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The secretory proteome plays an important role in the pathogenesis of 
phytopathogenic fungi. However, the relationship between the large-scale 
secretome of phytopathogenic fungi and their lifestyle is not fully understood. In 
the present study, the secretomes of 150 plant pathogenic fungi were predicted 
and the characteristics associated with different lifestyles were investigated. In 
total, 94,974 secreted proteins (SPs) were predicted from these fungi. The number 
of the SPs ranged from 64 to 1,662. Among these fungi, hemibiotrophic fungi 
had the highest number (average of 970) and proportion (7.1%) of SPs. Functional 
annotation showed that hemibiotrophic and necrotroph fungi, differ from 
biotrophic and symbiotic fungi, contained much more carbohydrate enzymes, 
especially polysaccharide lyases and carbohydrate esterases. Furthermore, the 
core and lifestyle-specific SPs orthogroups were identified. Twenty-seven core 
orthogroups contained 16% of the total SPs and their motif function annotation 
was represented by serine carboxypeptidase, carboxylesterase and asparaginase. 
In contrast, 97 lifestyle-specific orthogroups contained only 1% of the total 
SPs, with diverse functions such as PAN_AP in hemibiotroph-specific and flavin 
monooxygenases in necrotroph-specific. Moreover, obligate biotrophic fungi 
had the largest number of effectors (average of 150), followed by hemibiotrophic 
fungi (average of 120). Among these effectors, 4,155 had known functional 
annotation and pectin lyase had the highest proportion in the functionally 
annotated effectors. In addition, 32 sets of RNA-Seq data on pathogen-host 
interactions were collected and the expression levels of SPs were higher than 
that of non-SPs, and the expression level of effector genes was higher in 
biotrophic and hemibiotrophic fungi than in necrotrophic fungi, while secretase 
genes were highly expressed in necrotrophic fungi. Finally, the secretory activity 
of five predicted SPs from Setosphearia turcica was experimentally verified. In 
conclusion, our results provide a foundation for the study of pathogen-host 
interaction and help us to understand the fungal lifestyle adaptation.
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Introduction

Secretome is a group of proteins synthesized in the cell and 
secreted to extracellular to function in eucaryotes (McCotter et al., 
2016). Most secreted proteins (SP) are secreted through the classic 
endoplasmic reticulum (ER) and Golgi pathway (Rapoport et  al., 
2017; Pantazopoulou and Glick, 2019). A few proteins are secreted 
through nonclassical secretory pathways due to the lack of post-
translational modification of the ER or Golgi (He et al., 2021). In 
terms of functions, fungal secretome can be divided into two classes. 
One is the SPs with enzyme functions, and the other is not, such as 
stress-related proteins.

During plant pathogenic fungi infecting the host plant, fungi have 
evolved complementary strategies to overcome host resistance. The 
cuticle is the first barrier for fungi to break through the plant 
epidermis. Plant pathogenic fungus catalyzes the hydrolysis of cutin 
polymers on the host surface by secreting cutinase (Morais Do Amaral 
et al., 2012). Second, many fungi decompose pectin, cellulose, and 
other substances in the plant cell wall by secreting cell-wall degrading 
enzymes and absorbing polysaccharides for their growth and 
reproduction (Ospina-Giraldo et  al., 2010). Third, some fungus 
secretes serine-rich toxins to inhibit the activity of defensive enzymes 
and reduce the vitality of plant cells (Muszewska et al., 2017). Toxins 
can also bind to cell membranes, altering their physiological function 
and causing necrosis of vascular cells, leading to plant wilt. 
Importantly, secretory proteins are involved in the formation of 
infected structures. For example, in Magnaporthe grisea, the 
expression of cutinase 2 is significantly up-regulated during the 
formation and maturation of appressorium, which plays a crucial role 
in the formation of penetration peg (Skamnioti and Gurr, 2007). In 
addition, during the interaction between plant pathogenic fungi and 
their host, SPs play an important role in pathogenic processes such as 
invasion and colonization (Doehlemann et al., 2009). Some small SPs 
have been identified as effectors, which are cysteine-rich proteins and 
play a role in virulence (Lo Presti et al., 2015). Effectors can suppress 
pattern-triggered immunity (PTI), thus allowing the pathogen to 
successfully infect the host. This molecular mechanism is considered 
to be the core mechanism of interaction between fungi and host (Jones 
and Dangl, 2006). Plant pathogenic fungi have diverse lifestyles, 
including obligate and facultative biotrophic, hemibiotrophic, 
necrotrophic, saprophytic, and symbiotic, in which they develop 
different strategies to interact with their host plants. Several studies 
have reported that some components of the fungal secretome are 
associated with its lifestyle (Lowe and Howlett, 2012; Kim et al., 2016), 
such as the small SPs and effectors. However, the relationship between 
the total secretome and lifestyle, as well as the expression pattern of 
the secretome during fungal infection, is not fully understood.

In recent years, the increasing number of sequenced fungal 
genomes and the availability of transcriptomic data on pathogen-host 
interactions, as well as the updating of secretory protein prediction 
software, have provided the basis for further elucidation of secretome 
and lifestyle adaptations. In this study, we  developed a multi-
procedure data extraction script to predict the SPs of 150 fungi. 
Furthermore, the function of these SPs were classified, and the 
differences in the composition and function of the SPs between fungi 
with different lifestyles were compared. The core-like SPs and lifestyle-
specific SPs were identified. In addition, the expression level of SP 
genes and non-SP genes with different functions were studied. Our 

studies will provide a comprehensive understanding of fungal-SPs in 
different fungi and lifestyles and lay a foundation for the function 
research of fungal secretome.

Materials and methods

Prediction of SPs and effect-like proteins

Proteome sequences of 150 fungi were obtained from the Joint 
Genome Institute, NCBI, and Genome Projects at University of Kentucky 
(Supplementary Table S1). SignalP 5.0 was used to predict the sequence 
containing the signal peptide at the N-terminal of the protein 
(prediction = SP; Almagro Armenteros et al., 2019b). TMHMM 2.0b was 
used to predict 0 or 1 transmembrane domain proteins (number of 
predicted TMHs = 0/1; Krogh et al., 2001). Phobius Ver 1.01 was used to 
reduce false positives in SignalP analysis of signal peptides and 
transmembrane domains (SP = Y; Käll et al., 2007). WoLF PSORT V0.2 
(best hit: extr) was used to predict SPs whose subcellular location is 
extracellular (Horton et  al., 2007). TargetP  2.0 was used to filter 
chloroplast transit peptide (CTP) and mitochondrial targeting peptide 
(MTP) at the N-terminal of proteins (Almagro Armenteros et al., 2019a). 
PROSITE Scan was used to filter the proteins containing the endoplasmic 
reticulum retention signal (ProSite: PS00014). PredGPI was used to 
predict proteins without glycosylphosphatidylinositol (GPI) sites 
(specificity <99.5; Sigrist et al., 2010). The effector-like proteins in the 
secretome were then predicted. First, a Perl script was used to analyze the 
cysteine content and amino acid residue base of the predicted SPs. 
We selected proteins with a cysteine content greater than 3% and an 
amino acid residue number less than 400 as candidate effectors. Finally, 
effectorP 1.0 and effectorP 2.0 were used to predict effectors, and the 
proteins predicted by both software were considered as effectors 
(Sperschneider et al., 2016, 2018).

Functional annotation of SPs

To obtain the GO annotation and Pfam domain annotation of the 
SP, the InterProScan-5.47-82.0 was used to annotate the predicted 
secretome (Quevillon et  al., 2005). HMMER 3.1B2 was used to 
identify carbohydrate enzymes in the secretion group (E-value < 1e-5 
and selection of the best hit; Eddy, 2009). The sources of the 
carbohydrate enzyme datasets were from dbCAN2.1 BlastP 2.7.1 was 
used to identify proteases and peroxidases in the secretome (p-value 
<1E-05 and selection of the best hit; Altschul et al., 1990). The protease 
and peroxidase datasets were downloaded from MEROPS2 and 
fPoxDB,3 respectively.

Orthologous clustering of SPs

To reduce the influence of different strains of the same species on 
the homology analysis, 141 fungi were selected for further analysis. 

1  http://bcb.unl.edu/dbCAN2/

2  https://www.ebi.ac.uk/merops/

3  http://peroxidase.riceblast.snu.ac.kr/
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Cluster analysis of SPs was performed using Orthorfinder with default 
parameters, and only orthogroups containing at least five different 
species were considered for further analysis (Emms and Kelly, 2019). 
Clusters were defined as follows: (1) Core group: Gene clusters 
containing at least 80% of the species members. (2) Biotrophic specific 
group: Gene clusters containing only biotrophic members. (3) 
Necrotrophic specific group: Gene clusters containing only 
necrotrophic members. (4) Hemibiotrophic specific group: gene 
clusters containing only hemibiotrophic members. (5) Saprophytic 
specific group: gene clusters containing only saprophytic members. (6) 
Symbiotic specific group: gene clusters containing only symbiotic 
members. The results of the cluster analysis were shown using jvenn 
to generate Venn diagrams.

Expression analysis of SP genes

RNA-seq data of plant-pathogen interactions from 32 species were 
obtained from NCBI, and the genome files and annotation files were 
obtained from the Joint Genome Institute, and detailed information 
were listed in Supplementary Table S2. HISAT2 software was used to 
map clean reads to the fungal genome, and StringTie was used to 
calculate the TPM of genes (Pertea et al., 2016). Subsequently, datasets 
of three hemibiotrophic fungi (SRP062877, SRP192548, and 
SRP069885) and two biotrophic fungi (SRP038019 and SRP117697) 
were selected for further analysis. Genes with TPM > 1 at least in one 
stage were counted. The TBtools was used to plot the heatmaps (Chen 
et al., 2020).

Validation of secretory activity of the signal 
peptide

The signal peptide secretory activity of five SPs from Setosphearia 
turcica was verified using a yeast sucrase deletion mutant (YTK12). 
The signal peptide sequences of the candidate proteins were amplified 
by PCR using primers listed in Supplementary Table S3. The signal 
peptide sequences were cloned into the yeast vector pSUC2 with the 
EcoR I/Xho I restriction site. The pSUC2-signal peptide vector, the 
negative control vector pSUC2-Mg87SP (Jacobs et al., 1997; Fang et al., 
2016), and the positive control vector pSUC2-Avr1b were then 
transformed into YTK12, respectively. Sucrase from YTK12 which 
carrying a signal peptide was secreted extracellularly and hydrolyzed 
sucrose into monosaccharides, which then monosaccharides reacted 
with 2,3,5-triphenyltetrazolium chloride (TTC) to produce a çred 
triphenyl tetrazolium chloride precipitate.

Results

Identified of the secretome of plant 
pathogenic fungi

To analyze the characteristics of the fungal secretome, the 
proteomic sequences from 150 fungi were used to identify the classical 
SPs which contain the signal peptide. These fungi covered the phyla 
including ascomycota, basidiomycota, glomeromycotan. The lifestyles 
of these fungi were represented by biotroph, hemibiotroph, 

necrotroph, symbiont, and saprotroph (Supplementary Table S1). The 
biotroph was further divided into facultative biotroph and obligate 
biotroph (Figure  1). Using the custom pipeline 
(Supplementary Figure S1), 94,974 SPs were predicted from 1,815,294 
proteins of the 150 fungi, with an average of 633 SPs in each fungus. 
The number of SPs ranged from 64 of the saprotrophic fungal Dekkera 
bruxellensis to 1,662 of the obligate biotrophic fungus Colletotrichum 
gloeosporioides. Moreover, the secretome accounted for an average of 
5.2% of the total proteins, the lowest was 1.1% of D. bruxellensis, and 
the highest was 10.4% of the hemibiotrophic fungus Colletotrichum 
orbiculare. To further explore the relationship between the secretome 
and their lifestyles, the amount and the proportion of SPs in fungi with 
different lifestyles were compared. We found that the hemibiotrophic 
fungi contained the most SPs (967 on average), such as Magnaporthe 
oryzae (1,245), Colletotrichum higginsianum (1,359), C. orbiculare 
(1,396), and Colletotrichum gloeosporioides (1,662). In addition, the 
number of SPs in necrotrophic fungi (737 on average) and obligate 
biotrophic fungi (650 on average) was approximate, respectively. 
However, facultative biotrophic fungi had the fewest SPs (414 on 
average) and the number was less than those in symbiontic fungi (516 
on average) and saprotrophic fungi (481 on average). These results 
suggested that fungi with more complex lifestyles, such as 
hemibiotrophic fungi which have an initial biotrophic life-style and a 
subsequent necrotrophic phase, have more SPs.

Diverse functions of SPs in fungi

To understand the functions of the SPs, the InterPro database was 
used to scan the GO annotation of them. The annotation results 
showed that 35.4% of the SPs had at least one GO term annotation. 
Because the SPs belonged to extracellular proteins, the molecular 
functions and biological processes of the GO terms were further 
studied. In the term of biological process, the most of annotated GO 
terms were presented by carbohydrate metabolic process 
(GO:0005975), proteolysis (GO:0006508), obsolete oxidation–
reduction process (GO:0055114), organic substance metabolic process 
(GO:0071704), and lipid metabolic process (GO:0006629). For the 
molecular function part, the most common GO terms were hydrolase 
activity, hydrolyzing O-glycosyl compounds (GO:0004553), 
oxidoreductase activity (GO:0016491), flavin glands Purine 
dinucleotide binding (GO:0050660), serine-type peptidase activity 
(GO:0008236), and hydrolase activity (GO:0016787; 
Supplementary Figure S2). These results indicated that a considerable 
number of SPs had enzymatic activity. Furthermore, to explore the 
relationship between the functions of SPs and lifestyles, the enzymes 
with the most GO terms, namely carbohydrate-active enzymes 
(CAZymes), proteases and peroxidases were analyzed. On average, 
32% of all of the SPs belonged to the three types of enzymes mentioned 
above, in which CAZymes were the most, followed by proteases 
and peroxidases.

Previous research indicated that CAZymes are involved in the 
degradation of the plant cell wall and promote attachment, invasion, 
colonization, and nutrient acquisition from the hosts (Ospina-
Giraldo et al., 2010; Barrett et al., 2020). In the present research, 
we  found that the number of CAZymes distributed widely in 
different fungi of the same lifestyle and the number of CAZymes in 
different lifestyle fungi varies greatly. Specifically, hemibiotrophic 
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fungi encoded the most CAZymes, with an average of 259, followed 
by necrotrophic, saprotrophic, symbiontic, facultative biotrophic, 
and obligate biotrophic fungi with an average of 200, 138, 95, 78, 
and 65, respectively (Figure 2A). Further, the proportion of fungal 
CAZymes in SPs from the fungi with different lifestyles showed 
significantly different. The CAZymes accounted for more than 25% 
of SPs in necrotrophic (28%), hemibiotrophic (26%), and 
saprotrophic (26%) fungi. The proportion of CAZymes in 
symbiontic and facultative biotrophic fungi were similar with the 
proportion of 18 and 17% and that in obligate biotrophic fungi were 
the lowest (13%; Figure 2B). Further, software hmmsearch was used 
to align the SPs to the datasets of dbCAN2, in which CAZymes were 
divided into six categories: glycoside hydrolases (GH), 
glycosyltransferases (GT), polysaccharide lyases (PL), carbohydrate 
esterases (CE), carbohydrate binding modules (CBM), auxiliary 
activities (AA; Figure 2C). Among them, the GH family was the 
most abundant in our research. In detail, the hemibiotrophic fungi 
encoded the most GH family (an average of 129), such as 
C. gloeosporioides and Moniliophthora roreri contained more than 
400 GH enzymes, respectively. The necrotrophic fungi also had a 

high level of GH enzymes (109 on average), the saprotrophic fungi 
had an average of 80 GH enzymes, symbiontic and biotrophic fungi 
had less GH enzymes, which number was 60 and 51 on average. 
However, there were some exceptions in symbiontic fungi and 
biotrophic fungi, such as Cladosporium fulvum and Periglandula 
ipomoeae contained more than 100 GH enzymes, respectively. 
Moreover, the number of AA enzymes in hemibiotrophic and 
necrotrophic fungi was higher than that in other lifestyles, with an 
average of 71 and 56, respectively. Saprotrophic fungi contained an 
average of 33 AA enzymes. The number of AA enzymes in 
biotrophic and symbiontic fungi was only 20 and 11 on average. The 
CE family was widely distributed among the studied fungi, only 5 
saprophytic fungi did not encode this family protein. The number 
of CE families in hemibiotrophic fungi (an average of 31) was 
significantly higher than that in other lifestyles (an average of 13). 
The PL family was more abundant in fungi in hemibiotrophic and 
necrotrophic fungi, but rarely in biotrophic and symbiotic fungi. In 
addition, cluster analysis of the CAZyme family revealed significant 
expansion of GH, PL, CE, and AA families in necrotrophic and 
hemibiotrophic fungi (Figure 2D). These results suggest that fungi 

FIGURE 1

Species phylogenetic tree of 150 fungi and the number of proteome, number of secretome and proportion of secretome. The inner ring color of the 
evolutionary tree represents the phylum and subphylum classification of the fungi. The color in the species name represents the lifestyle of the fungi. 
The bar chart on the outer side of the evolutionary tree represents the proteome size, secretome size and the percentage of secreted proteins (SP).
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with a necrotrophic phase need to kill host plant cells by secreting 
large amounts of cell wall degrading enzymes, of which GH, PL, CE, 
and AA may play a major function.

Protease plays a vital role in the decomposition, assimilating 
nutrients, and attacking the plant host defense system in fungi 
(Muszewska et  al., 2017). In our research, we  found that the 
proteases accounted for about 7% of the secretome. The number of 
proteases ranged from 4  in the saprophytic fungus 
Schizosaccharomyces pombe to 163  in the necrotrophic fungus 
R. solani. Hemibiotrophs had the most secreted proteases (average 
101), followed by necrotrophic, saprophytic, symbiotic, facultative 
and obligate biotrophic fungi with an average of 91, 63, 50, 46, and 
38, respectively (Figure 3A). In terms of proportion, the proteases 
from necrotrophic fungi was the highest (13%), while the obligate 
biotrophic fungi was the lowest (6%; Figure 3B). This result suggest 
that the reduction of proteases in biotrophic fungi may be related 
to the fact that it is not necessary to kill host cells during the 
infection stage. Moreover, the most abundant protease families in 
most fungi were the serine protease family, followed by the 
metallopeptidase family and the aspartic peptidase family 
(Figure 3C). Cysteine peptidase and threonine peptidase were less, 
and many saprophytic and biotrophic fungi did not encode these 
two enzymes. The family cluster analysis of secreted proteases 
showed that some hemibiotrophic and all necrotrophic fungi 
clustered together indicating that they have a similar protease 
composition (Figure 3D).

Peroxidase is belonged to oxidoreductase and plays an essential 
role in the pathogenicity and fixation of carbon sources in fungi 

(Hemetsberger et al., 2012; Choi et al., 2014; Mir et al., 2015). Our 
results showed that the peroxidase accounted for about 5% of the 
secretome and the number of the enzymes ranged from 5  in 
saprophytic fungal Debaryomyces hansenii to 155 in necrotrophic 
fungal Auricularia subglabra. Similar to the distribution of 
CAZymes and protease, hemibiotrophic and necrotrophic fungi 
contained the most peroxidases, 70 and 62, respectively, followed 
by symbiontic (39), saprotrophic (35), facultative biotrophic (31), 
and obligate biotrophic fungi (20; Figure  4A). In terms of 
proportion, the peroxidease from necrotrophic fungi was the 
highest (9%), while the obligate biotrophic fungi was the lowest 
(3.9%; Figure 4B). Further analysis showed that haloperoxidase 
(HalPrx), linoleate diol synthase (LDS), cytochrome (CcP), hybrid 
ascorbate-cytochrome C peroxidase (APx), atypical 2-cysteine 
peroxiredoxin (PrxII), and class II peroxidase (CII) were 
ubiquitous peroxidase in these fungi (Figure 4C). Cluster analysis 
of peroxidase family showed that the biotrophic fungi and 
symbiotic fungi had similar peroxidase composition, and the 
hemibiotrophic fungi and necrotrophic fungi had similar 
peroxidase composition, but the peroxidase composition of 
saprophytic fungi did not show obvious rule (Figure  4D). In 
addition, other peroxidases rarely presented in these fungi, for 
instance, obligate biotrophic fungi contained a small number of 
peroxidase families and did not code the manganese peroxidase 
(MnP), respiratory burst oxidase (Rbohs), and fungi-bacteria 
glutathione peroxidase (GPx) families. Furthermore, the MnP 
family, which are the essential enzymes for attacking lignocellulose, 
was only found in six wood-decay necrotrophic fungi.

A

C

B D

FIGURE 2

The number, proportion, family and clustering heat map of CAZyme in SPs. (A) Number of CAZyme in fungi with different lifestyles. (B) Proportion of 
CAZyme in fungi with different lifestyles to the secretome. (C) Number of members of different CAZyme families (glycoside hydrolases: GH, 
glycosyltransferases: GT, polysaccharide lyases: PL, carbohydrate esterases: CE, carbohydrate binding modules: CBM, auxiliary activities: AA). 
(D) Clustering heat map of CAZymes, with the square legend indicating the phylum to which the fungus belongs and the circle legend indicating the 
fungal lifestyle.
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Identification and functional annotation of 
effectors in SPs

The effector, as a small SP, inhibits the PTI response of hosts by 
regulating the transduction of defense signals and downstream 
responses (Lo Presti et al., 2015). In the present study, based on the 
characteristics of the proteins, including the number of amino acid 
residues and cysteine content, the effector-like proteins were filtered 
and further confirmed using effectorP software. The results showed 
that there was a significant difference in the number of effectors from 
different lifestyles. In detail, the number of effectors in obligate 
biotrophic fungi (average of 158) was the most than that in other 
lifestyles, followed by hemibiotrophic (average of 120), symbiontic 
(average of 120), necrotrophic (average of 58) and saprotrophic fungi 
(average of 37; Figure  5A). Further, we  found that the number of 
effectors in obligate biotrophic fungi varied greatly. Such as Melampsora 
larici-populina (411), Puccinia graminis (382), and Puccinia striiformis 
(312) secreted the most effectors among all fungi, while, only one 
effector is found in obligate biotrophic fungus Erysiphe Necator. 
Although, facultative biotrophic fungi encoded a low number of 
effectors (54 on average), their effectors accounted for a high proportion 
of SPs (12%), higher than the saprophytic fungi (6%), necrotrophic 
fungi (7%) and similar to hemibiotrophic fungi (12%) and symbiotic 
fungi (13%; Figure 5B). These results indicated the fungi that whose 
survival depended much more on their living hosts have more effector 
than the fungi whose survival depended on their dead hosts.

To further explore the function of effectors in different lifestyle 
fungi, the Interpro database was used to functionally annotate the 

predicted effectors. Among the 10,858 effectors, only 35% (3,789) 
had annotations with 331 different Pfam terms. Further, 22 
annotated Pfam terms that contained at least 50 effectors were 
analyzed further. The most functional annotation term which 
contains 189 effectors was pectin lyases, which abundantly existed 
in hemibiotrophic and necrotrophic fungi, less in saprotrophic fungi 
and symbiotic fungi, and rare in biotrophic fungi (Figure 5C). The 
second most presented annotation term was hydrophobins, a class 
of enzyme that regulate the communication between fungi and their 
environment, which is widespread in fungi and more abundant in 
Basidiomycetes than in other fungi. In addition, we  found that 
cutinase effector was more abundant in hemibiotrophic and 
symbiotic fungi and less abundant in biotrophic, necrotrophic and 
saprophytic fungi, suggesting that hemibiotrophic and symbiotic 
fungi may require enhanced attachment of fungal spores to the plant 
surface. In addition, we found that some effectors were enriched 
only in certain lifestyle fungi. For example, hydrophobic surface 
binding protein A and KP4 effectors were enriched in symbiotic 
fungi, suggesting a symbiotic strategy whereby symbiotic fungi 
obtain nutrients from their hosts while suppressing competing fungi. 
These results indicating that the lifestyle-specific effectors may play 
an important role in their lifestyles.

Identification conservation and 
lifestyle-specific SPs

To identify and distinguish SPs that play a crucial role in fungi 
with different lifestyles, the software OrthoFinder was used to cluster 
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FIGURE 3

The number, proportion, family and clustering heatmap of protease in SPs. (A) Number of protease in fungi with different lifestyles. (B) Proportion of 
protease in fungi with different lifestyles to the secretome. (C) Number of members of different protease families. (D) Clustering heat map of protease, 
with the square legend indicating the phylum to which the fungus belongs and the circle legend indicating the fungal lifestyle.
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the secretome from 141 fungi. The results showed that 87,909 SPs 
were divided into 5,207 orthogroups, and the number of orthogroups 
ranging from 2 to 1,143. In addition, 7,226 SPs were not clustered 
with any other SPs and were named as unassigned genes. 
Subsequently, the core, shared and specific orthogroups in different 
lifestyles were then further investigated. The result showed that a 
total of 1,513 homologous groups were identified, of which 27 were 
core groups, 1,416 were lifestyle-shared groups and 468 were shared 
by all lifestyle fungi, and 97 were lifestyle-specific groups. Among of 
the homologous groups, hemibiotrophic fungi had the largest 
number of secretory protein groups with 1,253, necrotrophic fungi 
contained 1,230 homologous groups, saprophytic fungi contained 
1,137 homologous groups, and symbiotic and biotrophic fungi 
contained fewer homologous groups with 859 and 758, respectively, 
(Figure  6A). Among them, there was only one core orthogroup 
containing all the fungal genes, and this orthogroup had a total of 
889 members. The function of the proteins in this group was serine 
carboxypeptidase, while the other 26 core groups function mainly 
as aspartate proteases, multicopper oxidase, subtilase, etc. 
(Supplementary Table S4). In addition, we found that the fungi with 
close lifestyles tended to share more orthogroups (Figure 6A). For 
example, hemibiotrophic and necrotrophic fungi shared as many as 
158 orthogroups, saprophytic and necrotrophic fungi shared 45 
orthogroups, and biotrophic and symbiotic fungi shared 33 
orthogroups. Further, the proteins of the orthogroup were annotated, 
and it was found that the lifestyle-specific group showed diverse 
functions (Figures 6B–F). There were 33 symbiotic fungal-specific 

orthogroups, including 273 proteins, of which 46 proteins were 
functionally annotated. Their functions mainly included the 
hydrophobic surface binding protein A, HAD-hyrolase-like, Biotin/
lipoate A/B protein ligase family, chitin-binding protein (CVNH) 
and calcium ion buffering protein (EF-hand). Saprophytic fungi had 
only 5 specific orthogroups, including 48 proteins, of which 17 
proteins had functional annotations, including fungal hydrophobins 
and ABC1 family protein kinases. Seven necrotrophic fungal-
specific orthogroups were containing 98 SPs, 26 of which were 
functionally annotated, including flavin-binding monooxygenase, 
carboxymuconolactone decarboxylase, and plavaka transposase. The 
31-specific orthogroups of hemibiotrophic fungi contained 227 SPs, 
of which 63 proteins were functionally annotated, including PAN/
Apple domains contained proteins, Zn(2)-C6 fungal-type 
DNA-binding proteins, glycosyl hydrolases family 28 proteins, 
sporulation-related proteins, homoserine/serine acetyltransferase, 
and BNR repeat-containing family. Biotrophic fungi possessed 21 
specific orthogroups, including 306 SPs, of which only 16 proteins 
were annotated and belonged to the Ribonuclease H-like 
superfamily. Further analysis of biotrophic fungi-specific 
homologous groups revealed that there were 290 proteins with no 
functional annotation, of which 155 were effectors, suggesting that 
these lifestyle specific effectors may be related to the adaption of 
their lifestyles. In summary, the above functional annotation of these 
orthogroups revealed significant differences in gene function among 
fungal orthogroups with different lifestyles, and these differences in 
function may be appropriate for the specific lifestyle of the fungi.
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FIGURE 4

The number, proportion, family and clustering heatmap of peroxidase in SPs. (A) Number of peroxidase in fungi with different lifestyles. (B) Proportion 
of peroxidase in fungi with different lifestyles to the secretome. (C) Number of members of different peroxidase families (haloperoxidase: HalPrx, 
linoleate diol synthase: LDS, cytochrome: CcP, hybrid ascorbate-cytochrome c peroxidase: APx-Ccp, atypical 2-cysteine peroxiredoxin: PrxII) 
(D) Clustering heat map of peroxidase, with the square legend indicating the phylum to which the fungus belongs and the circle legend indicating the 
fungal lifestyle.
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Exploration the role of different 
components of secretome in infection 
using RNA-Seq data

To analyze the functions of fungal SPs during the infection 
processes, 32 sets of fungal-host interaction RNA-Seq data were 
collected from the NCBI SRA database (Supplementary Table S1). 
The results showed that the average expression level of genes 
encoding SPs (TPM = 150) was significantly higher (p = 0.0004) than 
that of genes encoding non-SPs (TPM = 73) in most fungi (Figure 7), 
indicating that the expression level of SPs was enhanced during the 
infection process. Furthermore, effector genes were found to be more 
highly expression in biotrophic and hemibiotrophic fungi than that 
in necrotrophic fungi. While genes encoding CAZymes, proteases 
and peroxidase were highly expressed in necrotrophic fungi. 
However, there were also some necrotrophic fungi whose effector 
expression levels were higher than those of secretases. For example, 
in the process of Wolfiporia cocos infection of spruce trees and 
S. nodorum infection of wheat, the expression level of effector genes 
was higher than that of secretase genes. We also found that different 
fungi with the same lifestyle had different expression patterns of SP 
genes with the same function when they infect their hosts. For 
example, the expression level of peroxidase genes was higher in 
Trichoderma virens infecting maize roots, whereas it was lower in 
Rhizophagus irregularis interacting with Medicago truncatula.

Further, the expression pattern of SP genes in three 
hemibiotrophic (Fusarium fujikuroi, F. graminearum and 
C. graminicola) and two biotrophic fungi (C. fulvum and Ustilago 
maydis) was analyzed in detail. Cluster analysis of the expression 
profiles of three hemitrophic fungi found that the expression 
patterns of SP genes could be  divided into 6 groups. The 
expression profiles of SP genes in F. fujikuroi and F. graminearum 
were very similar, nearly 40% of the genes were involved in the 
phases of penetration to biotroph fungal infection (cluster I and 
II of Figures 8A,B), and 50% of the genes were involved in the 
biotroph to necrotroph stages (cluster IV, V, and VI of 
Figures 8A,B). In C. graminicola, few SP genes were up-regulated 
during the stage of penetration to biotroph (cluster II, III, 29% of 
expressed genes), and 59% of expressed genes were highly 
expressed in the stage of biotroph to necrotroph (cluster IV, V, and 
VI; Figure  8C). Further, the expression patterns of SPs with 
different functions were studied. It was found that carbohydrases 
were the most expressed SPs when the hemibiotrophic fungi 
infested the host (Figures 8A–C) For example, it was found that 
the earliest activated SPs involved a smaller number of CAZymes, 
in which cellulases were predominant. As the infection progresses, 
more cellulase, pectin lyase and hemicellulase were upregulated 
in biotroph and necrotroph stages, especially hemicellulose, which 
was induced in 45 out of 62 hemicellulases of F. graminearum, 43 
out of 57 of F. fujikuroi and 37 out of 50 of C. graminicola. This 
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FIGURE 5

Relationship between the number, ratio, function of effector factors and fungal lifestyle. (A) Number of effector in fungi with different lifestyles. 
(B) Proportion of effector to secretome in fungi with different lifestyles. (C) Clustering heat map of effector functions, the color and size of the circles 
represent the richness of this effector function.
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may be  related to the fact that hemibiotrophic fungi acquire 
nutrients, destroy cell walls and release fungal spores in the 
middle and late stages of infection. In addition, the SP gene 
expression profiles of two biotrophic fungi, C. fulvum and 
U. maydis, were analyzed. It was found that biotrophic fungi tend 
to upregulate more protease and peroxidase genes in the early 
stage of infection than that in hemibiotrophic fungi, while 
CAZymes genes tend to be  upregulated in the late stage of 
infection (Figures  8D,E). This may be  related to the fact that 
biotrophic fungi need to obtain nutrients from host cells while 
maintaining the survival of host cells.

Verification of secretory activity of the 
predicted signal peptide in Setosphearia 
turcica

To verify whether the predicted signal peptide has secretory 
activity, five predicted SPs (37,618, 1,438,356, 88,794, 86,411, and 
135,655) from S. turcica were selected using the yeast strain YTK12 
system. In addition, Avr1b, an effector in soybean blast that has a 
secretion function, was used as a positive control; Mg87, a functional 
signal peptide fragment that is not secreted in M. oryzae, was used as 
a negative control. The TTC staining assays showed that the positive 

control Avr1b and five signal peptides from S. turcica were able to 
secrete the invertase outside the cell, thereby degrading sucrose to 
monosaccharides, whereas neither the blank control YTK12 nor the 
negative control mg87 were able to do so (Figure 9), indicating that all 
the signal peptides of the five predicted SPs had secretory activity. This 
result further confirms the accuracy of our prediction of SPs.

Discussion

Fungal secretome plays indispensable roles in nutrition acquisition 
and self-protection, which is important to explain the interaction 
mechanism between fungi and the environment. In recent years, the 
number of whole-genome sequencing of fungi has increased rapidly, 
which has extremely promoted the development of fungal genomics 
and laid the foundation for large-scale comparative analysis and study 
of the function of fungal SPs. In this study, we predicted the secretome 
of 150 fungi and explored their functions, which showed a preference 
between secretome and lifestyle in several aspects.

Currently, the most common methods for predicting SPs are to 
analyze the signal peptides and transmembrane domains. In addition, 
researchers typically analyze the subcellular locations and GPI sites of 
SPs to reduce false positives results for cell membrane proteins (Lowe 
and Howlett, 2012; Kim et al., 2016). To date, there are two publicly 
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FIGURE 6

The orthogroups in 141 fungi and the function of lifestyle-specific orthogroups. (A) Overview of the number of orthogroups in 141 fungi. (B) Functions 
performed by symbiotic fungal-specific orthogroups. (C) Functions of the saprophytic fungal-specific orthogroups. (D) Functions of the necrotrophic 
fungal-specific orthogroups. (E) Functions of the hemibiotrophic fungal-specific orthogroups. (F) Functions of the biotrophic fungal-specific 
orthogroups. The blue part of the pie chart on the inner side of the nested graph represents proteins without functional annotation. The green part 
represents proteins with functional annotations, and the bands on the outside of the nested plots indicate the different functions of lifestyle-specific 
proteins and the proportion of lifestyle-specific proteins that have that function.
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available fungal secretome databases, Fungal Secretome and 
Subcellular Proteome KnowledgeBase 2 (FunSecKB2) which was 
updated in 2013, and Fungal Secretome Database (FSD), which was 
created in 2010. FunSecKB2 uses six computational tools to make 
process-based predictions for 167 species of fungi (Meinken et al., 
2014). The FSD has a very rich source of species, covering 452 fungal 
species, and the predicted results include non-classical SPs, but the 
screening conditions are relatively loose, mainly based on the signal 
peptide of SPs, which may contain a large number of false positives 
(Choi et  al., 2010). In this study, we  used the latest genomic 
information of each fungus and integrated the current mainstream 
software for predicting SPs. Our prediction results showed that each 
fungus contained an average of 633 SPs, accounting for 5.2% of total 
proteins, much less than the 15% of FSD. In the same 65 fungi 
predicted by present this study and FunSecKB2, we found that each 
fungus contained an average of 653 SPs, which is less than FunSecKB2 
(an average of 710). This may due to the stringent parameters adopted 

in our process or the update of genomic information. For example, the 
two proteins (1,216,079 and 1,438,356) in the second version of the 
S. turcica genome were not predicted in FunSecKB2, but 
we  successfully predicted them and verified them experimentally. 
Therefore, benefiting from the improvement of fungal genomic 
information and the optimization of the prediction software, our data 
can provide an important reference data for the study of fungal SPs.

By comparing the number of SPs, we found that hemibiotrophs 
and necrotrophs encode more SPs than biotrophs, saprotrophs, and 
symbionts. Compared with biotrophs, which depend on the viability 
of the host plant, non-biotrophic fungi require more secreted enzymes 
or toxins to kill the cells of the plant host and extract nutrients from 
the dead plant tissue. Thus, the largest secretome may be the basis for 
nutrient acquisition and manipulation of host plants by hemibiotrophs, 
as it has both biotrophic and necrotrophic phases (Rajarammohan, 
2021). Furthermore, the CAZymes are involved in the degradation of 
plant cell walls, facilitating the process of pathogen infection and 

FIGURE 7

The heatmap of expression of SP genes in 32 fungi during plant infection. The heat map shows the average expression of non-SP genes, SP genes, 
CAZyme genes protease genes, peroxidase genes and effector genes during plant infection, the square legend represents the phylum to which the 
fungus belongs and the circle legend represents the fungal lifestyle.
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nutrient acquisition from the host (Ospina-Giraldo et al., 2010; Barrett 
et al., 2020). In our study, we found that the CAZymes were the most 
abundant predicted enzymes in the secretome. Hemibiotrophic fungi 
had the highest number of CAZymes, followed by necrotrophs, and 
the biotrophic fungi and symbiotic fungi had the lowest number of 
CAZymes. In addition, the hemibiotrophs and necrotrophs that 
eventually killed their plant hosts had similar CAZymes profiles and 
a more pronounced expansion of the GH, PL, CE and AA families. 
Furthermore, in the transcriptomic data, we  found that genes 

encoding the cellulase of hemibiotrophic fungi were up-regulated 
early in the infection, which may be  necessary to help the fungi 
penetrate the plant cell wall to achieve initial intracellular growth. As 
the infection processed, more and more CAZymes were up-regulated. 
For example, hemicellulases, which were highly up-regulated in the 
late stage of infection. However, in biotrophic fungi, CAZymes were 
not found to be up-regulated at a particular stage of infection, which 
may be  related to the fact that biotrophic fungi need to obtain 
nutrients from host cells while maintaining host cell survival. These 
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FIGURE 8

Heat map of expression of SP genes in hemibiotrophic and biotrophic fungi infecting plants. (A) Heat map of SP gene expression pattern in F. fujikuroi 
infecting maize at 4, 10, and 20  days. (B) Heat map of SP gene expression pattern in F. graminearum infecting maize at 3, 5, and 7  days. (C) Heat map of 
SP gene expression pattern in C. graminicola infecting Arabidopsis thaliana at 24, 36 and 60  h. (D) Heat map of SP gene expression in Cladosporium 
fulvum infected with tomato. (E) Heat map of SP gene expression in Ustilago maydis infected with tomato. The color change of the heat map indicates 
the level of SP gene expression at different infestation stages, the middle colored band indicates the cluster classification of the expression profile, and 
the right bar graph shows the proportion of SPs with different functions in each cluster.

FIGURE 9

Verification of secretory function of signal peptide using the TTC staining assays.
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results indicates that hemibiotrophs and necrotrophs may require 
enhanced cell wall degradation during the infection process to 
complete the necrotrophic phase, but the symbionts and biotrophs 
weaken the ability to degrade the cell wall and it is possible that they 
act more on mycelial penetration of the plant epidermis or the 
pre-symbiotic stage. In addition, recent research has shown that 
ectomycorrhizal fungi secrete significantly lower average levels of 
CAZymes compared to plant pathogenic fungi (Lofgren et al., 2021). 
Powdery mildew can adapt to an obligate biotrophic lifestyle by 
contracting carbohydrate metabolism (Liang et  al., 2018). These 
suggest that the amount and type of CAZymes in pathogens are closely 
related to their lifestyle.

Orthologs are genes in different species and often retain the 
same function during evolution (Koonin, 2005). By studying 
homologous groups, researchers can identify shared and specific 
genes among multiple species (Emms and Kelly, 2019). In the 
study on beneficial root endophyte Colletotrichum tofieldiae and 
its pathogenic relative Colletotrichum incanum, the author 
determined the genomic characteristics through the study of 
species-specific orthogroups and found that the transformation of 
the two Colletotrichum fungi only involves the reduction of 
effectors, and the expansion of chitin-binding and secondary 
metabolism-related protein families, indicating an evolutionary 
transition in Colletotrichum from pathogenic to symbiotic 
lifestyles (Hacquard et al., 2016). In the comparative genomics 
study of 23 species of Aspergillus flavus, it was found that highly 
conserved genes among species involved in aflatoxin biosynthesis, 
while species specific genes involved in encoding and regulating 
p450, which are relevant for fungal pathogenicity (Kjærbølling 
et al., 2020). In order to further explore the relationship between 
lifestyle and secretome, we clustered the secretome of 141 fungi 
and classified the orthogroups according to lifestyle to find shared 
and lifestyle-specific orthogroups, and the genes in the core 
orthogroups may play essential functions in supporting the 
survival of fungi. For example, the function of the core orthogroup, 
whose members come from all fungi, has been identified as serine 
carboxypeptidase, which has a variety of functions from 
catabolism to protein maturation. The functions of other highly 
conserved orthogroups were involved in metabolism, biological 
regulation, stress defense response, and pigment synthesis. For 
lifestyle-specific orthogroups, we found some lifestyle-adaptive 
functions. For example, in the specific orthogroups of symbiotic 
fungi, we found many hydrophobic surface binding A proteins, 
which transport fatty acids in host plants to fungi and establish a 
symbiotic nutrient exchange system with fatty acids as the primary 
carbon source (Jiang et al., 2018). We also found many CVHN 
domains in the symbiotic-specific orthogroups. These proteins 
bind to chitin oligomers and prevent them from functioning as 
pathogen-associated molecular patterns (PAMPs; Koharudin 
et al., 2015). In addition, we found many proteins annotated as 
flavin monooxygenase and carboxymuconolactone decarboxylase 
in the necrotrophic-specific orthogroups. Several studies have 
shown that flavin oxygenases attenuate the toxicity of phytoalexins 
and are involved in fungal cell wall growth and melanin 
deposition, and the carboxymuconolactone decarboxylase can 
promotes the expression of hydrolase and plays a crucial role in 
host pathogenesis (Wang et al., 2015; Pigné et al., 2017). In the 
hemibiotrophic-specific orthogroups, a large number of proteins 

have been identified as PAN domains for protein-oligosaccharide 
interactions, which increase the contact ability between fungi and 
host cells, thereby promoting fungal infection of the host (Yu 
et al., 2012). The biotrophic-specific orthogroups contain a large 
number of members, most of which are lifestyle-specific effectors 
without any functional annotations, which may be related to the 
long-term interaction between hemibiotrophic fungi and the host. 
Moreover, we believe that fungi with similar lifestyles share more 
orthogroups than fungi with more divergent lifestyles. 
Hemibiotrophic fungi and the necrotrophic fungi with a highly 
destructive necrotrophic stage in their life cycle share 158 
orthogroups. Symbiotic fungi and biotrophic fungi that need to 
maintain the host survival share 33 orthogroups, which may 
indicate a conservative pattern of host cell penetration or 
recognition avoidance between biotrophs and symbionts. 
Saprophytic fungi and necrotrophic fungi share 45 orthogroups, 
which may reflect that necrotrophic fungi have an extended 
saprophytic stage as part of their life cycle (Laluk and 
Mengiste, 2010).

Conclusion

In the present study, the secretome from 150 plant fungi was 
predicted and a total of 94,974 SPs were identified. Among them, 
33,621 SPs were found to be functionally annotated, with their 
main functions being CAZymes, proteases, peroxidases and 
effectors, and the number of these proteins was closely related to 
their special lifestyles of the fungi. In addition, 1,513 orthogroups 
were identified. Among them, 1,416 were lifestyle-shared 
orthogroups which provided the most basic functions to support 
the lifecycle of fungus and 97 were lifestyle-specific orthogroups 
which were functionally related to the adaptation of the fungi to 
their specific lifestyles. The expression levels of these SP genes 
were higher than those of non-secreted protein genes and these 
SP genes in fungi with different lifestyles had their different 
expression patterns. Our research will contribute to understanding 
the changes in fungal lifestyle adaptations and provide new 
insights for future experiments to explore the mechanism of 
plant-fungus interaction.
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