the adaptive evolution 
of these host bacteria.

Bacterial mobile genetic elements

Mobilization of the catabolic genes in bacteria can be accomplished 
through a variety of mobile genetic elements (MGEs), including 
plasmid, transposon, and integrative and conjugative elements (ICEs). 
These genes are modified and rearranged in different ways in host 
bacterial cells. Degradation gene clusters for biphenyl/PCB (bph) are 
often located on MGEs, and can be transferred between bacterial cells, 
conferring degradation capacity to non-degrading bacteria (Van der 
Meer et al., 1992; Tsuda et al., 1999; Springael and Top, 2004; Satola 
et al., 2013).

Plasmids
Plasmids are mobile genetic elements that facilitate rapid 

adaptation and evolution by conjugative transfer between bacterial 
cells in the environment (Smillie et  al., 2010; Aminov, 2011; 
Rodríguez-Beltrán et  al., 2020). Catabolic plasmids contain the 
complete set of genes encoding the enzymes for the degradation of a 
xenobiotic compound. They are relatively large (more than 50 kb), due 
to the presence of numerous insertion sequences (ISs) and 
transposons. The important characteristic of catabolic plasmids is 
incompatibility. That is, plasmids are classified into incompatibility 
(Inc) groups based on their replication and partitioning systems; two 
plasmids of the same group cannot replicate in the same cell and are 
considered incompatible (Top and Springael, 2003; Popowska and 
Krawczyk-Balska, 2013; Shintani et al., 2015). Genes for xenobiotic 
degradation are often found on broad-host-range IncP-1 plasmids, 
such as pSS60 (Burlage et al., 1990), pBRC60 (Burlage et al., 1990) and 
pJP4 (Newby et al., 2000).

A variety of PCB-degrading phenotypes have also been attributed 
to catabolic plasmids (Furukawa and Fujihara, 2008). The bph genes 
of thermophilic Geobacillus sp. strain JF8 are located on a plasmid 

pBt40 (Mukerjee-dhar et al., 2005). Rhodococcus sp. RHA1 harbors 
large linear plasmids, including pRHL1 (1,100 kb), pRHL2 (450 kb), 
and pRHL3 (330 kb), and its bph genes are mainly located on the 
pRHL1 (Shimizu et al., 2001). Many other bph gene clusters have been 
identified on the linear mega-plasmids of different Rhodococcus 
species (Taguchi et al., 2004; Garrido-Sanz et al., 2020). Both the order 
and sequence of the bph genes have been shown to differ among 
rhodococci, and there is evidence of recombination around bph gene 
clusters, such as insertion of transpose (Taguchi et al., 2007). These 
findings suggest that these bph gene clusters evolved separately and 
were spread in rhodococci by horizontal transfer. Cupriavidus sp. 
SK-4, a PCB-degrading strain reported to utilize di-ortho-substituted 
biphenyl, was found to harbor a single plasmid: pSK4. Experimental 
results showed that pSK4 could be mobilized into Pseudomonas putida 
MB1335 and the PCB-degrading enzymes could be expressed in this 
strain (Ilori et al., 2015). Bacterial plasmids are important vehicles for 
horizontal gene transfer (Redondo-Salvo et  al., 2020), and can 
therefore play a key role in the evolution of catabolic pathways and 
their hosts.

Transposons
Transposons are defined segments of DNA that are able to move 

from one genetic location to another target location in the absence of 
any nucleotide sequence homology. Most bacterial transposable 
elements, including ISs and transposons, can be traditionally classified 
into three classes: class I, class II, and conjugative transposons (Tan, 
1999; Tsuda et al., 1999). However, a revised classification system has 
been proposed wherein conjugative transposons, genomic islands, and 
integrative plasmids would be collectively called ICEs (Burrus and 
Waldor, 2004; Johnson and Grossman, 2015).

Bacterial class I elements include the simple ISs, which carry only 
the genetic determinants for transposition (usually transposase) and 
composite transposons, in which various genetic traits unrelated to 
transposition are flanked by two copies of very similar ISs in direct or 
inverted orientation (Ross et al., 2021). Bacterial class II transposons 
generally carry the genes for their transposition (transposase, and 
resolvase) and one or more phenotypic traits between their terminal 
inverted repeats (Ross et al., 2021). It has been reported that several 
bacterial class II transposons play a crucial role in the widespread 
distribution of various catabolic gene clusters, such as the cluster of 
genes encoding toluene, naphthalene, and carbazole degradation 
pathways (Tsuda et al., 1999; Sota et al., 2006; Nojiri, 2012). Only a few 
bacterial transposons carrying catabolic genes for biphenyl/PCB have 
been experimentally proven to be mobile. An example of a functional 
catabolic transposon is Tn5280, which was identified on plasmid pP51 
of chlorobenzene-utilizing Pseudomonas sp. strain P51 (Tan, 1999; 
Top et  al., 2002). Tn5280 transposes randomly at different 
chromosomal sites in P. putida KT2442 (van der Meer et al., 1991). 
This strongly suggests that some of the PCB degradation genes in 
strain P51 originated from a toluene or benzene degradation pathway, 
probably by HGT.

Integrative and conjugative elements
Integrative and conjugative elements (ICEs) are bacterial mobile 

genetic elements that are excised from the chromosome by site-
specific recombination between the attachment ends (attL and attR) 
mediated by an ICE-specific integrase (Figure 1; Delavat et al., 2017). 
The excised ICE molecule undergoes single-strand cleavage at the 
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origin of transfer (oriT). TraI (relaxase) binds to the oriT of the 
circular intermediate of the ICE, cleaves one strand and binds to the 
5′ end, which is then recognized by the VirD4 complex and 
transported through the mating pair formation system (MPF) to a 
recipient cell. VirD4 and VirB4 are large (> 70 kDa) ATPase proteins, 
and VirB4 is a component of MPF (Christie et al., 2014). The double-
stranded DNA is reconstituted and site-specifically recombines with 
the recipient’s attB attachment site on the chromosome to become 
re-integrated (Guglielmini et al., 2011). The integration sites in the 
genome of the recipient cell, such as the structural genes for tRNAs, 
have been reported for many conjugative transposons (Wozniak and 
Waldor, 2010; Delavat et al., 2017).

Although ICEs often carry cargo genes involved in pathogenicity, 
antibiotic resistance and heavy metal resistance to endow hosts with 
phenotypes beneficial for niche adaptation (Bellanger et al., 2014), 
they are also known to carry cargo genes for the catabolism of 
xenobiotic compounds (Hirose, 2023). ICEclc is a well-known ICE in 
xenobiotic biodegradation and carries cargo genes involved in the 
metabolism of chlorocatechol (clc genes) and aminophenol. The 
element was originally identified in the 3-chlorobenzoate-degrader 
Pseudomonas knackmussii B13 (Gaillard et al., 2006), and was almost 
identical to the ICEs inserted into the chromosome of 
Paraburkholderia xenovorans (formerly Burkholderia xenovorans) 
LB400 (ICEclc-LB400) (Chain et al., 2006) and P. aeruginosa JB2 
(ICEclc-JB2) (Obi et al., 2018). P. xenovorans LB400 is also a well-
characterized PCB-degrading bacteria, in which chlorobenzoate is 
formed during the degradation of PCB (Mondello, 1989). This 
bacterial strain provide insight into the roles of ICEs in the evolution 
of catabolic pathways for the biodegradation of chlorinated aromatic 
compounds. On degradative ICEs, catabolic gene products (e.g., bph, 
nah, and sal) that are related to the same substrate always share nearly 
100% identity, whereas the sequences of the gene products of the 
transmission module exhibit variations (Mohapatra et  al., 2022; 
Hirose, 2023). Although it has been suggested that there is a 

mechanism governing catabolic gene insertion and exchange on 
ICEs, there is little evidence to support this idea.

It is known that some biphenyl/PCB catabolic genes, bph, are 
horizontally transferred via ICEs. Several of the degradative ICEs 
carrying the bph gene belong to either of two groups, the Tn4371 
family or ICEclc family, whose respective members share a common 
core region. The transfer module is required for the conjugal transfer 
from donor to recipient forming the type IV secretion system (T4SS) 
(Bellanger et  al., 2014; Delavat et  al., 2017). Many components 
required for conjugal transfer constitute a “core region” that is 
conserved among ICE family members. Tn4371 is the first ICE 
carrying bph genes and was found in the chromosome of Cupriavidus 
oxalacticus A5 (Springael et al., 1993). The chromosome of Acidovorax 
sp. strain KKS102 contains ICEKKS1024677 (Ohtsubo et al., 2012), which 
belongs to the Tn4371 family (Toussaint et al., 2003). ICEKKS1024677 is 
known to be transferred by conjugation to a wide range of bacteria 
across the genera via a circular intermediate. The bph genes of 
Cupriavidus basilensis KF708 and Commamonas testosteroni KF712 
are also located on an ICE. The genes ICEbphKF708 and ICEbphKF712, 
which carry the bph genes of KF708 (Suenaga et al., 2015) and KF712 
(Hirose et  al., 2015a), are almost identical to ICEKKS1024677 and 
Tn4371, respectively. A new ICEclc family carrying bph genes and 
salicylic acid catabolic genes, sal, was found in the PCB-degrading 
strain Pseudomonas stutzeri KF716 (Hirose et al., 2015b). The ICEbph-

salKF716 contains common core regions that show homology with 
those of ICEclc from P. knackmussii B13 (Gaillard et al., 2006) and 
ICEXTD from Azoarcus sp. CIB (Zamarro et al., 2016). A comparison 
of the genetic loci revealed that several putative ICEs from P. putida 
B6-2 (Tang et al., 2011), P. alcaliphila JAB1 (Ridl et al., 2018), P. stutzeri 
AN10 (Brunet-Galmés et al., 2012), and P. stutzeri 2A20 (Heinaru 
et al., 2016) had core regions highly conserved with those of ICEbph-

salKF716, along with a variable region encoding the catabolic genes for 
phenol, naphthalene and biphenyl. ICEbph-salKF716 was reported to 
have been transferred from P. stutzeri KF716 to P. aeruginosa PAO1 

FIGURE 1

Organization of the ICEbph-sal in KF strains. ICEbph-salKF701, ICEbph-salKF702, ICEbph-salKF703, ICEbph-salKF707, and ICEbph-salKF710 carry the int gene, bph genes, 
sal genes, and bza genes. ICEbph-salKF716 carries the int gene, bph, and sal genes, but not the bza genes. The bza genes and sal genes in ICEbph-salKF702 
are formed in a fusion gene. 1, tRNA-Gly (CCC) genes (partial) (black); 2, int genes (grey); 3, traI genes (red); 4, VirB4 components of the type IV 
secretory pathway (yellow); 5, a VirD4 component of the type IV secretory pathway (yellow); 6, parB genes (purple); 7, parA genes (purple); and 8, 
YbhFSR ABC-type transporter (dark grey). The attL (18 bp) site, including the 18 bp of the 3′ end of the tRNA-Gly gene, and attR (18 bp) site are indicated.
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via a circular extrachromosomal intermediate form (Hirose et al., 
2021). These reports demonstrate that ICE subfamily members that 
share core regions highly conserved with those of ICEbph-salKF716 
are widely distributed among aromatic-degrading bacteria.

Evidence of the evolution of 
PCB-degradation gene clusters in polluted 
sites

In the past few years, several novel studies have provided insights 
into the diversity and evolution of biphenyl/PCB catabolic genes in the 
process of adaptation to environmental niches (Hirose et al., 2019, 
2021). Furukawa et al. determined the whole genomes of 10 biphenyl/
PCB-degrading bacterial strains (KF strains) isolated from a biphenyl-
contaminated soil sample (Furukawa et al., 1989). Genome analyses 
revealed that all 10 strains had the bph genes, while seven strains also 
had sal genes (Figure 1). A series of ICEs named ICEbph-sals that were 
larger (more than 110 kb) than many other ICEs (Bellanger et al., 
2014) contained highly conserved bph genes and sal genes (Hirose 
et  al., 2019). Most of these ICEbph-sals possessed benzoate catabolic 
genes encoding the extradiol cleavage (bza) pathway. The fusion gene 
cluster of sal:bza and bza:sal was found in ICEbph-salKF702 (Fujihara 
et al., 2015), and was likely generated by homologous recombination 
between the sal and the bza genes.

ICEbph-sal of P. putida KF715 existed both in an extrachromosomal 
circular form (referred to as ICEbph-sal [circular] or pKF715A; 
hereinafter called pKF715A) and an integrated form in the 
chromosome (referred to as ICEbph-salKF715 [integrated]) in stationary 
phase culture (Suenaga et  al., 2017). The ICEbph-sal KF715 was 
transferred at high frequency into P. putida AC30 and P. putida 
KT2440, and it was stably maintained in a circular form, pKF715A. The 
pKF715A in these transconjugant strains was further transferred into 
P. putida F39/D, and it existed in an integrated form in the 
chromosome. The structural features of bph and its flanking regions 
between KF701 and KF715 were almost identical, indicating that the 
bph-sal clusters were horizontally transferred to one another at this 
site between KF701 and KF715. Various mobile genes encoding 
transposases and a retron encoding retron-type reverse transcriptases 
have been shown to be inserted in the bph-sal clusters of ICEbph-sals. 
It has been hypothesized that these inserted sequences contribute to 
the exchange of the bph gene with the upper nah operon, the 
counterpart of the bph gene in the nah-sal cluster which is involved in 
naphthalene catabolism (Hirose et al., 2021; Mohapatra et al., 2022). 
These studies demonstrate that the bph gene clusters have integrative 
functions, are transferred among soil bacteria by various MGEs, 
including plasmids, transposons, and ICEs, and are diversified 
through modification.

Regulation of catabolic operons

The regulatory systems of aromatic compound-degradation genes 
are crucial evidence of the evolution of xenobiotic compound-
degradation genes such as biphenyl, naphthalene, and phenol. In 
general, the expression of these degradation genes is controlled by one 
or more regulatory proteins (Diaz and Prieto, 2000). The regulatory 
protein binds to the effector, the substrate itself, or intermediates, 

thereby affecting the transcription of the operons. The many PCB 
catabolic operons in Gram-negative bacteria are regulated by 
regulatory proteins belonging to the GntR family (Merlin et al., 1997; 
Watanabe et al., 2000; Ohtsubo et al., 2001). In general, the regulators 
belonging to the GntR family acts as repressors (Tropel and van der 
Meer, 2004). The regulators bind to the operator region in the absence 
of substrates (biphenyl/PCBs) and inhibit the transcription of their 
operon (Figure 2). One such strain, KKS102, possesses a bph operon 
consisting of bphSEFGA1A2A3BCA4R. This operon is downregulated 
by a BphS belonging to the GntR family in the absence of HOPD 
(2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid), an intermediate of 
biphenyl catabolism (Ohtsubo et al., 2001). The bph genes in Tn4371 
isolated from C. oxalacticus A5 consisting of bphEFGA1A2A3BCD are 
also downregulated by BphS belonging to the GntR family (Merlin 
et al., 1997). These degrading microorganisms are thought to reduce 
energy consumption by suppressing the transcription of degradation 
genes in the absence of substrates.

On the other hand, in Pseudomonas furukawaii KF707 (formerly 
P. pseudoalcaligenes KF707) (Kimura et al., 2018), a bph gene cluster 
consisting of bphR1A1A2A3A4BCX0X1X2X3D is upregulated by 
BphR1 (Watanabe et al., 2000). This regulator protein also belongs to 
the GntR family and acts as an activator having an effect opposite that 
of KKS102 (Ohtsubo et al., 2001). The details of this regulator protein 
will be described later. In addition, bph genes in P. xenovorans LB400 
are also upregulated by ORF0, which belongs to the GntR family 
(Denef et  al., 2004). This phenomenon is likely caused by the 
positional relationship of the promoter and operator of bph genes 
(Figure 2). In strain KKS102, the promoter and operator sequence of 
bphS exists between the bphS and bphEGFABDR genes, and thus the 
binding of BphS on the operator inhibits the binding of RNA 
polymerase on the promoter sequence of the bphEGFABDR genes 
(Ohtsubo et  al., 2001). On the other hand, in strain KF707, the 
promoter and operator regions of the bphR1 and bphA genes do not 
overlap, and thus the binding of BphR1 on the bphR1 operator does 
not inhibit the binding of RNA polymerase. The binding of a complex 
of HOPD-BphR1 and HOPD-BphR2 on the operator could induce 
the bending of DNA molecules and enhance the binding of RNA 
polymerase on the promoter region of bph genes (Figure  2). 
Therefore, the expression of the bph operon is greatly enhanced in the 
presence of biphenyl in strain KF707 (Watanabe et al., 2000, 2003). 
Although the regulatory system for biphenyl/PCB degradation differs 
between strains KKS102 and KF707, in both cases the regulatory gene 
plays an important role in the efficient use of energy for growth and 
in the survival of the host in polluted environments.

The KF707 strain has another putative regulator, BphR2, that 
belongs to the LysR family and acts as an activator of the bph upper 
operon (bphR1 and bphABC) (Figure 2). The bphR2 gene is located far 
downstream (6.6 kb) of the bph genes and just upstream of the 
salicylate catabolic (sal) genes (Fujihara et al., 2006). BphR2 binds to 
the operator regions of bphR1 and bphA1 and activates the 
transcription of the bph upper operon. Interestingly, BphR2 also 
activates the transcription of sal genes in the presence of hydroxy 
muconate semi-aldehyde, the intermediate of salicylate. This 
regulatory behavior is the same as that of NahR, the regulator of the 
naphthalene catabolic (nah) operon. Actually, the bphR2 and sal genes 
of strain KF707 have high similarity to the sal genes of the nah gene 
cluster containing nahR on P. stutzeri AN10 (Bosch et al., 1999). This 
indicates that the bph-sal gene cluster of strain KF707 might have 
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evolved through module exchange between the nah gene and bph gene 
in the nah-sal cluster.

Several investigations into the regulation of biphenyl/
PCB-degrading Gram-positive bacteria have also been reported. In 
strain R. jostii, RHA1 possesses diverse biphenyl/PCB-degradation 
genes that encode multiple isozymes for each metabolism step and are 
distributed among multiple clusters (Takeda et  al., 2004). The 
transcriptions of these genes are induced by dual regulatory systems. 
In the presence of biphenyl, a BphS1T1 two-component system 
induced five biphenyl-degrading gene clusters. And another 
two-component system, BphS2T2, also induced the biphenyl-
degrading genes. However, in these cases the effector molecule was 
not biphenyl but other aromatic compounds such as ethylbenzene, 
benzene and so on (Takeda et al., 2010). And the transcriptions of bpd 
genes in another biphenyl/PCB-degrading gram-positive bacteria, 
Rhodococcus sp. strain M5, are regulated by a BpdST two-component 
system that is induced by the biphenyl (Labbé et al., 1997).

Control of the gene expression

In order to survive under adverse conditions, bacteria transitorily 
induce the expression of particular genes to deal with environmental 
stresses. Tandem repeats (TRs) of short nucleotide sequences are often 
found in the intergenic regions in bacterial genomes (van Belkum 
et al., 1998). Several studies have reported that the rearrangement of 
TRs is involved in the gene expression of bacteria at either the 
transcriptional or translational level (Gemayel et  al., 2010; Zhou 
et al., 2014).

Recently, a novel TR sequence, T(G/A)ACATG(A/C)T, and 
polymorphisms consisting of a number of repeats located in the 
region upstream of catechol 2,3-dioxygenase (C23O)-encoding genes 
were identified by metagenomic analysis (Suenaga et al., 2022). The 
level of protein expression of C23O dramatically increased as the 
number of TRs increased, reaching a maximum value with three and 
four repeats. Experimental results indicated that this nonanucleotide 
TR would affect the translational efficiency of the gene expression 
system. A metagenomic sample was collected from activated sludge 
used to treat industrial wastewater that contained mono- and 
polycyclic aromatic chemicals (Suenaga et al., 2009). C23O is a key 
enzyme in the degradation of aromatic compounds because 
catecholic compounds are the common intermediates in the 
degradation pathways (Figure 3; Hirose et al., 1994). In this harsh, 
aromatic-rich environment, the increase in C23O activity realized by 
adjusting the number of TRs is probably providing the host microbes 
a survival advantage. In fact, a metagenomic analysis demonstrated 
that, among the polymorphisms consisting of a number of repeats, 
tandem repeats of three and four, which indicate higher C23O 
enzyme activity, dominate in this environment (Suenaga et al., 2022).

Future perspective

In this review, based on the genome sequence of isolated 
xenobiotic compound- degrading bacteria, the current understanding 
of the evolutionary mechanisms occurring in degrading gene systems 
is presented. DNAs of particular interest, such as MGE, within the 
genomes of these bacterial strains have been a focus of recent studies 

FIGURE 2

A transcriptional model of the bph gens in KKS102 in the absence (A) and in the presence (B) of biphenyl, and in KF707 in the absence (C) and in the 
presence of biphenyl (D). The black arrow shows induced transcription, the dotted arrow constitutive transcription, and the red arrow upregulated 
transcription. P, promoter; O, operator.
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and have been carefully analyzed. The selective collection of DNA 
molecules from the environment also seems to be efficient for the 
study of these evolutionary mechanisms. For instance, plasmids are a 
relatively undiscovered region of the genome and frequently contain 
genes that are essential for the survival of the host, such as genes 
involved in biodegradation and antibiotic resistance. Therefore, a 
metaplasmid or metamobilome study targeting total plasmid DNA in 
the environment is a more effective approach for understanding the 
content and composition of genes in microbial communities for key 
ecological processes (Suenaga, 2012; Alanin et  al., 2021). The 
comprehensive acquisition of degradative genes by a metaplasmid 
approach at a single site will contribute to our understanding of their 
on-site adaptive evolution.
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