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DETIRE: a hybrid deep learning
model for identifying viral
sequences from metagenomes

Yan Miao*, Jilong Bian, Guanghui Dong and Tianhong Dai*

College of Computer and Control Engineering, Northeast Forestry University, Harbin, China

A metagenome contains all DNA sequences from an environmental sample,

including viruses, bacteria, archaea, and eukaryotes. Since viruses are of huge

abundance and have caused vast mortality and morbidity to human society in

history as a type of major pathogens, detecting viruses from metagenomes plays

a crucial role in analyzing the viral component of samples and is the very first

step for clinical diagnosis. However, detecting viral fragments directly from the

metagenomes is still a tough issue because of the existence of a huge number

of short sequences. In this study a hybrid Deep lEarning model for idenTifying

vIral sequences fRom mEtagenomes (DETIRE) is proposed to solve the problem.

First, the graph-based nucleotide sequence embedding strategy is utilized to

enrich the expression of DNA sequences by training an embedding matrix. Then,

the spatial and sequential features are extracted by trained CNN and BiLSTM

networks, respectively, to enrich the features of short sequences. Finally, the two

sets of features are weighted combined for the final decision. Trained by 220,000

sequences of 500 bp subsampled from the Virus and Host RefSeq genomes,

DETIRE identifies more short viral sequences (<1,000 bp) than the three latest

methods, such as DeepVirFinder, PPR-Meta, and CHEER. DETIRE is freely available

at Github (https://github.com/crazyinter/DETIRE).

KEYWORDS

metagenome, viral identification, deep learning, graph convolutional network, codon

embedding

1. Introduction

High-throughput sequencing or next-generation sequencing (NGS) technology, which

makes it possible to obtain all nucleotide sequences directly from environmental samples,

has played important roles in many fields, such as pathogen detection (Wu et al., 2015;

Miao et al., 2022) and human disease analysis (Georg et al., 2014; Santiago-Rodriguez and

Hollister, 2019; Zhu et al., 2019). In these applications, detecting viruses from metagenomic

sequences becomes more and more essential because it is the first step in the analysis of

viruses (Bonhoeffer and Sniegowski, 2002). However, it is still a quite difficult task because

of their relatively low biomass compared with those of bacteria and high mutation rates.

To overcome this challenge, several methods have been proposed to identify viruses from

metagenomes in the past few years and can be categorized into similarity-based, machine

learning-based, and deep learning-based methods. Similarity-based methods generally map

a query sequence to a reference dataset and recognize it as the one with the highest similarity
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score (Roux et al., 2011, 2015; Wommack et al., 2012; Wood and

Salzberg, 2014; Buchfink et al., 2015; Kim et al., 2016; Rampelli

et al., 2016; Truong et al., 2016; Paez-Espino et al., 2017; Vilsker

et al., 2019). These methods, however, suffer from long execution

time during the mapping process, and hardly detect short viral

sequences because of the limited features they have. Different from

the similarity-based methods, machine learning-based methods

could extract human-designed features from DNA sequences and

classify them by a well-trained classifier, such as VirFinder (Ren

et al., 2017), MARVEL (Amgarten et al., 2018), and VirSorter2

(Guo et al., 2021). Although these methods have the ability to

produce more accurate results, the features have to be designed

artificially, and the performance in identifying short viral sequences

is relatively poor.

With the great success of deep learning methods in the past

few years, several deep learning-basedmethods have been proposed

to identify viruses from metagenomes. Long-short term memory

(LSTM) network and convolutional neural network (CNN) are the

most commonly used models. For example, ViraMiner (Tampuu

et al., 2019), VirNet (Abdelkareem et al., 2018), and RNN-VirSeeker

(Liu et al., 2022) utilize a single LSTM network to learn the

interconnections between each part in a one-hot encoded sequence;

DeepVirFinder (Jie et al., 2020), PPR-Meta (Fang et al., 2019), and

CHEER (Shang and Sun, 2021) establish a single CNN to extract

high-level features from one-hot encoded sequences automatically

before a set of dense layers and a softmax layer for classification.

However, the following two issues hamper the performance of deep

learning models for the recognition of short viral sequences as

follows: (1) the single deep learning architecture suffers from failing

to extract enough features to represent sequences; (2) the one-hot

encoding strategy omits the relationship between two parts of a

sequence because of its orthogonal property (Mikolov et al., 2013).

To solve the above-mentioned issues, a novel hybrid deep

learning-based virus identifier, namely, DETIRE, is proposed in

this study to identify viral fragments directly from metagenomes.

DETIRE is a two-stage architecture, containing a graph

convolutional network (GCN)-based sequence embedder and

a two-path deep learning model. First, every sequence is cut

into several 3-mer fragments, and, then successively input to the

GCN-based sequence embedder to train the representations of all

3-mer fragments. After that, these embedded fragments are then

fed into the CNN-path and BiLSTM-path to learn their features,

respectively. Finally, by two dense layers and a softmax layer, pair

scores are generated, and the higher score determines which type

of the input sequence is.

The main contributions of this study are 2-fold: (1) the GCN-

based embedder is utilized to enrich the representations of short

sequences; (2) BiLSTM and CNN are combined to learn not

only the spatial characteristics but also sequential characteristics

simultaneously to generate abundant features of short sequences.

To the best of our knowledge, DETIRE is the first hybrid model

that combines CNN and BiLSTM networks to identify viruses

from metagenomes.

The last of this study is organized as follows: Section 2

introduces the datasets used to train and test the DETIRE, and

details the architecture of DETIRE and its training strategy.

Section 3 shows the performance of the DETIRE on several datasets

and discusses the selection of some key parameters which can

affect the overall performance. Section 4 gives a brief conclusion

of this study.

2. Materials and methods

2.1. Virus and host RefSeq genome datasets
for training and testing

Virus RefSeq genome (up to 11 October 2022) was downloaded

from NCBI Virus (https://www.ncbi.nlm.nih.gov/labs/virus/

v\ssi/#/virus?SeqType_s=Genome&SourceDB_s=RefSeq). It has

been proven that the less the difference between the lengths

of sequences from the training and testing datasets, the better

classification result will be achieved (Amgarten et al., 2018). Thus,

all 34,492 viral sequences were split into a set of non-overlapped

fragments with a length of 500 bp, resulting in 2,043,539 fragments

total. The whole set of 500 bp viral fragments combined with

2,040,000 sequences of 500 bp subsampled from 4,410 prokaryotic

host RefSeq genomes, supplied in VirFinder (Amgarten et al.,

2018), called the GCN training dataset, was jointly used to train the

GCN-based embedding model in order to generate a meaningful

embedding matrix for sequences embedding. To show the ability of

DETIRE for identifying new viruses, 400,000 viral fragments with

a length of 500 bp from 22,066 viral sequences (before 16 August

2021) were subsampled randomly to be established as a training

dataset to train a hybrid deep learning model. In total, 100,000

fragments from 6,188 viral sequences (between 16 August 2021

and 3 September 2022) were chosen randomly as a validation set.

Moreover, 100,000 fragments from 6,238 viral sequences (between

3 September 2022 and 11 October 2022) were chosen randomly as

a testing set. Since there is no overlap between the three datasets

(training, validation, and testing datasets), a fully trained DETIRE

may have the ability to identify new viral sequences (Jie et al.,

2020; Shang and Sun, 2021). The NCBI accession numbers of

the viral RefSeqs can be found on GitHub (https://github.com/

crazyinter/DETIRE/blob/main/supplementary%20files/Virus_

RefSeq_accession_numbers.csv).

2.2. Composition of DETIRE

DETIRE utilizes a two-stage strategy for virus prediction,

including GCN-based sequence embedding and deep learning-

based sequence classification (Figure 1). Before embedding, every

3-mer fragment is generated by a three-base sliding window

moving from the head to the tail of the sequence with a

stride of one. For example, the original nucleotide sequence

“ATTGCCTGACAT”will be cut into “ATT, TTG, TGC, GCC, CCT,

CTG, TGA, GAC, ACA, and CAT.”

In the process of sequence embedding, TextGCN (Yao et al.,

2019) is utilized to learn the meaningful high-level representations

of all 3-mer fragments from every nucleotide sequence. First, a

heterogeneous graph containing 3-mer fragment nodes is built

in order to model global co-occurrence between these 3-mer
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fragments explicitly. Then, the built graph is fed into a simple two-

layer GCN (Kipf and Welling, 2016). The first layer constructs

the nodes and edges. Every nucleotide sequence in the GCN

training dataset and all unique 3-mer fragments from it are

constructed to their single nodes. There are no edges between

each nucleotide sequence. Edges are built between 3-mer fragments

and their original sequences. All 64 3-mer fragments have an edge

FIGURE 1

The workflow of DETIRE. DETIRE contains a GCN-based sequence

embedding model and a deep learning-based method to learn

features of viral sequences automatically and identify them directly

from metagenomes. First, the graph neural network learns the

high-level representations of 3-mer fragments in each sequence

through supervised back propagation. Then, DETIRE extracts the

features of spatial characteristics and sequential characteristics by

designing the CNN model and LSTM model, respectively. Finally, the

learned features are combined together to make the final decision

by several dense layers and a softmax layer.

between each of them (Figure 2). The weight of the edge between

a sequence node and a 3-mer fragment node is determined by the

term frequency-inverse document frequency (TF-IDF; Liang and

Chengsheng, 2008) of the fragment in the sequence, where term

frequency is the frequency of the 3-mer fragment appears in the

sequence and inverse document frequency is the logarithmically

scaled inverse fraction of the number of sequences that contain

the 3-mer fragment. Point-wise mutual information (PMI; Church

and Hanks, 1989), a popular measure for word associations, is

employed to calculate weights between two fragment nodes. The

second layer learns the fragment and sequence embeddings in

each node. Finally, these nodes are fed into a softmax classifier,

after which the cross-entropy error over all labeled sequences is

defined as the cost function (Li et al., 2018). After 1,000 epochs

of backpropagation by the Adam optimization algorithm (Kingma

and Ba, 2015) with a learning rate of 0.015 and a dropout rate of

0.5, the 30-dimension representations of all 3-mer fragments in the

second layer of the GCN are embedded into the sequences in the

training and testing datasets.

In the process of sequence classification, two parallel deep

learning models (a hybrid deep learning model), CNN and

BiLSTM, respectively, used to learn spatial and sequential features

of sequences. In the CNN path, each embedded sequence is

considered as an image to extract a spatial feature through three

sets of layers. Each set of the layer contains a convolutional layer

(16, 32, and 64 filters with sizes of 7*7, 5*5, and 3*3, respectively),

a ReLU activation function, a max pooling layer (with a pooling

size of 4*4 and a stride of 4), and a batch normalization (BN) layer,

respectively. In the BiLSTM path, the embedded 3-mer fragments

in a sequence are input into the BiLSTM cells (498 tokens total) one

by one, generating a sequential feature. Then, the first dense layer

with 100 hidden neurons receives the weighted merged two sets of

features from the CNN path and BiLSTM path. The second hidden

layer after that contains 30 hidden neurons. Finally, a softmax layer

generates two scores that reflect the likelihood of the input sequence

FIGURE 2

The structure of the GCN-based embedding model. Every nucleotide sequence in the GCN-training dataset and all unique 3-mer fragments from it

are constructed to their single nodes. There are no edges between each nucleotide sequence. Edges are built between 3-mer fragments and their

original sequences. All 64 3-mer fragments have an edge between each of them. After the training strategy, the vectors from the codon nodes in the

second GCN layer are combined into an embedding matrix.
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as a virus or not. The weights of merging are two sets of trainable

parameters which can be finetuned during the training progress.

All of the parameters, here, are updated by Adam (Kingma and Ba,

2015) optimizer, with a mini-batch of 200 for 50 epochs to reduce

the cross-entropy loss with a learning rate of 0.002.

2.3. Evaluation criteria

Universally, a confusion matrix is calculated to evaluate the

performance of a classifier according to four statistics as follows:

True Positives (TP), False Positives (FP), True Negatives (TN), and

False Negatives (FN; Liu et al., 2022). TP are examples correctly

labeled as positives; FP refer to negative examples incorrectly

labeled as positive; TN correspond to negatives correctly labeled

as negative; and FN refer to positive examples incorrectly labeled

as negative. Several high-level criteria are further calculated based

on the confusion matrix, such as recall, accuracy, precision, and

F1 score:

Recall =
TP

TP + FN
(1)

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

F1 Score =
2× Precision× Recall

Precision+ Recall
(4)

3. Results

3.1. A marine metagenome dataset from
CAMI

To test the performance of DETIRE on identifying viral

sequences, a marine metagenome was downloaded from the 2nd

CAMI Challenge Marine Dataset (https://data.cami-challenge.

org/participate), short and long-read shotgun metagenome

data from samples at different seafloor locations of a marine

environment. All sequences from the fasta document named

CAMI2_short_read_pooled_gold_standard_assembly were

selected. These sequences were, then, mapped to the Virus RefSeq

genome using BLAST (Basic Local Alignment Search Tool)

Altschul et al. (1990), with default parameters (word size is 11,

threshold is 0, and score matrix is BLOSUM62). As a result,

8,431 sequences shorter than 500 bp, 7,087 sequences in length of

500–1,000 bp, 7,915 sequences in length of 1,000–3,000 bp, and

12,518 sequences longer than 3,000 bp were recognized as viral

sequences. The same amount of non-viral short sequences was also

randomly subsampled from the rest of sequences for each length,

respectively. Together, these 71,902 mixed sequences were built

into a metagenome dataset to test DETIRE.

3.2. A real human gut metagenome dataset

A real human gut metagenome dataset was downloaded from

the NCBI short-read archive (accession ID: SRA052203; Sharon

et al., 2013). The same BLAST progress with default parameters

was conducted as it was in the 2nd CAMI Challenge Marine

Dataset, resulting in 385 viral sequences shorter than 500 bp, 409

sequences in length of 500–1,000 bp, 728 sequences in length of

1,000–3,000 bp, and 915 sequences longer than 3,000 bp. Similarly,

the same amount of non-viral short sequences for each length was

subsampled randomly from the rest of non-viral sequences. Totally,

4,874 mixed sequences were used to test DETIRE.

3.3. The influence of k-mer fragments and
their embedding sizes on the viral
identification results

Every nucleotide sequence was converted into a set of k-mer

fragments before being expressed as high-level vectors by the graph

neural network to enrich the representation of the sequence. The

chosen k-value and the embedding size have a significant impact

on the identification performance. To find a relatively optimal set

of the two parameters, a lot of models have been trained by the

established training dataset and evaluated by the testing dataset.

Each model corresponds to a specific set of parameters, where k

is chosen from [1, 2, 3, 4, 5, 6, 7, 8, 9, and 10] and embedding

size is chosen from [4, 8, 30, 50, 100, 200, 500, 1,000], respectively.

The evaluation results are shown in Figure 3. When the embedding

size is a little lower than 4 k (all combinations of the k-mer

fragments), the AUROC value is close to the maximum. Thus,

3-mer fragments with an embedding size of 30 were chosen for

our final model. The final representations of all 3-mer fragments

can be found at https://github.com/crazyinter/DETIRE/blob/main/

supplementary%20files/embedding_matrix.csv.

3.4. Performance on the testing dataset

To prove the outstanding performance of DETIRE on

identifying short viral sequences (<500 bp), a testing experiment

on the testing dataset was performed to make a comparison

between DETIRE and three latest viral identification methods,

DeepVirFinder, PPR-Meta, and CHEER. The accuracies, recalls,

precisions, and F1 scores of the four methods are calculated in

Table 1. DETIRE outperforms the three methods at all of the

four criteria.

3.5. Performance on the CAMI Marine
metagenome

To deal with different lengths of sequences from the

metagenome and avoid vanishing gradient problem in the process

of training BiLSTM, a sequence longer than 500 bp will be divided

into several non-overlapped sub-sequences of 500 bp before input

into the BiLSTM path. If the length of the last part in the sequence
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FIGURE 3

The performance of the models with various k-values and embedding sizes on the testing dataset. Sequences with specific k-mer fragments and

embedding sizes were used to train several models, which were, then, evaluated by the testing dataset. The AUROC values of these models were

calculated. The k is chosen from [1, 2, 3, 4, 5, 6, 7, 8, 9, and 10] and the embedding size is chosen from [4, 8, 30, 50, 100, 200, 500, and 1,000].

TABLE 1 Comparison of accuracies, recalls, precisions, and F1 scores of

DeepVirFinder, PPR-Meta, CHEER, and DETIRE on the testing dataset.

Criteria Deep-
VirFinder

PPR-Meta CHEER DETIRE

Accuracy 0.8126 0.8403 0.8744 0.8772

Recall 0.8159 0.8396 0.8782 0.8812

Precision 0.8105 0.8408 0.8715 0.8741

F1 score 0.8132 0.8402 0.8748 0.8776

Bold values represent the best performance.

is shorter than 500 bp, the last bases of the sequence will be zero-

padded and regarded as a single subsequence. Then, all of the sub-

sequences are input to the hybrid deep learning model one after

another, to get their own scores, the average of which will be the

final score and is contributed to identifying whether the query long

sequence is viral or not.

The accuracies, recalls, precisions, and F1 scores of DETIRE,

CHEER, PPR-Meta, and DeepVirFinder on classifying viral and

non-viral sequences from the CAMI Marine metagenome are

calculated and made a comparison in Table 2. DETIRE exceeds

DeepVirFinder and PPR-Meta at all of the four criteria for

identifying all lengths of viral sequences. DETIRE is better than

CHEER when the length is shorter than 3,000 bp. For identifying

long sequences (>3,000 bp), the accuracy, recall, and F1 score of

DETIRE are slightly lower than CHEER because DETIRE identified

a little less viral sequences. For all lengths, DETIRE achieves the best

performance than the other three methods.

3.6. Performance on the real human gut
metagenome

The accuracies, recalls, precisions, and F1 scores of DETIRE,

CHEER, PPR-Meta, and DeepVirFinder are calculated according

to the number of correctly and incorrectly identified viral and host

sequences from the real human gut metagenome dataset (Table 3).

DETIRE also achieves the best overall performance than the other

three methods of identifying viral sequences (all lengths). In spite

of a 0.0087 and 0.0019 lower precision than CHEER for 500–1,000

bp and 1,000–3000 bp, DETIRE gets higher accuracy, recall, and F1

score for these lengths. For sequences longer than 3,000 bp, CHEER

is the outperforming method. However, a comparable performance

of DETIRE is achieved as CHEER for long sequences.

3.7. Comparison of the testing time
consuming

The testing time of the four methods on the testing dataset, the

CAMI Marine metagenome and the real human gut metagenome

are made a comparison, as shown in Table 4. The equipment used

for the analysis is two Intel XeonGold 6226R (CPU) with amemory

of 256 Gb. For all the three datasets, DETIRE has the minimum

time consumption for the testing strategies.

3.8. Availability of DETIRE on identifying
phages

DETIRE is trained to identify viral sequences directly from

metagenomes, including prokaryotic virus and eukaryotic virus. In

some specific virus analysis tasks, finding bacteriophage-originated

sequences is a meaningful strategy. To test the ability of DETIRE

to detect phages, a phage dataset was established according to

DeePhage Wu et al. (2021). All 225 phage genomes were collected,

and then, 10 fragments of 500 bp were randomly subsampled

from each phage genome, resulting in 2,250 sequences.These

sequences were embedded by the trained embedding matrix and

input to DETIRE. DeepVirFinder, PPR-Meta, and CHEER were

also tested by these sequences. The accuracies of identifying these
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TABLE 2 Comparison of accuracies, recalls, precisions, and F1 scores of DeepVirFinder, PPR-Meta, CHEER, and DETIRE on the CAMI Marine

metagenome.

Length Criteria Deep-VirFinder PPR-Meta CHEER DETIRE

<500 bp Accuracy 0.7840 0.7982 0.7982 0.8061

Recall 0.7860 0.8009 0.8041 0.8109

Precision 0.7828 0.7967 0.7948 0.8032

F1 score 0.7844 0.7988 0.7994 0.8071

500–1,000 bp Accuracy 0.8130 0.8435 0.9007 0.9030

Recall 0.8074 0.8369 0.9001 0.9040

Precision 0.8165 0.8481 0.9012 0.9021

F1 score 0.8119 0.8425 0.9007 0.9031

1,000–3,000 bp Accuracy 0.8269 0.8400 0.8956 0.8964

Recall 0.8221 0.8358 0.8964 0.8973

Precision 0.8301 0.8429 0.8947 0.8957

F1 score 0.8261 0.8393 0.8956 0.8965

>3,000 bp Accuracy 0.8409 0.8519 0.8708 0.8699

Recall 0.8434 0.8485 0.8724 0.8691

Precision 0.8393 0.8544 0.8696 0.8706

F1 score 0.8413 0.8514 0.8710 0.8698

Overall Accuracy 0.8194 0.8351 0.8652 0.8673

Recall 0.8190 0.8322 0.8672 0.8685

Precision 0.8196 0.8370 0.8637 0.8664

F1 score 0.8193 0.8346 0.8654 0.8675

Bold values represent the best performance.

phages are shown in Table 5. DETIRE identified 90.27% phages

and 4.36 and 4.58% more than CHEER and DeepVirFinder,

respectively. The accuracy of DETIRE is 2.49% lower than

PPR-Meta. This may be caused by PPR-Meta’s training dataset,

containing only phages because it is a 3-class classifier that

allows simultaneous identification of both phage and plasmid

fragments. Eventhough, DETIRE achieves a better performance

than CHEER and DeepVirFinder, with relatively comparable

results as PPR-Meta. This means DETIRE has the potential in

identifying phages.

3.9. The ability of DETIRE on making a
whole viral genome by identifying viral
sequences after assembling

DETIRE is tested additionally by metagenomic data with

known viral infection, to see if the identified viral sequences can

be assembled to make whole genome of the virus. A wastewater

metagenome (Schoch et al., 2020; NCBI:txid527639) is selected

from the IMG/VR database David et al. (2021), containing 359

viral nucleotide sequences. All of the sequences are separated

into 100 bp sequences, resulting in 3,459 reads. All of the four

methods were separately used to identify these reads as virus

or not. The number of identified viral sequences and accuracy

is shown in Table 6. Then, these identified viral sequences are

assembled by SOAPdenovo2 Ruibang et al. (2012), with default

parameters. The number of assembled contigs is shown in Table 6.

After that, these contigs are input to CheckV Nayfach et al. (2021),

to assess the quality and completeness of the viral genome. The

number of hits for each method is shown in Table 6. All the hits

are of low quality by the AAI-based method. The completeness

of contigs from DETIRE can be seen in https://github.com/

crazyinter/DETIRE/blob/main/supplementary%20files/DETIRE_

completeness.csv. DETIRE identifies most viral reads from the

wastewater metagenome. A total of 289 assembled viral contigs are

detected by CheckV, with low-quality, 24, 88, and 77 more than

DeepVirFinder, PPR-Meta, and CHEER, respectively. The results

show that DETIRE performs better than the other three methods

of making whole genome of the virus by assembling identified

viral sequences.

4. Discussions

Currently, identifying short viral sequences directly from

metagenomes is still of low accuracy because of too little

information to extract enough features from short sequences.

There are three reasons why DETIRE works. First, the GCN-based

embedding model creates a new representation for a sequence.

Each codon is transformed into a high-dimensional embedded

vector by a trained embedding matrix. The new representation
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TABLE 3 Comparison of accuracies, recalls, precisions, and F1 scores of DeepVirFinder, PPR-Meta, CHEER, and DETIRE on the real human gut

metagenome.

Length Criteria Deep-VirFinder PPR-Meta CHEER DETIRE

<500 bp Accuracy 0.8299 0.8052 0.8831 0.8905

Recall 0.8234 0.8026 0.8857 0.8962

Precision 0.8342 0.8068 0.8811 0.8828

F1 score 0.8288 0.8047 0.8834 0.8894

500–1,000 bp Accuracy 0.8154 0.8154 0.8863 0.8924

Recall 0.8093 0.8044 0.8875 0.8998

Precision 0.8193 0.8225 0.8954 0.8867

F1 score 0.8143 0.8133 0.8864 0.8932

1,000–3,000 bp Accuracy 0.8592 0.8482 0.8860 0.8874

Recall 0.8722 0.8448 0.8777 0.8832

Precision 0.8501 0.8506 0.8925 0.8906

F1 score 0.8610 0.8477 0.8850 0.8869

>3,000 bp Accuracy 0.8317 0.8404 0.8650 0.8596

Recall 0.8393 0.8481 0.8732 0.8634

Precision 0.8267 0.8353 0.8591 0.8568

F1 score 0.8330 0.8416 0.8661 0.8601

Overall Accuracy 0.8369 0.8330 0.8777 0.8818

Recall 0.8416 0.8326 0.8789 0.8842

Precision 0.8337 0.8333 0.8768 0.8800

F1 score 0.8377 0.8329 0.8779 0.8821

Bold values represent the best performance.

TABLE 4 Comparison of the testing time consuming on the three

datasets.

Datasets Deep-
VirFinder

PPR-Meta CHEER DETIRE

Testing

dataset(s)

762 812 891 716

CAMI

Marine(s)

362 321 332 304

Real human

gut(s)

130 114 121 112

Bold values represent the best performance.

TABLE 5 Comparison of accuracies on identifying phages.

Methods Deep-
VirFinder

PPR-Meta CHEER DETIRE

Accuracy (%) 85.69 92.76 85.91 90.27

Bold values represent the best performance.

of the sequence enriches the features significantly. Second, the

hybrid model contains BiLSTM and CNN simultaneously. It

could learn not only the spatial characteristics but also sequential

characteristics to generate abundant features of short sequences,

which is intuitively consistent with the expression of the DNA

sequence in nature. Thirdly, the combination of the two features

TABLE 6 The results of four methods on making whole viral genome by

identified viral sequences after assembling.

Criteria Deep-
VirFinder

PPR-Meta CHEER DETIRE

Number of

identified reads

1,352 1,402 2,126 2,203

Accuracy 0.3909 0.4053 0.6146 0.6369

Number of

assembled

contigs

561 568 873 890

Number of hits 212 201 265 289

Bold values represent the best performance.

extracted from the CNN-path and BiLSTM-path is dynamic. The

longer the input sequence, the more contribution of the CNN-path.

Similarly, the shorter the input sequence, the more contribution of

the BiLSTM-path. Furthermore, the attention mechanism in both

paths decides which part of the information from the sequence

should be remembered or forgotten, which is really important

to determining which part of the sequence contributes more

to distinguishing.

To verify the effectiveness of the GCN-based embedding model

and hybrid classification model in DETIRE, the sequences from

the same training and testing datasets (500 bp) were one-hot

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1169791
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Miao et al. 10.3389/fmicb.2023.1169791

FIGURE 4

The identification result of BOHEM, FOHEM, single CNN, single BiLSTM, and DETIRE on the testing dataset. The five models are tested by the testing

dataset to prove the e�ectiveness of the GCN-based sequence embedding method and the hybrid deep learning based-architecture.

encoded in two separate ways as follows: each base in a sequence

was one-hot encoded to [1,0,0,0], [0,1,0,0], [0,0,1,0], or [0,0,0,1];

each 3-mer fragment in a sequence was one-hot encoded to a 64-

dimension vector. Then, the two one-hot encoded training datasets

were used to train two hybrid models, namely, BOHEM (base

one-hot encoded model) and FOHEM (3-mer fragments one-hot

encoded model). The two models both have the same BiLSTM-

path and CNN-path as DETIRE. Another single CNN model and

another single BiLSTM model were trained and tested separately

by the same training and testing datasets. The sequences in the

datasets were all embedded by the trained embedding matrix

in DETIRE. Each model has the same hyper-parameters as the

corresponding deep learning model in DETIRE. All parameters

were finetuned during the training strategy. The four models

are tested by the testing datasets and made a comparison with

DETIRE, which is shown in Figure 4. The accuracy of DETIRE in

identifying viral sequences exceeds that of BOHEM and FOHEM

by 3.62 and 4.39%, respectively, representing the effectiveness of

the GCN-based sequence embedding method in DETIRE. DETIRE

also has a superiority over single CNN-based and BiLSTM-based

model. The gap is 2.26 and 1.74% on identifying viral sequences,

respectively, showing the availability of the hybrid deep learning

model in DETIRE.

The advantage of DETIRE becomes smaller with the increase

in the length of input sequences. This may be caused by the

length of sequences in the GCN-training dataset being 500 bp. The

trained embedding matrix is more suitable for identifying short

viral sequences. Furthermore, the labels of the sequences in the

marine metagenome dataset and the real human gut metagenome

dataset are made by the BLAST search in the whole virus RefSeq.

This may lead to false positives or negatives for viruses because

the training set for the hybrid deep learning model is subsampled

from the virus RefSeq. However, the size of the training set is

rather smaller than the whole virus RefSeq, and the influence of the

duplicate data would be rather small.

DETIRE could accurately identify short viral sequences (<1,000

bp) from metagenomes, with comparable performance at longer

length (>1,000 bp). It supplements viral analysis since a high

proportion of the existing tools tend to deal with long sequences

generated from assembling and binning, which misses many viral

species. Moreover, identifying viral sequences is the very first

step in the viral analysis, the effectiveness of which could have

an impact on downstream work, such as virus taxonomy, virus–

host interactions, and virus-derived diseases detection. We hope

that DETIRE would play an important role in the realm of

virus analysis.

5. Conclusion

In this study, a deep learning-based hybrid model,

DETIRE, is proposed to identify viral sequences directly

from the metagenome. Encoded by a graph-based embedding

method, nucleotide sequences are fed into a CNN-path and

a BiLSTM-path, respectively, for feature extraction before

being classified by a softmax layer. In comparison to the

three latest viral identification methods, DeepVirFinder,

PPR-Meta, and CHEER, on the test dataset, the CAMI

Marine dataset and a real human gut metagenome, DETIRE

outperforms in identifying short sequences (<1,000 bp).

DETIRE will do something to promote the development of

the field on the natural viral community analysis because of

the huge number of short sequences generated by the NGS

technique. DETIRE is anticipated to play a positive role in

the downstream viral analysis such as viral taxonomy and

pathogens identification.
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