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Longitudinal analysis of multivariate individual-specific microbiome profiles over
time or across conditions remains dauntin. Most statistical tools and methods
that are available to study microbiomes are based on cross-sectional data.
Over the past few years, several attempts have been made to model the
dynamics of bacterial species over time or across conditions. However, the
field needs novel views on handling microbial interactions in temporal analyses.
This study proposes a novel data analysis framework, MNDA, that combines
representation learning and individual-specificmicrobial co-occurrence networks
to uncover taxon neighborhood dynamics. As a use case, we consider a cohort
of newborns with microbiomes available at 6 and 9 months after birth, and
extraneous data available on the mode of delivery and diet changes between
the considered time points. Our results show that prediction models for these
extraneous outcomes based on an MNDA measure of local neighborhood
dynamics for each taxon outperform traditional prediction models solely based
on individual-specific microbial abundances. Furthermore, our results show that
unsupervised similarity analysis of newborns in the study, again using the notion of
a taxon’s dynamic neighborhood derived from time-matched individual-specific
microbial networks, can reveal di�erent subpopulations of individuals, compared
to standard microbiome-based clustering, with potential relevance to clinical
practice. This study highlights the complementarity of microbial interactions and
abundances in downstream analyses and opens new avenues to personalized
prediction or stratified medicine with temporal microbiome data.

KEYWORDS

microbial neighborhood dynamics, longitudinal microbiome analysis, network

representation learning, individual-specific networks, encoder-decoder neural network

1. Introduction

The human gut is a complex ecosystem where microbes interact amongst themselves

and with the host (Faust et al., 2012). Variations in the human gut microbial ecosystem can

be caused by antibiotics (Isolauri et al., 2017) or by drugs such as metformin (Rodriguez

et al., 2018) to prevent or treat Type 2 diabetes, or even by a sudden change in diet
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(Singh et al., 2017). Dysbiosis, an imbalance of a microbial

ecosystem, has been linked to several complex diseases (Walker,

2017). It may be reflected by alterations in microbial co-abundance

(Chen et al., 2020a) or changes in how a community’s microbes

interact. These microbial perturbations may have short- or long-

term health effects. Microbial interactions have been shown to

exhibit rich complementary information about various health

conditions (Faust et al., 2012). Their disease specificity has been

demonstrated for conditions such as inflammatory bowel disease

and obesity (Chen et al., 2020a). Furthermore, the gut microbiome

involves a dynamic ecosystem, with microbial co-occurrences or

interactions changing over time (Ji et al., 2020) and potentially

indicating health-to-disease transitions (Baldassano and Bassett,

2016; Einarsson et al., 2019). For instance, perturbations to

the microbiome during infancy have been associated with the

development of chronic illnesses in later life, including infectious

diseases and asthma or allergies (Gaufin et al., 2018; Alsharairi,

2020; Cukrowska et al., 2020).

Two important and highly studied determinants of early-life

microbiome establishment are birth mode and infant diet. C-

section delivery provides a barrier in the dispersal of maternal

faecal and vaginal microbes during delivery and has been linked

to various non-communicable diseases and least in part as a

consequence of its perturbation in early-life microbial colonization

(Bursuker and North, 1984; Galazzo et al., 2020; Stokholm et al.,

2020). In addition, the shift from infant feeding (breastfeeding

and/or formula) to a more diverse diet consisting of a wide variety

of substrates in complementary foods, which largely takes place

between 6 and 9 months post-partum, has been associated with a

rapid diversification and maturation of the intestinal microbiome

(Galazzo et al., 2020).

Capturing time-related patterns in data can be achieved

via time series analysis (TSA) or longitudinal analysis (LDA).

Such analyses involve time course data and extract additional

information from the data compared to cross-sectional studies.

The latter involves analysing data limited to a single time point

only. The terms time series and longitudinal analyses are sometimes

used interchangeably. However, there is a subtle difference, and

some methods developed for TSA may not transfer well to

LDA contexts. Whereas time series data refer to a sequence

of data points, collected at multiple time points or intervals,

longitudinal data refer to a subject’s or object’s measurement(s)

taken over time. Standard statistical LDA approaches cannot

simply be transferred as such to the microbiome field. This is

because of the characteristics of metagenomics data. The noisiness,

compositionality, and sparseness of the data pose a big challenge

in modelling microbial structure; the complexity of multivariate

repetitive data for each individual adds to this challenge. In general,

methods for microbiome time course data typically aim to address

either one or a combination of the following questions (see also

Coenen et al., 2020). Is there a temporal trend? What is the

similarity between multiple time-course profiles? Which microbial

community members co-evolve? For examples of microbiome LDA

analyses that address such questions, we refer to references in

Lugo-Martinez et al. (2019).

The construction and interpretation of personalized networks

have obtained renewed attention in the context of precision

medicine. For instance, Menche et al. (2017) used a template

network structure derived from knowledge about protein

interactions and, for each individual, superimposed the individual’s

gene expression scores on nodes. For personalized networks

derived in this way, node values are specific to individuals, but

edge values are constant across individuals based on reference

data. In contrast, we define an individual-specific network (ISN)

as a network, for which both nodes and edges can be allocated to

a single individual, and that can be seen as a realization of a new

measure to describe within-individual activity Liu et al. (2016a);

Jahagirdar and Saccenti (2020). One procedure to construct such

ISNs, LIONESS, was proposed by Kuijjer et al. (2019a,b). LIONESS

constructs an individual-specific network for each individual of

interest from perturbations that subtracting the individual from

a pool of individuals causes on the population-based interaction

network. The development of individual-specific networks is

recent, and given the challenges involved with compositional

data, only a few applications exist with microbial data. For

instance, Mac Aogáin et al. (2021) used LIONESS on microbiome

abundances as nodes and Pearson correlations as edge strengths.

Individual-specific interactions (edges) are taken as new predictors

in models for the time to the next exacerbation in a chronic

airway disease. An interesting individual-specific approach to

the temporal analysis of microbiome data was introduced by Yu

et al. (2019). Their method builds on earlier work, particularly

individual-specific edge-network analysis (iENA) Yu et al. (2017),

and has disease prediction as the objective.The iENA framework

overcomes a critical practical difficulty when there are not

enough longitudinal samples available for the same individual.

An additional application on faecal microbiomes can be found in

Chen et al. (2020b).

For the first time, we use Kuijjer’s LIONESS method to

study microbial dynamic patterns via individual-specific microbial

networks. As explained in the Methods Section, their method

relies on reference data, i.e., a collection of samples that can be

pooled to compute a microbial co-occurrence network. Several

strategies exist for constructing a pooled-data microbial co-

occurrence network. These strategies either rely on Pearson-like

correlations or graphical models and the inference of sparse

variance-covariance matrices. For an overview and discussion of

common co-occurrence network strategies, we refer to Hirano

and Takemoto (2019) and Matchado et al. (2021). Generally, a

microbial co-occurrence network takes microbial taxa as nodes

and evidence for microbial association as edge strength. In the

literature, the microbial association is often called “co-occurrence”

or sometimes “interaction.” Pooled-sample or population-based

models have shown their utility to increase our understanding of

underlying characteristics of individuals or to derive personalized

predictions (Kosorok and Laber, 2019; Bzdok et al., 2021).

However, from the perspective of personalized medicine, if

association networks were available for each individual separately,

then descriptions of such networks would readily be individual-

specific. Moreover, taking those individual-specific networks as

new units of analysis, one would use more information from the

data than is typically done. Such analyses may involve association

models to understand mechanisms, prediction models to estimate

the risk of disease or treatment non-response, identification
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of endotypes, or, more generally, homogeneous subgroups of

individuals that may be targeted together during drug development

processes.

In this work, we develop a novel approach to study individual-

specific microbial neighborhood dynamics over time or across

conditions. We illustrate the approach on microbial data from

newborns with measurements at 6 and 9 months over time.

We first describe the study design, and the components needed

to compute individual-specific microbial networks. Second, we

introduce a new microbiome analysis framework, based on

representation learning, that we call multiplex network differential

analysis (MNDA). MNDA generates new representations of local

microbial interaction neighborhoods that can be used in supervised

or unsupervised models or to identify stable or unstable microbial

taxa over time or across interventions. Finally, we present and

discuss the results of various microbiome dynamic analyses via

MNDA. These analyses broadly fall into three broad classes. The

first class covers dynamic analyses of global networks, where

a global network refers to a microbial co-occurrence network

constructed on a pooled set of individuals. The second class

captures dynamic changes of microbial ISNs. These analyses

include comparing fluctuations in microbial ISNs over time and

tracking each individual in an embedding space. We use microbial

neighborhood dynamics to identify subgroups of individuals that

are similar in terms of their microbial interaction dynamics,

which provides a different viewpoint than the classical Dirichlet

multinomial mixture (DMM) clustering (Holmes et al., 2012). The

third class of analyses aim to enhance the interpretation of findings:

topologies of microbial association networks are studied within and

between individuals and are linked to infant delivery mode and

infant’s diet changes between months 6 and 9.

2. Materials and methods

2.1. Study design and microbiome profiling

The LucKi Gut cohort is an ongoing study monitoring gut

microbiota development throughout infancy, and early childhood

(de Korte-de Boer et al., 2015). Pregnant women from the South

Limburg area in the Netherlands were recruited via mother and

childcare professionals, through the study website and Facebook.

Women were eligible to participate if they gave birth at > 37 weeks

of completed gestation. Study questionnaires and faecal samples of

the infant were collected at different time points, e.g., 1–2, 4, and

8 weeks, 4, 5, 6, 9, 11, and 14 months. Parents were instructed

to collect infant faeces from diapers and freeze them immediately

at 20◦C in their home freezer inside a cool transport container

(Sarstedt, Hilden, Germany). Samples were transported to the

laboratory, preserving the cold chain. Metagenomic DNA was

extracted with a custom extraction protocol involving mechanical

and enzymatic lysis (Stearns et al., 2015). The LucKi Birth

Cohort Study was approved by the Medical Ethical Committee of

Maastricht University Medical Centre (MEC 09-4-058). LucKi is

designed according to the privacy rules that are stipulated in the

Dutch “Code of Conduct for Health Research.”

Microbiome profiling was performed by next-generation

sequencing of the 16S rRNA V3-V4 hypervariable gene region.

Thereafter, a DADA2-based pipeline was used to identify amplicon

sequence variants (ASVs; Stearns et al., 2015). Lastly, a centered

log ratio (CLR) transformation of data using the ALDEx2 R

package was performed to account for the compositional nature

of microbiome data, whenever appropriate (Gloor et al., 2017).

Additional details are provided in earlier publications (Bartram

et al., 2011).

The current study focuses on months 6 and 9 after delivery.

These moments in an infant’s life are recognized milestones in

the maturation of microbial communities, possibly influenced by

the change of diet during 6–9 months after birth. For this reason,

we include dietary information on infants in the applications of

our new framework. Diet type was encoded as {0, 1, 2}, with “0”

representing breast milk exclusively, “2” representing exclusively

solid food, and “1” indicating a mix of both. We refer to a diet as

persistent if it does not change during 6–9 months. Furthermore,

we also had information about the mode of delivery (either C-

section or vaginal delivery) available at months 6 and 9. We used

this information in prediction models and stratified analyses.

2.2. Data pre-processing and exploratory
analysis

Selecting informative individuals and taxa and filtering out

random noise was achieved with the following prevalence filter:

only ASVs with a prevalence exceeding 15% survived the filtering.

Prevalence indicates the percentage of samples in which a microbe

was detected. The average sequencing depth was 57,392 read

counts, while the range was [11, 123, 105, 921], with an interquartile

range of 25,346. Pre-processing was done on the merged data

of 155 newborns across months 6 and 9. No infants were

removed. Out of 1,144 taxa, only 95 (8%) remained after data pre-

processing. These 95 taxa were considered for subsequent analyses.

In addition, we defined two new classes of microbes: appearing or

disappearing microbes—taxa that meet the 15% threshold at month

9 (appearing), or at month 6 (disappearing), but were filtered out by

joint-time point pre-processing.

The basic exploratory analysis involved computation of α-

diversity (within-sample diversity), at each time point. In the

spirit of a CoDA analysis, we used Aitchison’s distance (Euclidean

distance on CLR-transformed abundances), as implemented in the

vegan R package. We also investigated β-diversity or between-

sample diversity. In particular, CoDA ordination was implemented

via PCA on CLR-transformed compositions. We used the

implementation of Calle (2019).

2.3. Global microbial network construction

For the remainder of this manuscript, we refer to a global

network as a network computed over a set of independent

individuals. For instance, such a set can refer to all infants at

month 6 after birth. We computed a global network for each

time point, by selecting microbial taxa as nodes and calculating

association strength via microbial association graphical model

analysis (MAGMA; Cougoul et al., 2019) on all newborns at
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each time point (81 at time point 6 m and 74 at 9 m). MAGMA

uses copula Gaussian graphical models for which marginals are

modeled with zero-inflated negative binomial generalized linear

models, and sparseness is induced via a graphical Lasso strategy.

From a practical point of view, we used the rmagma R package

to derive MAGMA-networks (https://gitlab.com/arcgl/rmagma).

To optimize its internal penalization parameter, we used

the rotation information criterium (RIC; Zhao et al., 2012).

For more details about the adopted MAGMA analysis, see

Supplementary material—Global Network Construction.

We preferred MAGMA (Cougoul et al., 2019) over commonly

used correlation-based measures due to its theoretical advantages

(Calle, 2019) and flexibility to adjust for confounders. MAGMA

has the advantage of yielding a sparse microbial co-occurrence

network, acting as a natural sparsifier. It targets direct associations,

removing indirect ones. Notably, in the case of microbiome

data, characterized by zero inflation, high heterogeneity, and

overdispersion, the popular Pearson correlation as a measure

of association may give rise to false positives, as discussed

in Friedman and Alm (2012). Several other approaches exist

to infer or construct microbial co-occurrence networks, with

remarkable wiring differences. See for instance Kishore et al. (2020)

and Matchado et al. (2021). Hence, we verified the robustness

of MAGMA-obtained global networks (Supplementary material—

Stability Analysis). Alternatively, multiple inference methods may

be employed in parallel, to assess the impact on conclusions or

to construct a consensus network at the expense of computational

complexity in downstream analyses (see Section 2.4). In this work,

as an alternative to MAGMA, we applied SparCC (Friedman

and Alm, 2012) via FastSpar’s C++ implementation. Results

are presented and discussed in Supplementary material—SparCC

Analyses. SparCC can handle spurious associations better than

its predecessor correlation-based microbial co-occurrence network

inference methods, but it may fail to generate a positive definite

covariance matrix. We emphasize that pre-processed data entered

MAGMA and SparCC routines with default options. No data

transformation was performed before MAGMA/SparCC as those

analysis frameworks internally accommodate compositional data.

2.4. Individual-specific network
construction

We used Kuijjer et al.’s LIONESS method (Kuijjer et al., 2019b)

to infer individual-specific networks from global microbial co-

occurrence networks, as implemented in Kuijjer et al. (2019a).

Each individual-specific edge weight measures the impact of the

individual observation on a global network edge. In particular, the

edge weights of the nth ISN (for individual n) were computed as

w
ij
n = Nwij − (N − 1)w

ij
−n (1)

wherewij andw
ij
−n are the edge weights of a global network (Section

2.3) and the nth leave-one-out (LOO) network, respectively, for any

pair of microbes (i 6= j). N is the total number of individuals

in a reference population (Figure 1). For large populations (N −→

∞) and under a weight homogeneity condition, the average

individual-specific edge weights w
ij
n (n = {1, ...,m}) converges to

the corresponding global edge weights. Namely, the global network

can be seen as a weighted average of the ISNs. Weight homogeneity

means that the proportion of the weights between individuals is

constant between global (wij) and LOO (w
ij
−n) networks (Kuijjer

et al., 2019b; Suppl. 5.2). We considered our 69 paired infants at

months 6 and 9 after birth as two distinct populations. We do

that by only considering the paired infants in both time points.

Since, in this work, we are only interested in the unidirectional

strengths of microbial associations, we replaced all individual-

specific edge weights with their absolute values. Notably, even when

population-based edge weights, wij and w
ij
−n , are positive, the

derived individual-specific weight w
ij
n may be negative. This occurs

when wij <
(N−1)w

ij
−n

N .

2.5. Multiplex network di�erential analysis

The ISNs constructed in the previous section can be paired

into 69 multiplex networks [i.e., networks with multiple layers of

matching nodes (Hamilton, 2020; Hammoud and Kramer, 2020)].

Each multiplex refers to a single individual; within each multiplex,

a layer refers to an individual-specific network at a particular

time. More generally, we assume, as input to a representation

learning algorithm, several multiplexes that represent an object,

for which matched data are available. Matching may be performed

based on repeated measures over time for the same individual

(as is the case for our study example). Still, it may also refer to

matched samples where two individuals are matched according

to shared characteristics. In both scenarios, the availability of

individual-specific edges offers the opportunity to investigate local

neighborhood stability.

To capture how the local neighborhoods of microbial taxa

change over time, we proposed the following algorithm, which

we term multiplex network differential analysis (MNDA). First,

multiplexes were formed. For our LucKi subcohort, ISNs derived

in Section 2.4 at months 6 and 9 are paired. Each ISN has 95

nodes, representing the 95microbial taxa retained in the study, after

data pre-processing (Section 2.2). One individual and its multiplex

ISN structure is shown in Figure 2A. Second, we developed a

network representation algorithm, based on a shallow encoding-

decoding neural network (EDNN) that forms the core of the MNDA

framework (Figure 2B). For the implementation, we used the Keras

R package. A graphical flow is given in Figure 2B. The inputs

and outputs to the EDNN are vectors, one for each node in a

multiplex layer. The input vector at the encoder side uses the

edge information of each node’s immediate (graph distance 1)

neighbors. A binary such vector for a particular microbial taxon

for individual 1 at month 9 would be a vector of ones and zeros

indicating the direct neighboring taxa based on the individual’s

ISN at month 9. This assumes a binary ISN (i.e., an unweighted

network with edges that are either present or not). It is worth

mentioning that, in this method, we do not consider self-loops (i.e.,

the node itself is not seen as a direct neighbor of itself), which

makes our model generalizable to accepting new nodes. A non-

binary (weighted) input vector would be a vector for which the

ones in the binary vector are replaced by their actual edge strengths.

It is here that an additional argument can be made in favour of
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FIGURE 1

The rationale behind ISNs. A global network summarises node and edge information across the individuals belonging to the same population. The
goal is to compute individual-specific networks with individual-specific edge weights (as in Kuijjer et al., 2019a); each individual is allowed to exhibit a
particular network topology. Comparing such network topologies may not only reveal individual heterogeneity but may also indicate instances
where health-related interventions based on the global network may be inappropriate.

microbial co-occurrence network inference methods that lead to

sparse networks. MAGMAwill generate a sparse weighted network,

avoiding the need to work with fully connected networks. Fully

connected networks may complicate the interpretability and are

less computationally tractable than sparse networks.

The output vector of EDNN, which needs to be predicted at the

decoder side, is a representation of more distant neighbors likely

to be reached by a random walk. In particular, for a specific (seed)

taxon, both binary or weighted versions of such an output vector

would refer to probabilities that a microbial taxon is reached by a

fixed-length random walk starting from the seed taxon. Binary and

weighted versions differ in how these probabilities are computed

(see Supplementary material). A customized implementation of

repetitive weighted random walks). As activation functions for the

hidden neurons and output neurons, we used ReLU and the Logistic

functions, respectively. The dimension of the hidden space is equal

to the number of hidden units and was chosen to be equal to

10 since this resulted in the least mean squared error of EDNN

compared to the other choices (i.e., 2, 5, 10, 15, 20). Third, after

learning the local structure of multiplex network layers and having

created representations in a 10-dimensional embedding space, we

tracked the positions of the same microbial taxon at months 6 and

9. We formed these pairs for all 95 taxa (Figure 2A), and do this for

every individual. We then computed a distance between paired taxa

(see next—A new measure of microbial dynamics).

2.5.1. A new measure of microbial dynamics
The low-dimensional learnt the local structure of the multiplex

network layers could be analysed further by computing the angle θ

between embedded vectors belonging to the same microbial taxon

at different time points, or the corresponding cosine similarity

cos(θ). In a positive space, the smaller θ ∈ (0, π
2 ), the larger cos(θ)

and thus the larger the similarity between vectors. Even though it is

not a genuine distance metric, the cosine distance dcos(., .) is often

used as a complement of cosine similarity in a positive space, and

defined as 1− cos(θ) (without any restrictions on θ):

dcos(A,B) = 1−
A.B

|A|.|B|
= 1−

6n
i=1AiBi

√

6n
i=1A

2
i

√

6n
i=1B

2
i

(2)

with Ai and Bi (i ∈ {1, ..., n}) components of A and B, respectively,

and A, B time-specific representations of the same microbial

taxon as vectors in the derived embedding space. In contrast, the

normalized angle between A and B (called angular distance) is a

metric but is defined as 2θ
π

in positive space and θ
π
else. As cosine

similarity varies in the range [−1, 1], cosine distances vary in the

range [0, 2].

2.5.2. Simulation study
We conducted a simulation study to evaluate the ability of

MNDA to capture the neighborhood variation in a multiplex

network. To this end, we constructed a graph with node degree

and weight distributions similar to our microbial graphs. Then we

created a perturbed copy of this graph with a few (m) distinct

randomly selected (“control”) nodes having different neighboring

nodes. This resulted in a multiplex network with control nodes

whose neighborhood varies. We expect that in the embedding

space, all the nodes will be very close to each other except for

the control nodes. Supplementary Figure 1A shows the embedding

space for a simulated 2-layer multiplex network; observations align

with the aforementioned expectation. To quantify this observation,

we first sorted the cosine distance between the node pairs and select

the m most distant pairs. Next, we calculated the Jaccard index

between the pre-set varying nodes and MNDA-based detected

nodes and observed that it almost always equals one. Hence, our

proposed measure can, with a high degree of confidence, detect

nodes whose neighborhoods change from one graph to the other.
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FIGURE 2

Multiplex network di�erential analysis (MNDA) framework. (A) In multiplex network representation learning, all the nodes of a multiplex network are
transformed into an embedding space; the highlighted nodes are matched pairs and, in our case, correspond to the same microbe. (B) Multiplex
network representation learning is performed using an encoder-decoder neural network for all individuals.

To further assess the robustness of our method under the noise,

we added uniformly distributed noise, ranging between min = 0

and max ∈ {e−10, ..., e−2}, to the adjacency matrix of each graph.

The Jaccard index was calculated and plotted against different noise

levels in Supplementary Figure 1B (red diagram).

As for comparison, we used amethod based on the eigenvectors

of the Laplacian matrix of the graphs, which is a typical approach to

measuring the distance between graphs. We represented the nodes

of each graph layer to the eigenvector space of their Laplacian

matrix and used the cosine distance between the node pairs.

Compared to MNDA, only a few varying nodes were identified by

this method (Jaccard index= 0.3). To investigate the robustness of

MNDA against random perturbation or noise in the edge weights,

we added uniform noise with different ranges to the adjacency

matrices of each layer and assessed its performance in prioritising

the dynamics. As shown in Supplementary Figure 1, MNDA is

reasonably robust to such uniform noise and consistently performs

better than the eigendecomposition-based method.

3. Results

3.1. Exploratory data analysis

In general, it is well-known that the dominant gut microbiota

phyla are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,

Fusobacteria, and Verrucomicrobia, with the two phyla Firmicutes

and Bacteroidetes representing 90% of the adult gut microbiota

(Rinninella et al., 2019). Moreover, the most prevalent phylum

for our retained 95 microbial taxa across 6 and 9 months is

Firmicutes (53 out of 95). Bacteroidetes (14), Actinobacteria (15),

FIGURE 3

Phyla in the subset of the LucKi cohort. The share of the phyla in the
95 selected microbes is shown. Sample figure title.

and Proteobacteria (13) are (almost) equally represented. TM7

and Verrucomicrobia phyla are represented by a single microbe

each (Figure 3). The fractional relative abundances differ between

time points. Actinobacteria is the most abundant phylum at 6 m,

while Firmicutes has the greatest share at 9 m. Fractional relative

abundances per phylum, order, class, and family are provided in

Supplementary Figures 2A-D, respectively.

Microbiota diversity was assessed via α- and β-diversity on

the 69 paired newborns. Violin plots of α-diversity grouped per
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time point, delivery type, and diet are depicted in Figure 4. Violin

plots combine classical box plotting with kernel density graphs. We

found evidence for a significant difference in α-diversity between

months 6 and 9. Specifically, the paired Mann-Whitney U-test

shows a low p-value (3.843 ∗ 10−8), rejecting the hypothesis of no

difference between the time points. This agrees with Figures 6A, B,

where we can see the increased connection strength at time points 9

m compared to 6m. Figure 5 shows CoDa ordination plots grouped

per time point, delivery type, and diet. These plots do not exhibit

marked differences between different modes of delivery or diet,

while the first principal component provides separation between

the time points.

3.2. Cross-sectional global network
analyses

Figures 4A, B show two global microbial networks obtained

via MAGMA, one per time point, with edge strengths replaced

by their absolute values. Microbial taxa are organized according

to their phyla. Supplementary Figure 5 show similar plots but

with microbes organized (colored) according to order, class, and

family, respectively. The size of the node is proportional to relative

microbial abundance. The stronger the edge strength, the thicker

the edge line that connects corresponding nodes in these networks.

Notably, these networks are not fully connected. This sparsification

is due to the graphical Lasso in the MAGMA microbial network

computation.

Stronger absolute correlations can be observed in the global

MAGMA network at month 9 compared to month 6 (Figure 6A).

In Figures 6C–F, we grouped microbes of the same phylum into

a meta-node and depicted the connections based on the global

network co-occurrences. Hence, a node represents a phylum, with

a size related to the number of taxa in the phylum, with the

exact number indicated in the node itself. The microbes for each

phylum can have connections with microbes of the same phylum

(indicated by self-loops) or with microbes in different phyla. Edge

thickness for edges between phyla is related to the strength of

phylum-phylum associations, normalized to account for potential

differences in phylum sizes. In particular, for unweighted MAGMA

edges (Figures 6C, D), the number of edges η between two phyla P1
and P2, with respective sizes n1 and n2, was benchmarked against

the maximum number of edges n1n2:

η̂norm =
η

n1n2
(3)

For phylum self-loops, e.g., in a phylum P of size n, the denominator

in (4) was adapted to n(n−1)
2 . This normalized count has a

natural interpretation of a percentage.We obtained the unweighted

MAGMA network by binarizing the MAGMA output, with a 1 for

every non-zero entry. For weightedMAGMA edges (Figures 6E, F),

the connection strength η between two phyla P1 and P2 was defined

as a normalized sum of edge weights, with the same normalizing

factor as for binary networks. In this scenario, the interpretation of

η̂norm as a percentage is no longer possible, since η is not normalized

for its maximum value.

Firmicutes is the largest phylum, with 51 microbes, and

shows limited intra-phylum and inter-phylum associations.

Proteobacteria and Bacteroides are medium-sized phyla, with 13

and 14 taxa, respectively (Section 3.1), and have strong intra-

phylum connectivity. In particular, intra-phylum association

strength for Bacteroides is close to 20% in the binary global

networks (Figures 6C, D) in both time points, meaning that almost

one-fifth of all the possible Bacteroides interactions are present.

The strongest binary associations are inter-phylum, appearing

at month 9 (between Firmicutes, TM7, and Proteobacteria).

Only one microbe (lowest annotation: Class TM7-3) belongs to

the TM7 phylum, with a moderate—and decreasing in time—

association with the Actinobacteria phylum. Similarly, one microbe

(Akkermansia muciniphila) belongs to the Verrucomicrobia

phylum and shows increased connections with Firmicutes and

Bacteroides phyla at 9 m. While these phyla associations may be

strong in binary global networks, their corresponding association

strengths in weighted global networks remains rather limited.

The corresponding global microbial networks obtained with

SparCC are included in Supplementary Figures 6, 7. Note that no

binarization is available for SparCC, i.e., is a weighted network. The

same pre-processing steps of MAGMA network, i.e., prevalence

and abundance filters, are applied to SparCC microbial network.

We notice that intra-phylum connections are stronger than inter-

phyla. SparCC connections are, on average, stronger than in the

weighted MAGMA’s counterparts. As for MAGMA, Proteobacteria

and Bacteroides yield stronger intra-phylum connectivity than

Firmicutes. Only one microbe (the lowest annotation: Class TM7-

3) belongs to the TM7 phylum, and shows increased connections

with Firmicutes, Proteobacteria, and Verrucomicrobia phyla at 9

m. Moreover, it is interesting to note that for both MAGMA and

SparCC networks, the connections involving Proteobacteria’s taxa

are stronger at time point 9 m.

3.3. Longitudinal analysis: neighborhood
dynamics in global networks

We applied MNDA to a multiplex network with two layers,

each consisting of the global microbial co-occurrence networks at

months 6 and 9. We also computed cosine distances between all

possible pairs of microbial taxa in the embedding space (Section

3.2). The measures of dissimilarity can be used to cluster taxa pairs.

Pairs may involve components from the same layer or different

layers of the network. However, neural networks usually have a

non-convex cost function; thus, reruns of the EDNN can lead to

different outcomes. Therefore, multiple repeats of MNDA were

used as inputs to a novel implementation of robust clustering

(see Supplementary material—a novel implementation of ensemble

consensus clustering). This led to two robust clusters, shown in

Figure 7A as cluster 1 and cluster 2. The confusion table capturing

how many matched months 6–9 pairs of microbial taxa belong

to the same cluster or are spread over two clusters, is given

in Figure 7B. Corresponding transition probabilities [Pi−→j =

P(cluster j at 9 m | cluster i at 6m)] are visualized in Figure 7C.

These show that most microbes have a similar global network

neighborhood dynamic. For 24 out of 95 microbial taxa this is

not the case. These are listed in Supplementary Table 1, with their

corresponding genus-species names. The two microbial taxa with
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FIGURE 4

Violin plot for α-diversity distribution grouped (A) per time point, (B) mode of delivery, and (C) diet. The gray dots represent the averages. Grayline
extremes indicate plus and minus one standard deviation. Paired Mann-Whitney U-test between 6 and 9 m rejects the hypothesis of no di�erence
α-diversity between the time points (p− value = 3.418× 10−8); The inter-quartile ranges (IQRs) of α-diversity for all scenarios are respectively (A)

0.72 for 6 m and 0.42 for 9 m; (B) 0.45 for C-section and 0.67 for vaginal mode of delivery; (C) 0.63 for samples who followed a persistent diet and
0.80 otherwise (non-persistent diet).

FIGURE 5

β-diversity grouped (A) per time point, (B) mode of delivery, and (C) diet on paired samples. As in Le Cao et al. (2016), we compute the β-diversity
with a PCA from the mixOmics package on the CLR transformation of the microbiome data. The axes are the first two principal components and
account for 13% of the total variance. The single individual with missing phenotypes (no information about diet) was excluded from the analysis.

similar global neighborhoods, yet different from those microbes in

cluster 1, are Bacteroides uniformis and Blautia sp.

We identified microbes with high or low neighborhood

dynamics by sorting the robust co-clustering similarities for each

time-matched pair of taxa. In particular, we selected the first larger

jumps at both extreme ends of the similarities, respectively, as

shown in Supplementary Figure 8A. A complete list of microbes

with extreme neighborhood dynamics is given in Figure 7D and

Table 1, which also lists appearing and disappearing microbes

(defined in Section 2.2—pre-processing). Notably, rather than using

co-clustering similarities to rank taxa in terms of their dynamics, we

could also have ranked taxa directly via their corresponding cosine
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FIGURE 6

Global MAGMA networks calculated on all subjects retained in the LucKi cohort at 6 (81 subjects) and 9 months (74 subjects) after birth, i.e., available
cases at each time point. Color code corresponds to phylum classification. The thickness of an edge corresponds to the strength of the association.
Microbial taxa are organized on a circle according to phylum membership at time point 6 m (A) and 9 m (B). In (C, D), respectively time point 6m and
9 m, edges are aggregated per phylum and within- and across- phyla co-occurrences are computed via sparsified MAGMA binary networks at each
time point. Node size and edge weight correspond to respectively phylum size and association strength. In (E, F) weighted MAGMA edges are used,
whereas binary edges are used in (C, D).
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FIGURE 7

(A) Four groups of microbes based on their cluster shifts between 6 and 9 m; (B) The frequency of cluster shifts between 6 and 9 m; (C) Graphical
illustration of microbial cluster shift rates; (D) Highly and lowly variable microbes.
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TABLE 1 The list of highly dynamic microbes with their corresponding

genus-species names.

Microbial taxa∗

Appearing at

9M

Akkermansia muciniphila, Bifidobacterium sp., Coprobacillus

cateniformis, Coprococcus sp., Dorea sp., Clostridium hathewayi,

Clostridium perfringens, Haemophilus parainfluenzae,

Oscillospira sp., Parabacteroides distasonis, Streptococcus sp.,

Veillonella dispar

Disappearing

at 9M

Enterococcus sp., Klebsiella sp., Parabacteroides distasonis,

Staphylococcus aureus, Streptococcus sp., Trabulsiella sp.,

Veillonella dispar

High

neighborhood

dynamics

Bacteroides ovatus, Bacteroides ovatus, Bacteroides sp.,

Bifidobacterium longum, Escherichia coli, Faecalibacterium

prausnitzii, Faecalibacterium prausnitzii, Parabacteroides sp.,

SMB53 sp., Streptococcus sp.

Low

neighborhood

dynamics

Akkermansia muciniphila, Bacteroides sp., Bacteroides sp.,

Bacteroides sp., Bifidobacterium longum, Bifidobacterium sp.,

Bifidobacterium sp., Bifidobacterium sp., Enterobacteriaceae

unclassified, Coprococcus sp., Escherichia coli, Faecalibacterium

prausnitzii, Haemophilus parainfluenzae, Klebsiella sp.,

Lachnospira sp., Roseburia sp., Rikenellaceae

unclassified,Ruminococcus gnavus, Ruminococcaceae

unclassified, SMB53 sp., Staphylococcus epidermidis,

Streptococcus luteciae, Veillonella dispar, Veillonella sp.

∗Note that the same species name can occur multiple times as multiple amplicon sequence

variants (ASVs) can belong to the same species.

distances in the MNDA embedding space, averaged across multiple

MNDA runs and re-ranked. This procedure led to similar results

(not shown).

Overall, Firmicutes’ microbes constitute the vast majority of

appearing (69%) and disappearing (57%) microbes, i.e., microbes

that would pass the 15% prevalence threshold only at month

9 (appearing), or at month 6 (disappearing). Microbes with

high (low) neighborhood dynamics constitute 11% (25%) of 95

original microbes. Phyla Actinobacteria, Bacteroidetes, Firmicutes,

Proteobacteria, and Verrucomicrobia deliver respectively 1.6%

(6.6%), 1.8% (1.8%), 0.6% (1.6%), 0.7% (2.8%), and 0.0% (25%)

of high (low) dynamic microbes in terms of their global network

neighborhoods.

3.4. Longitudinal analysis: neighborhood
dynamics in individual-specific microbial
networks

An alternative view onmicrobiome data is given by ISNs, which

provide edge information at an individual-specific level. Hence,

where in Section 3.4, time-course analyses involved comparing

global microbial co-occurrence networks at each time point,

here, we do so at an individual-specific level (Figure 8A). We

used the same MNDA framework, but instead of submitting

a single multiplex network (Section 3.3), we submitted 69

multiplex ISNs simultaneously. We show how our new notion of

microbiome neighborhood dynamics (explained in Section 2.5),

when assessed on a per-individual level, may offer complementary

views compared to standard data views. The most standard data

view analyses (transformed) microbiome abundances for study

subjects; data is organized according to a matrix depicted in

Figure 8B, where the microbial abundances of both time points are

considered as features (node-oriented approach). Since the rise of

individual-specific network construction techniques (outlined in

the Background Section), data records may additionally (or only)

involve information about individual-specific edges (presence or

absence, or edge strength on an interval scale). Such an edge-

oriented data format is depicted in Figure 8C, where the features are

the microbial co-occurrences of both time points (edge-oriented

approach). With the newly proposed MNDA framework, dynamics

across time points are investigated in an embedding space, and each

individual can be assigned a vector of cosine distances. As features,

each cosine distance captures ISN local neighborhood dynamics

across time points (Figure 8D—dynamic-oriented approach). The

similar data formats between Figures 8B–D allow for adopting

similar association modelling or prediction modelling strategies,

yet interpretations will differ. It is noteworthy that our proposed

method results in the least feature size as we have one feature for

each taxon independent of the number of time points.

MNDA-induced prediction outperforms other methods and

complements standard approaches. To support this statement, we

developed prediction models for the mode of delivery (C-section

vs. vaginal) and diet type (persistent versus non-persistent—as

defined in Section 2.1). In particular, we applied support vector

machines (SVM) with radial basis function (RBF) kernels to the

data organized in each of the aforesaid structures (Figure 8). In the

training phase, we balanced the classes’ size via under-sampling the

majority class. To reduce the dimensionality of the data, we used

a forward feature selection framework. We repeated the modelling

process, each time leaving out a single individual, as part of a

leave-one-out cross-validation. The left-out individual was used

to test the trained model. The entire process was repeated 100

times; AUCs were averaged across repeats and standard errors were

computed. The results are reported in Figure 9. MNDA-informed

prediction models consistently outperform models that only either

use microbial abundance or MAGMA individual-specific edge

weights as input features. The advantage of using individual-

specific edges is context-dependent: depending on the time point

and the phenotype, the classification performances vary. The edges

at 9 m have the best performance among MAGMA individual-

specific edge weights with AUC of 0.57 and 0.64 for the mode of

delivery and diet. However, it is under-performing compared to

directly using CLR-transformed microbial abundances at 9 m.

ISN dynamic analysis highlights microbes not identified via

global network analyses. Important discriminative microbes for

diet type or mode of delivery were identified by counting the

number of times a microbe was selected by the adopted forward

feature selection algorithm, mentioned above, out of 69 runs

(every run had one individual being considered as a validation

sample) and 100 repeats. It generates a ranking of microbial

importance: the higher the selection count, the higher the microbe’s

importance. Results over 50 generated embedding spaces were

summarized via summing 345,000 repeats per microbe, giving rise

to a robust final ranking of important discriminative microbes.

We emphasize that the selection of microbes in discriminative

models was based on a measure of local neighborhood dynamics

across time points. A list of top discriminators in this sense is

provided in Table 2, using annotations of genus-species names.

Among these taxa, Lachnospira sp. and Bifidobacterium sp. have
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FIGURE 8

Di�erent scenarios for microbiome longitudinal analysis. (A) Individual-specific networks of microbial co-occurrences for months 6 and 9 are
represented in an embedding space using our proposed MNDA method. Therefore, data can be organized from di�erent perspectives as follows. (B)
Node-oriented approach: standard Taxon abundance table of both time points is used; (C) edge-oriented approach: the edge weights of both time
points are used as features; (D) dynamic-oriented approach: the variations between the local neighborhood of nodes in time are considered as
features. Assuming K nodes and L edges between nodes, the number of variables in the microbial dynamic space is the same as the number of
microbes K. The number of edges L is bounded by the number of possible selections of pairs of nodes out of K nodes.

TABLE 2 The list of top-ranked discriminator microbes (genus-species

names) for delivery type and diet mode.

Microbe ASVs

Delivery type Streptococcus luteciae, Trabulsiella sp., Ruminococcus sp.,

Ruminococcus sp., Parabacteroides distasonis, Lachnospira sp.,

Bifidobacterium sp.

Diet Mode Bacteroides ovatus, Clostridium citroniae, Bacteroides ovatus,

Bifidobacterium bifidum, Ruminococcus sp., Streptococcus

luteciae, unclassified Lachnospiraceae.

low neighborhood dynamics; besides, Streptococcus luteciae and

Ruminococcus sp. are important microbes for both delivery and

diet types. The latter neighborhood dynamics analysis did not

account for differences between infants by diet during months

6 and 9, nor delivery mode. Specifically, Streptococcus luteciae

had previously been reported to be associated with infant

feeding (Brown and Jaspan, 2020); moreover, its association

with the delivery type can be explained by its relation to the

skin bacterium.

Stratified analyses confirm the differential dynamic behavior

of identified discriminators in Table 2. When a microbe is highly

discriminative for diet type, and discrimination is based on ISN

local neighborhood dynamics over time, then the change over time

of its immediate “interaction” partners should also be markedly

different between dietary strata; and the same for the mode of

delivery. In Figure 10, we focus on the microbial taxa of Table 2

(dark nodes) and their distance-1 neighbors to investigate how

the edge weights change over time. For each class of delivery

mode (C-section or vaginal delivery) and diet mode (persistent

or non-persistent) we obtained two subnetworks for each time

point, months 6 and 9, by averaging ISNs from infants of the

same class per time point. Then, we subtract the edge weights

of networks in month 6 from the edge weights of networks in

month 9, resulting in four networks for each class. In Figure 10,

the strengths of the presented edge indicate the differences between

averaged edge strengths between time points for each class (red

for average edge weight at 9 m larger than 6 m and green

for the reverse). Each node is annotated with its genus-species

name. For further comparison of these difference networks within

the delivery mode and diet, we refer to Supplementary Figure 9.
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FIGURE 9

The prediction results, in terms of Area Under the ROC curve (AUC), for (A) delivery type and (B) diet type. Di�erent feature sets use for prediction,
among which MNDA-based method is consistently the top-performing. On the contrary, the di�erence between MAGMA individual-specific edges at
6 and 9 m never reaches an AUC of 0.5.

We observe that the differences in co-expression networks over

time show that the connections at 6 M are much stronger than

at 9 M for C-section delivery. Furthermore, we observe that a

change in diet between the two time points results in apparent

differences in co-expression networks (Figure 10C). In contrast, the

networks are more stable when infants have a more stable dietary

pattern.

Specifically for the diet mode, intra-class variation of ISNs

restricted to the same considered taxa in Figure 10 is illustrated

via so-called graph filtration curves (Figure 11; O’Bray et al., 2021).

These curves provide a more refined or complementary view to

the averaged ISN representations in Figure 10: Each individual’s

contribution to the average can be shown. These filtration curves

show that the largest variation between the two time points

is observed for non-persistent diet (i.e., the variation in the

diet mode is correlated with the dynamics of the microbial co-

occurrence). Hence, our analysis confirms that dietary shifts have a

stronger impact on the dynamics of local neighborhood microbial

co-occurrences than observed between groups characterized by

different delivery modes.

3.5. Local neighborhood dynamics to
identify between-individual heterogeneity

MNDA-based similarity measures can be used to cluster

individuals into homogeneous groups according to similar

microbial neighborhood dynamics. Using ISNs to define

neighborhoods, we observed that clusters of individuals

significantly differed from those obtained via Dirichlet multinomial

mixtures methodology (DMM; Holmes et al., 2012). More

specifically, DMM clustering on pooled data across time points

revealed two clusters. These are depicted in Figure 12A, together

with corresponding transition information as infants grew

older. In contrast to DMM, MNDA-induced clustering groups

individuals according to their dynamics-similarity in microbial

interaction patterns. Robust clustering was performed, as

described in Supplementary material—a novel implementation of

ensemble consensus clustering. This analysis also highlights two

clusters, roughly of the same size (33 and 36 individuals).

We used a Chi-square statistic to evaluate the degree of

non-random correspondence between MNDA- and DMM-

clusterings. This gave rise to a permutation-based p-value of

0.2814 (Figure 12B). It is worth noting that, unlike DMM,

MNDA results in communities that do not change over time;

they are based on dynamic information across time points.

Microbial abundance changes over time, and the dynamics

of microbial interactions are two distinct reflections of the

same process.

4. Discussion

4.1. The value of individual-specific
dynamic microbial networks

Environmental factors may play a critical role in human

complex diseases (Qin et al., 2012; Hoyles et al., 2018). One of these

critical factors, the gut microbiota, has received special attention

in recent years, for instance, in the context of disease development

and progression (Tetz et al., 2019; Luna et al., 2020). Even though

many studies have shown the resilience of the gut microbiota and

its stability over time, the gut microbiota is subject to dramatic

shifts due to person-oriented interventions such as changes in diet

or medication use.
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FIGURE 10

Di�erences of averaged microbial co-expression networks restricted to the important microbes and their first level neighbors between months 6 and
9 on (A) C-section and (B) vaginal delivery, as well as (C) non-persistent diet and (D) persistent diet. Edge thickness is given by its co-occurrence
magnitude, while the edge colors show the sign of the correlation (red for average edge weight at 9 m larger than at 6 m and green for the reverse).
The important microbes are highlighted by dark color and their family names (also listed in Table 2), and their first-level neighbors are indicated by
light colors.

In this work, we proposed a novel work analysis framework,

MNDA, to capture the dynamics of gut microbial co-occurrence,

within and across individuals. The approach is built on individual-

specific microbial networks, with microbial taxa as nodes

and individual-specific connecting edges defined via microbial

interactions. microbial ISNs were embedded in a shared space.

The cosine distance of the same node (microbe) between two

time points in the embedding space was taken to quantify local

node-neighborhood dynamics. This information was subsequently

exploited to stratify individuals into different homogeneous

subpopulations, revealing new aspects of population heterogeneity

from the microbial interactome perspective. The proposed strategy

was illustrated on data from the LucKi cohort (de Korte-de Boer

et al., 2015), containing microbiome profiles of 69 newborns

collected at two different time points (6 and 9 months after

birth). Via comparison with baseline techniques in the field, we

motivated the potential of microbial ISNs in microbiome time-

course analyses.

Numerous studies have been performed on microbial

longitudinal taxon abundance data, among others, associated

with clinical outcomes. However, these studies typically ignore

microbial interactions, the dynamics of which could also be

highly informative. Taking such microbial co-occurrences

into account when modelling temporal dynamics in bacterial
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FIGURE 11

Filtration curves representing the di�erence between averaged microbial co-expression networks of months 6 and 9 for (A) non-persistent diet (nine
infants) and (B) persistent diet (32 on solid food, 27 on mixed breastfeeding and solid food).

communities, generalized Lotka-Volterra models (Chung et al.,

2017; Lo and Marculescu, 2017) and dynamic Bayesian network

models (McGeachie et al., 2016; Lugo-Martinez et al., 2019) have

been developed. Even though these methods may describe the

development of dynamic microbial networks, data are aligned by

assuming that patterns are similar across individuals, yet exhibit

different rates of change by demographic and clinical variables.

Individual-specific microbe neighborhoods in ISNs are ignored.

Also, these methods typically require many time points, which may

not always be available in microbial cohorts dealing with humans.

Our MNDA framework was exemplified on time course data

with two time points. We selected cosine distance as a measure

of microbial neighborhood dynamics across two time points, as

we aimed to capture the amount of similarity between two data

points in a two-dimensional subspace of the MNDA embedding

space. Cosine distance is linked to, but not the same as, angular

distance, which varies in the range [0, 1]. Angular distance is a true

metric but requires the computation of arccos(.). When the cosine

distance between data points in the MNDA embedding space is

small (or equivalently, cosine similarity is high), the two points will

be located in the same general direction from the origin. In other

words, one can be seen as a scaled-up version of the other.

4.2. The value of advanced representation
learning

At the heart of MNDA lies an encoder-decoder algorithm

to embed local microbial neighborhoods at multiple time points.

Neighborhoods may be based on global microbial co-occurrence

networks or on derived ISNs. Traditional embedding approaches

(Hamilton et al., 2017), such as PCA of Laplacianmatrix,DeepWalk

(Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016),

have been previously proposed for single-layer networks. For these

methods, the parameters in the encoder are not shared between

nodes and cannot be generalized to new nodes. Using an EDNN

structure, MNDA can introduce shared parameters while encoding

the nodes. In addition, we solved the node generalisation problem

by feeding the vector of node neighbors to the encoder. Using

this trick, the encoder can generate embedding for a new node

whose neighbors need to be determined. In addition, the method

can easily be extended to multiple time points by increasing

the number of layers of the multiplex network. Our MNDA

implementation works with weighted networks by exploiting

a fixed-length weighted random walk algorithm. Even though

MNDA can be used on binarized networks, with binary input and

binary output vectors for the encoder-decoder system (Ietswaart

et al., 2021), we do not describe it here since our empirical

evaluation indicates suboptimal results.

Computing ISNs can be computationally intensive when the

number of edges grows. On a computational infrastructure with

Windows 10 and R version 4.0.3 (2020-10-10), computing 5 ISNs

for 95 microbes took 1.17 s. The MAGMA network calculation

can rapidly become intractable: for 5 MAGMA networks on 95

microbes, it took 55.15 s. MNDA analysis, including random walk

probability calculation and EDNN training, is the most time-

consuming step in our analysis. In particular, on a MacOS (version

12.4) and R version 4.0.5 (2021-03-31), random walk probability

calculation took 28.1 s for each multilayer network of 95 microbes;

each round of EDNN training took 5.7 min for 69 individuals.

The measurements were done through the Sys.time() function in

R. Embedding individuals into a joint space is less computationally

intensive than creating an embedding space for each individual

separately. It also ensures that cosine distances are comparable
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FIGURE 12

A comparison between our MNDA-induced clustering and DMM clustering. (A) The DMM clustering at each time point with transition information
along with the corresponding MNDA-induced clustering. (B) The contingency table of DMM clustering transitions agains MNDA-induced clustering.
Our analysis reveals no significant association, which means that MNDA provides an independent view of the data. It is also noteworthy that, unlike
DMM which finds clusters for each time point, MNDA provides clustering of individuals based on their variation in both time points.

across individuals (and thus can be used to cluster individuals).

However, on the downside, when the initial dataset is enriched with

additional individuals, the joint embedding space will differ, and

individual predictions may change.

4.3. Unique use of individual-specific
network methodology

The ISNs were constructed using Kuijjer et al. (2019b). It

builds on a global reference network from which individuals

are iteratively extracted and perturbation effects are used to

derive an ISN with individual-specific edges. Motivation for this

particular way of ISN construction included that it is easy to

implement via the LIONESS software (Kuijjer et al., 2019a) and

has a straightforward interpretation: On average, and for an

asymptotically large number of individuals, Kuijjer’s ISNs average

to the global reference network. Moreover, unlike for sample-

specific networks, approaches such as those described in Liu

et al. (2016b), edges in Kuijjer’s ISNs go beyond differential co-

occurrences: for each individual a tailored “co-occurrence” network

is reconstructed.

Given the compositional and zero-inflated nature of the

microbial data, it is necessary to use a global network association

algorithm that accommodates these data characteristics. One of

the most common tailored microbial association network inference

approaches in the field is SparCC (Friedman and Alm, 2012;

Watts et al., 2019). Alternatively, Cougoul et al. (2019) proposed

MAGMA (rMAGMAR package), which not only takes into account

microbiomes’ noisy structure, excess of zero counts, overdispersion

(high skewness) and compositional nature (simplex constraint),

but also ensures inferred association strengths within [−1, 1].

Moreover, it results in a sparse low dimensional matrix of co-

occurrences, with edge strengths that can be adjusted for known

confounders. On the contrary, SparCC does not have a native

sparsification and needs to be added as an external step, with

no established rule on how to perform it, hence, undermining

the reproducibility. Since ISNs are computed outside the MNDA
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framework, our pipeline can be combined with any type of ISN, as

long as the edges are individual-specific.

Compared to the work done by Mac Aogáin et al. (2021),

our work has some important differences. First, the authors

construct microbial co-occurrence networks on CLR-transformed

abundances and Pearson correlation. Pearson correlation is the

basemeasure of association implemented in the LIONESS software,

which was initially showcased on gene expression data. Friedman

and Alm (2012) showed that even though correlations on the CLR

transformation are more accurate than Pearson correlation, they

are not as accurate as the SparCC algorithm. Second, the authors

continued their analysis with edges as units of analysis. Our work

exploits individual-specific networks to define individual-specific

ASV neighborhoods (hence sets of edges). Third, MNDA is mainly

developed to compare microbiomes across conditions or over time,

by stacking ISNs into multiplex networks.

Compared to the iENA protocol (Yu et al., 2017) applied to

multi-time point microbial analysis (Chen et al., 2020b), our newly

proposed workflow is different in the following ways: (i) firstly,

the MAGMA transformation is considered instead of a Pearson

correlation on abundances; (ii) LIONESS aims to reconstruct

a network with the same interpretation as the global network,

i.e., the population-based network, while iENA computes an

individual deviation from the average; (iii) edge-network in iENA

is aggregated in a single sCI value quantifying the disease’s risk,

while in our work, the edges constitute the input of the MNDA

pipeline. They state that only interactions, not abundances are

significant and suggest remarkable disruption of the microbiome

community when diseases occur. This understanding is reinforced

by a follow-up work from the same group, characterising

the personalized microbiome dynamics for disease classification

by individual-specific edge-network analysis (Yu et al., 2019).

Beneficial co-evolved interactions between host and microbiome

can be disrupted by different environmental stresses such as

changes in dietary habits, natural physiology, virus infections,

and medical treatments (Dethlefsen et al., 2008; Wu et al., 2011;

Pop et al., 2014). Generally, analysis techniques developed to

process time-varying networks often require numerous temporal

observations. The analysis of time-dependent multiplex networks

with low temporal dimensions remains largely under-investigated.

In this paper, we encapsulate our proposed time-course analysis

of ISNs into a multiplex network differential analysis framework,

where each network layer refers to a point in time. The framework

quantifies the changes in the local neighborhood of each node for

an ISN (i.e., a microbial taxon) between the time points. This is

achieved by embedding the nodes of network layers into a shared

embedding space.

4.4. Complementary novel findings

We uncovered previously unreported microbial taxa as

biomarkers for temporal changes between months 6 and 9 after

birth. In particular, the two microbial taxa that consistently cluster

together in months 6 and 9 and are different from other microbes

are Bacteroides uniformis and Blautia sp. We can find insights

from the composition of the appearing/disappearing microbes.

The disappearing Firmicutes microbes’ are mostly (facultative)

aerobic microorganisms, including Enterococcus, Streptococcus,

and Staphylococcus species, along with other facultative aerobes

such as Klebsiella (phylum Proteobacteria). In contrast, the

appearing taxa within the Firmicutes phylum include several

strictly anaerobic species, including clostridial members, Dorea

sp. and Coprococcus. This shift indicates a more reduced

intestinal environment and more mature microbiome adapting

to the fermentation of complex dietary carbohydrates. Moreover,

Verrucomicrobia is recognized as the phylum with the least

dynamic microbes in terms of their global network neighborhoods.

Regarding the individual-specific neighborhood dynamics,

Lachnospira sp. and Bifidobacterium sp. have low neighborhood

dynamics; Streptococcus luteciae and Ruminococcus sp. are

important microbes for both delivery and diet types. Streptococcus

luteciae had previously been reported to be associated with infant

feeding (Brown and Jaspan, 2020); and, it is a skin bacterium,

which can be the reason why in our study it was associated

with birth mode (like other skin bacteria) and exhibited low

neighborhood dynamics. Other markers, such as Ruminococcus

sp, Lachnospira and Bifidobacterium sp., are too general, and little

biological interpretation can be extracted in the context of this

study. However, the observed link of S. luteciae and B. bifidum with

diet can potentially trace back to the depletion of these microbes

once breastfeeding is ceased.

The differences in co-expression networks over time (as

highlighted in Figure 10) show that the connections at 6 M are

much stronger than at 9 M for C-section delivery. This is indicative

of the waning effect of C-section delivery and temporal colonization

of environmental and skin bacteria in C-section delivered infants

that are displaced by other bacteria. The interaction networks of

such typical C-section delivered microbes also appear to wane

over time. This is exemplified by the edge between Lachnospira

sp. and Haemophilus parainfluenza, a bacterium typically found

to be temporarily enriched in C-section infants, which is much

stronger at 6 as compared to 9 months of age. Furthermore, we

observed that a change in diet between the two time points results

in clear differences in co-expression networks (Figure 10C), while

the networks are apparently more stable when infants have a more

stable dietary pattern. Note that even infants with persistent dietary

patterns still have a diet that is gradually becoming more complex

and diverse as more complementary foods are being introduced

over time.

Moreover, filtration curves indicate that newborns shifting diets

between 6 M and 9 M have the largest variation between the two

time points. This would indicate that dietary shifts have a stronger

impact on the dynamics of microbial co-occurrence in this age

windowwhen compared to C-section, which is in line with previous

studies indicating that the impact of birth mode is mainly restricted

to the first months of life.

4.5. Limitations and future work

We did not apply our approach to shotgun metagenomics

(WMGS), which may be seen as a limitation. In favour of applying

MNDA to 16S rRNA gene data, we first observe that we used an
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Amplicon Sequence Variant approach on our data, rather than

the Operational Taxonomic Unit-based clustering approaches that

have been the default approach until a few years ago. As ASVs are

exact sequences, this implies that comparisons can be made to a

reference database at a much higher resolution allowing for more

precise identification. Depending on the length of the 16S rRNA

gene region being sequenced, identification down to the species

level can even be achieved for many, but not all, ASVs. Indeed, a

recent comparative analysis of 16S rRNA gene and metagenomic

sequencing of the same pediatric faecal samples as in our study

showed that the microbial diversity was similar between WMGS

and 16S rRNA gene data and even slightly lower when using

WMGS. This latter is likely because WMGS requires much deeper

sequencing to cover the total diversity in a sample (Peterson et al.,

2021). Altogether, these and other studies indicate thatWMGS data

do not necessarily recover more microbial taxa when compared

to 16S rRNA gene amplicon data. The most significant difference

between both methods is that the microbial taxa that are being

identified can be more precisely taxonomically classified (e.g., most

taxa can be classified down to the species level in WMGS data

while ASVs can in some cases be classified down to the species

level whereas in other cases taxonomic classification can only be

done down to the genus or even family level). Note that this only

relates to the naming of the identified taxa, and hence the biological

interpretation, and not the identification of these taxa. Second,

although WMGS becomes more popular, because of the possibility

to look beyond the taxonomy and uncover the functional potential,

16S rRNA gene amplicon sequencing is still a widely applied and

valid approach. Especially for extensive population-based studies,

16S rRNA gene amplicon sequencing is still more common, given

the lower costs. For the same reason, microbiome studies from low-

and middle-income countries are mainly based on 16S rRNA gene

amplicon sequencing.

Microbiome data analysis results are particularly susceptible to

choices made during virtually all steps of the analysis: for instance,

during pre-processing (e.g., normalization Lin and Peddada, 2020),

when adopting differential abundance strategies (Nearing et al.,

2022), or when carrying out network analyses (Matchado et al.,

2021). ISNs can be computed in several ways, with individual-

specific edges being binary or weighted, sparse or rich, and

positively weighted or not. In this work, we transformed ISN edge

weights to their absolute values. Hence, we did not differentiate

between positive and negative correlations. Loftus et al. (2021)

noticed that taxonomically and functionally similar species tend

to have positive associations. In the current version of MNDA,

taxa with neighborhoods at months 6 or 9, only differing in sign,

would be considered highly similar in terms of their neighborhood

dynamics. In future work, we aim to adaptMNDA to accommodate

positive and negative edge weights. Particularly linked to our

MNDA framework, tuning the hyperparameters of EDNN may

further enhance performance. These hyperparameters are the

number of hidden units (dimension of the embedding space),

the number of layers, L1 and L2 regularization parameters, and

batch size. Although performance can be clearly defined in view

of expected prediction accuracy in a supervised context (see

Section 3.4—MNDA inspired prediction), it is less evident in

unsupervised modelling contexts, in the absence of the ground

truth. For instance, the relevance of homogeneous subgroups

identified in Section 3.5 may become more apparent when

associated with variation in extraneous data. For this study, we

only had additional information about diet and mode of delivery.

No significant association was observed between diet, mode of

delivery and cluster membership (using chi-squared test α =

0.05).

Several steps in our MNDA framework can be varied. More

specifically, we could have chosen different strategies to construct

the ISNs that serve as input to ourMNDA framework. For instance,

even when adopting Kuijjer’s formula to construct individual-

specific networks from a global network, the global network

edges themselves can be inferred in several ways. Our stability

analysis (more details in the Supplementary material) showed that

different inference methods for microbial interactions might lead

to different global networks and thus may impact the downstream

construction of Kuijjer’s ISNs. We argue that ISNs derived from

valid inference methods, albeit different, can be seen to represent

different views of the same data. Furthermore, we could have

chosen Euclidean distance instead of cosine distance. However,

Euclidean distance calculations are computationally intensive and

are often replaced by Manhattan distance for high-dimensional

data. In scenarios of high dimensionality, the approximation error

introduced by the Manhattan distance may be unacceptably large

and thus undesirable. For the user who does wish to adopt

Euclidean distances instead, Cardarilli et al. (2019) proposed an

approximation method to Euclidean distance in high-dimensional

spaces. Building upon our default implementation of cosine

similarity, in principle, we can generalize the adopted similarity

measure to more than two time points by moving from angular

similarity to similarity based on dihedral angles (i.e., angle between

two intersection half-planes) or generalized solid angles of pointed

convex cones [i.e., the intersection of a finite number of half-

spaces whose corresponding hyperplanes meet in exactly one

point (DeSario and Robins, 2007) ]. Assessing the performance of

multiple distance measures to capture microbiome neighborhood

dynamics as a biomarker for prediction or stratified medicine is a

logical next step.

Our methodology generally applies to any scenario for which

a network is available for each individual in a targeted set of

individuals measured at different conditions (e.g., time, location,

and treatment regimen). The MNDA algorithm matches the

networks for the same individual according to their nodes

and uses the links between nodes (possibly weighted, but not

necessarily) to assess whether local neighborhoods are consistent

across conditions. In other words, the core of our methodology

assumes that individual-specific links between nodes are available.

The actual values of the nodes are not directly used in the

core procedures. Thus in practice, ISNs can represent molecular

interactions for a single (omics) data type or for multiple related

(omics) data sources (Koh et al., 2019). For all these scenarios, we

believe that our longitudinal analysis framework will be useful to

identify novel biomarkers and advance precision medicine.

5. Conclusion

In this paper, we propose a novel framework to uncover

microbial neighborhood dynamics. Our approach, MNDA,
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combines representation learning and individual-specific

microbial networks, which makes it unique in the current

landscape of statistical methods for microbiome temporal data

analysis. MNDA is not restricted to microbiome data but can

handle any data type and measurements, as long as these can

sensibly be organized into cross-sectional association networks.

Our results show that MNDA can induce predictions that

outperform standard approaches and that ISN dynamic analysis

can identify microbes that are not identified by global network

comparisons. Stratified analysis over clinical variables confirms the

differential dynamic behavior of identified discriminators to diet

type stability or mode of delivery. Standard microbial abundance

changes over time and MNDA dynamics of microbial interactions

can be seen as alternate representations of the same underlying

process.
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