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Microbes continually shape Earth’s biochemical and physical landscapes by 
inhabiting diverse metabolic niches. Despite the important role microbes play in 
ecosystem functioning, most microbial species remain unknown highlighting a 
gap in our understanding of structured complex ecosystems. To elucidate the 
relevance of these unknown taxa, often referred to as “microbial dark matter,” 
the integration of multiple high throughput sequencing technologies was 
used to evaluate the co-occurrence and connectivity of all microbes within 
the community. Since there are no standard methodologies for multi-omics 
integration of microbiome data, we  evaluated the abundance of “microbial 
dark matter” in microbialite-forming communities using different types meta-
omic datasets: amplicon, metagenomic, and metatranscriptomic sequencing 
previously generated for this ecosystem. Our goal was to compare the community 
structure and abundances of unknown taxa within the different data types rather 
than to perform a functional characterization of the data. Metagenomic and 
metatranscriptomic data were input into SortMeRNA to extract 16S rRNA gene 
reads. The output, as well as amplicon sequences, were processed through 
QIIME2 for taxonomy analysis. The R package mdmnets was utilized to build co-
occurrence networks. Most hubs presented unknown classifications, even at the 
phyla level. Comparisons of the highest scoring hubs of each data type using 
sequence similarity networks allowed the identification of the most relevant hubs 
within the microbialite-forming communities. This work highlights the importance 
of unknown taxa in community structure and proposes that ecosystem network 
construction can be used on several types of data to identify keystone taxa and 
their potential function within microbial ecosystems.
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1. Introduction

Often regarded as one of the planet’s first ecosystems, microbialites are organo-sedimentary 
structures formed as a result of trapping and binding activities of benthic microbial mat 
communities (Reid et al., 2000; Dupraz et al., 2009; Suarez-Gonzalez et al., 2019). Microbialites 
represent an important interface between the biosphere and geosphere, and mat communities 
that form these structures have been known to play an important role in planetary evolution by 
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regulating global cycles of major elements, such as carbon, oxygen, 
nitrogen, and sulfur (Grotzinger and Knoll, 1999). There are several 
key functional groups of microbes within microbialite communities 
including oxygenic and anoxygenic phototrophs, aerobic heterotrophs, 
sulfate reducers, methanogens, and fermenters (Dupraz and Visscher, 
2005; Baumgartner et al., 2009; Dupraz et al., 2009; Myshrall et al., 
2010; Babilonia et al., 2018). However, studies on microbialite-forming 
microbial communities have shown that ~30% of the taxa recovered 
from high-throughput sequencing efforts are unclassified at the phyla 
level and more than 60% of the recovered genes and transcripts are of 
unknown function (Louyakis et al., 2018) demonstrating the need for 
improved approaches to explore these unknown taxa.

Colloquially named “microbial dark matter,” these unknown 
elements of microbial life drastically limit our understanding of 
microbial life and diversity, as well as the metabolic inner workings of 
microbial-dominated ecosystems, such as microbialite communities 
(Marcy et al., 2007; Rinke et al., 2013; Lok, 2015). Since much of our 
microbial knowledge is derived from relatively few cultivable taxa, this 
has resulted in a biased and limited view of the genetic and metabolic 
capabilities of microbial life. However, advances in sequencing 
technologies have been instrumental in studying these unknown and 
uncultured microbes, allowing us to sequence microorganisms 
eluding cultivation. The most common methods to study microbial 
communities include amplicon, metagenomic and metatranscriptomic 
sequencing. Each methodology is chosen according to the scientific 
questions and the needs of each individual study leading to the 
discovery of new genes, metabolic pathways, and taxa (Schulz et al., 
2017; Bernard et al., 2018; Jiao et al., 2021). For instance, metagenomic 
sequencing has yielded evidence of dozens of new phyla as well as 
thousands of new taxa (Brown et al., 2015; Hug et al., 2016). Despite 
this progress, it is unclear how these methods can be integrated to 
better understand the role of unknown taxa, as meta-omic datasets are 
large, noisy, and not easy to mine or interpret (Marx, 2013; Parks 
et al., 2017).

To analyze ecosystem structure, microbial communities can 
be modeled as networks, where taxa are represented by nodes and 
their relationships are represented as edges, respectively. Networks 
effectively capture the general structure of the ecosystem, and provide 
information of the importance of different taxa within the community 
(Proulx et  al., 2005). The intricate relationship between 
microorganisms within a microbial community can be analyzed using 
different network metrics that represent co-occurrence (degree 
centrality), connectivity (betweenness centrality) and centrality 
(closeness centrality), thus providing a measurement of how taxa 
within the ecosystem operate (Proulx et al., 2005; Ma'ayan, 2011; Ma 
et al., 2016). Keystone species that have high levels of all three of these 
metrics are “hubs” that contribute to maintain the network structure. 
Since their removal impacts the network connectivity, they are 
believed to hold ecological relevance within the ecosystem (Berry and 
Widder, 2014). In a previous study we  developed MDMnets, a 
methodology that utilizes network theory to model microbial 
communities from amplicon data leading to the identification of 
unknown hub species that play a central role in the microbial 
communities (Zamkovaya et al., 2021).

In this study, we tested the pipeline MDMnets on three different 
types of data (amplicon, metagenome and metatranscriptome) from 
diverse microbialite-forming communities across the globe to 
investigate the contribution of “microbial dark matter” within these 

communities. Networks were analyzed for every combination of 
dataset and taxonomic classification level, both including and 
excluding the microbial dark matter component. For every dataset, a 
hub score was calculated for every node. Top scoring hubs were 
evaluated based on taxonomy and compared across the different 
methods. By identifying those currently unknown taxa that are 
forming potentially synergistic connections within the communities, 
we can prioritize important taxa for characterization, allowing us to 
improve our understanding of complex microbial ecosystems.

2. Materials and methods

2.1. Data obtention

Previously generated amplicon, metagenome and 
metatranscriptome data sets from microbialite-forming communities 
across the globe were selected for this study and retrieved from NCBI 
through the use of the NCBI SRA Toolkit. These consisted of 14 
amplicon samples derived from thrombolites of Highborne Cay, 
The Bahamas (Mobberley et al., 2015) and microbialite samples from 
Storrs Lake, The Bahamas (Paul et al., 2016), where the V1-V3 region 
of the 16S rRNA gene was targeted for sequencing with 454 GS FLX 
pyrosequencing (NCBI accession numbers PRJNA305634 and 
PRJNA222307, respectively). In addition, 55 stromatolite 
metagenomic samples derived from locations throughout the Exuma 
Cays in The Bahamas, including Highborne Cay, Little Darby Island, 
Lee Stocking Island, and Bock Cay and from Hamelin Pool, Western 
Australia were used (Casaburi et al., 2016; Babilonia et al., 2018; NCBI 
accession numbers SRS1019263). Finally, 24 metatranscriptomic 
samples from Highborne Cay thrombolites generated over the diel 
cycle in three different seasons were also used (Louyakis et al., 2018; 
NCBI accession number PRJNA305634).

2.2. Data processing

2.2.1. Amplicon sequencing analysis
Reads from the amplicon dataset (n = 14) were first run through 

quality control using cutadapt (v3.4) with options-q 30-u 20-m 50. The 
resulting reads were processed through software QIIME2 (v2022.8; 
Bolyen et  al., 2019). Amplicon reads were denoised using dada2 
denoise-pyro algorithm plugin on the QIIME2 platform, which works 
by denoising, de-replicating and filtering chimeras from sequences 
generated by pyrosequencers (Callahan et al., 2016). Next, taxonomy 
assignment was performed utilizing the feature-classifier sklearn 
plugin in QIIME2, which works by training a Naive Bayes classifier 
using reference sequences, in this case the SILVA reference sequences 
(www.arb-silva.de, v138; Quast et  al., 2013). The resulting taxa 
abundance matrix was filtered to retain those OTUs present in at least 
two different samples. In addition, taxa classified as Eukaryota at the 
domain level, or as a chloroplast at the order to genus levels, were 
removed from the analysis.

2.2.2. Metagenomic and metatranscriptomic 
sequencing analysis

Quality control of raw reads was performed with software FastQC 
(v0.11.7; Andrews, 2014) and posterior trimming/filtering of 
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low-quality reads was done with cutadapt (v3.4; Martin, 2011). The 
metagenomic and metatranscriptomic datasets were processed with 
SortMeRNA (v4.3.6) to extract the 16S and 18S rRNA genes with 
default parameters against the smr_v4.3_default_db.fasta (Kopylova 
et al., 2012). The obtained reads were assembled using Spades (v3.15.3) 
with a size cutoff of 220 nt and analyzed with QIIME2 (v2022.8; 
Bolyen et  al., 2019). The resulting 16S rRNA gene reads were 
dereplicated using vsearch plugin dereplicate-sequence. In this step, 
identical sequences were grouped to obtain a non-redundant set of 
sequences. Next, features were clustered into OTUs with a percent 
threshold identity of 99% using the SILVA SSU reference database 
(www.arb-silva.de, v138.1; Quast et al., 2013). In order to ensure that 
informative reads were used for taxonomic classification, reads were 
filtered utilizing qiime quality-control exclude-seq plugin using vsearch 
as a method, the SILVA SSU reference database as a reference, a 
percent identity threshold of 90% and a percent of query aligned 
threshold of 90%. Posterior taxonomy assignment was done utilizing 
the feature-classifier classify-consensus-vsearch plugin in QIIME2. 
Next, the reads were mapped back to the contigs using bowtie2(v2.4.5) 
to estimate abundance. Taxa classified as Eukaryota at the domain 
level were filtered out from the study for a better comparison of the 
known taxa. In addition, taxa classified as chloroplasts at the order, 
family or genus levels were removed from the analysis. Finally, taxa 
(i.e., known and unknown) that were present in at least 15 different 
samples (62.5% of the total) for metatranscriptome data and 34 
different samples (61.8% of the total) for metagenome data were 
considered for the downstream analysis.

2.2.3. Identification of microbial dark matter
Specific keywords were searched for within the taxonomic 

classifications to classify taxa as “microbial dark matter” and make the 
labels uniform across the datasets. Classifications containing the 
words “uncultured,” “unknown,” “NA,” “unknown_family,” “Incertae 
Sedis,” amongst others, were re-classified as “microbial dark matter” 
at the taxonomic level at which this classification occurred and all the 
subsequent levels. For example, a given taxa classified as “unknown” 
at the order level was re-classified as “microbial dark matter” at the 
order, family, genus, and species levels.

2.3. Network construction, edge evaluation 
and filtering

All subsequent statistical and network analyses were conducted in 
R (v 4.2.2) using packages Phyloseq (v1.42.0; McMurdie and Holmes, 
2013), qiime2R (v0.99.6; Bisanz, 2018), dada2 (v.1.26.0; Callahan et al., 
2016), SpiecEasi (v1.1.2; Kurtz et al., 2015), igraph (v1.3.5; Csardi and 
Nepusz, 2006), and mdmnets (v0.1.0; Zamkovaya et  al., 2021). 
Networks were constructed using R package mdmnets, which 
normalizes the abundance tables obtained from QIIME2 and converts 
them into an adjacency matrix using R package SpiecEasi. Afterwards, 
Meinshausen-Buhlmann’s neighborhood selection method (Kurtz 
et al., 2015) was utilized to calculate conditional dependence between 
each OTU pair. Edges represent linear relationships between two 
nodes that are not conditionally independent. This method is 
recommended for microbiome data, as it is designed for sparse and 
compositional data and reduces the probability of spurious 
relationships (Kurtz et al., 2015). Network edge significance for all 

three dataset types was evaluated using a bootstrap approach. First, 
the original networks were constructed using the OTU abundance 
tables obtained from QIIME2. To build the bootstrap networks, the 
abundances for each OTU were randomly sampled to break the 
associations between sample and abundance. This process was 
repeated 5,000 times, and the number of times each edge from the 
original network appeared in the bootstrap networks was noted. Edges 
appearing in more than 250 bootstrap networks (p ≥ 0.05) were 
filtered out from the original network to obtain a filtered network. 
Next, hub score metrics were extracted from the filtered network 
using the SpiecEasi hub_score() function to identify taxa that are 
playing significant roles in network structure. The resulting matrices 
were visualized as networks using functions from R package SpiecEasi 
with nodes representing OTUs and edges representing direct 
co-occurrence relationships between them.

2.4. Network analysis and hub score 
evaluations

For each dataset, unknowns were removed from the OTU tables 
to generate plots without “microbial dark matter” for comparison 
purposes. Additionally, bootstrap networks were generated through 
the use of R package mdmnets function comp_by_deleting_random_
knowns_t_v3() to confirm metric changes are caused by removing 
unknown taxa and not by changes in the network size (Zamkovaya 
et al., 2021). This function generated a total of 100 bootstrap networks 
through the removal of random known taxa and calculated the 
network metrics in all the generated bootstrap networks. The statistical 
significance of the changes across networks was tested using a Wilcox 
test. This analysis was performed at each taxonomic level from phylum 
to genus.

For each dataset, hub scores were extracted for each node 
composing the network. The list of top 20 scoring hubs from each 
dataset, with and without unknown taxa, was taxonomically annotated 
and compared across data modalities. The unknown taxa present 
within the top 20 scoring hubs for each dataset was analyzed through 
BLAST to evaluate similarities to other taxa present in the database.

3. Results

3.1. Sample and data processing

The amplicon dataset had on average ~ 22,000 reads per sample 
and after trimming and filtering, 4.21% were removed from 
downstream analyses (Supplementary Table 1). The metagenomic 
samples had an average of ~24,000,000 reads per sample and after 
processing with Cutadapt, 90.71% of the reads were retained and 
utilized for 16S/18S rRNA gene sorting. A total of 267,392 reads 
(1.17%) of these reads were identified as small subunit rRNA genes 
(SSU) and used as input for QIIME2 (Supplementary Table 1). Finally, 
the metatranscriptomic dataset contained an average of ~25,000,000 
reads per sample and quality control resulted in 94.65% of these reads 
being retained for subsequent analyses. For the metatranscriptomic 
dataset, 66.5% of the filtered reads were recognized by SortMeRNA as 
SSU reads due to the high expression levels of the rRNA genes within 
the communities (Supplementary Table 1).
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3.2. Taxonomic characterization of 
thrombolites using different-omics 
approaches revealed different levels of 
unknown taxa at each classification level

Across all data types, analyses revealed that unknown 
classifications were more prevalent at each successive classification 
level (Figure  1; Supplementary Figures  1–4). Please note that 
although there have been recent updates to the nomenclature of 
several phyla of prokaryotes (Oren and Garrity, 2021), the terms 
listed in the text and figures reflect the current annotations in the 
SILVA database. In the amplicon datasets, a total of 680 taxa were 
present in at least two samples. At the domain level, most of the 
OTUs were identifiable as Bacteria (93.8%), followed by Archaea 
(2.7%) and Eukaryota (0.14%), with 3.2% of the community unable 
to be assigned to a domain. At the phyla level, most of these taxa 
were assigned to a known classification, most frequently 
Proteobacteria (i.e., Pseudomonadota) and Cyanobacteria, with 
only 6.25% assigned as unknowns (Figure 1A). At the genus level, 
however, only 195 (28.6%) of these taxa were assigned to a known 
organism, with only 16 (2.3%) being annotated at the species level 
(Supplemental Figure 4).

Within the metagenomic datasets we  found 506 distinct taxa 
present in at least 34 of the samples. The majority of these taxa were 
classified as bacteria at the domain level (75.88%). At least 35.5% of 
them were classified as Bacteria at this level, and 20.5% were 
unassigned at domain level with none being classified as Archaea. The 
phyla level, however, showed that Proteobacteria was the most 
abundant taxa with 44.26%, followed by “unknown” with 21.14% and 

Cyanobacteria with 9.88% (Figure 1A). Only 11 (2.17%) of these taxa 
were classified at the species level.

For the metatranscriptomic dataset, 1,383 different taxa were 
found in at least 15 of the samples. Unlike the previous datasets, 
however, a large majority of the taxa from the metatranscriptomic 
datasets were classified as Eukaryota (52%), followed by Bacteria 
(28.41%) and the rest were unassigned (19.45%). Accordingly, the 
most abundant classification at the phylum level was unknown 
organisms (23.93%), followed by Cyanobacteria (10.91%), and 
Proteobacteria (6.86%) amongst others (Figure 1A). Very few taxa 
(6.86%) were classified to the species level within the 
metatranscriptomic datasets. A table with the full taxonomic 
classification for all datasets is listed in Supplementary Dataset 1.

3.3. Comparison between all three 
methodologies revealed shared taxa 
between datasets

Although these datasets originated from different microbialite 
communities from across the globe, several shared taxa between all 
microbialite datasets were found (Figures 2A,B). For example, after 
removing taxa classified as Eukaryota, the number of identified taxa 
was 679, 481, and 616 for amplicon, metagenomic and 
metatranscriptomic, respectively. A comparison of the different phyla 
found in all three datasets showed that most phyla were identified by 
all three methods (Figure 2A). Additionally, the 10 phyla identified by 
all technologies (Proteobacteria, Bacteroidota, Myxococcota, 
Cyanobacteria, Planctomycetes, Chloroflexi, Desulfobacterota, NB1-j, 

FIGURE 1

Overall diversity within the amplicon, metagenomic and transcriptomic datasets. (A) Distribution of phyla abundance in each dataset demonstrating a 
high proportion of “microbial dark matter” present in the metagenomic and metatranscriptomic datasets. (B) Hub network at the phyla level, hub size 
indicates hub score, with one being highest hub score and zero being lowest. Each network represents the three types of data depicting the distinctive 
patterns of unknown organisms, labeled as “microbial dark matter,” within the microbialite communities.
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Acidobacteriota and Bdellovibrionota) also correspond to the most 
abundant phyla in all three methods (Figure 2C). At least seven phyla 
were uniquely identified by one method, with six being identified only 
by Amplicon (Crenarchaeota, Thermoplasmatota, Nitrospirota, 
Campilobacterota, Calditrichota, Patescibacteria) and one being 
identified only by metatranscriptomics (Firmicutes). Lastly, five phyla 
were identified by only two methods, with Sumerlaeota, Spirochaetota 
and Zixibacteria being identified in the amplicon and 
metatranscriptomics datasets and Actinobacteriota and 
Verrucomicrobiota being identified by both metagenome and 
metatranscriptome data (Figure  2B). Additionally, this same 
comparison was done at the subsequent taxonomic classification levels 
showing that up to the family level, most taxa were identified by all 
three methods, with metatranscriptomics identifying more different 
genus classifications and amplicon identifying more species. 
Consistently, metagenomics appears to identify the least unique taxa 
across all classification levels (Figure  2A). Comparisons for each 
taxonomic level can be seen in Supplementary Figure 5.

3.4. Edge filtering through bootstrap 
analysis

R package mdmnets utilizes taxa abundance tables to construct 
networks by analyzing co-occurrence relationships between 
operational taxonomic units (OTU) through the SpiecEasi 
Meinshausen-Buhlmann neighborhood algorithm, which estimates 

conditional dependence between each pair of OTUs. This approach is 
ideal for sequencing data that is sparse and compositional, as it 
prevents spurious relationships from being included in the network. 
The pipeline outputs an adjacency matrix describing the relationships 
and can be represented as a network. Networks were constructed with 
and without unknown taxa, to investigate the importance of 
unknowns in network structure (Figure 1B). For the amplicon dataset, 
the initial network had 4,160 links out of which 3,548 (85.2%) were 
significant (p < 0.05), and the non-significant edges were removed 
from the final network. For both metagenomic (2,167 links) and 
metatranscriptomic (3,559 links) data all edges were significant 
(p < 0.05). The obtained networks for the phyla level can be seen in 
Figure  1B, whereas networks for other classification levels can 
be found in Supplementary Figures 1–4.

3.5. “Microbial dark matter” was critical for 
network integrity across all data types

Unknown taxa appeared to play a role in maintaining network 
structure at all taxonomic levels in all data types, with varying degrees 
of importance (Figure 3; Supplementary Figures 6–10). The removal 
of unknown taxa caused network fragmentation and disruption of the 
connectivity between nodes (Figure  3). For all three methods, 
fragmentation in absence of the unknown taxa appeared at higher 
taxonomic levels. At genus level all three datasets had extremely 
fragmented networks after unknown node removal, as is expected 

FIGURE 2

Characterization of microbialite composition with three-omics sequencing technologies. (A) Bar plot depicting unique taxonomy classifications 
found in each dataset for each taxonomic level, as well as those shared across all three methods. (B) Upset plot representing the number of 
common classifications found for the amplicon (A), metagenomic (MG) and metatranscriptomic (MT) data in the phylum rank (inset). (C) Heatmap 
at the phylum level showing the differences in identification and abundances in all three classifications with those phyla with high abundances in 
pink and red.
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given the large number of unknown taxa at this level in comparison 
to other taxonomic levels Supplementary Figure 10.

These network changes can be  evaluated through analyzing 
different network metrics, such as degree centrality, closeness 
centrality and betweenness centrality and comparing these values 
between the original networks and the networks without the unknown 
taxa. To evaluate if changes in network metrics were specifically due 
to the importance of unknowns within the community and not 
because of the removal of many nodes, a bootstrap network was 
created (Figure 4; Supplemental Figures 11–13). Network metrics in 
the original network, the network without the unknowns and the 
bootstrap networks are shown in Figure  4 for phylum and genus 
taxonomic levels. The constructed metatranscriptomic networks 
without unclassified taxa showed drastic changes in betweenness 
centrality, degree and closeness centrality when compared to the 
original and the bootstrap networks for all taxonomic levels. These 
differences were expected as the number of unknown taxa within the 
network was large enough that any similar number of OTUs removed 
affected the network structure. However, the centrality scores for the 

network without unknown taxa were lower than the bootstrap 
network suggesting that these taxa also hold relevance within the 
community, as the exclusion of random nodes from the network did 
not have the same effect as the unknown nodes being removed.

The metagenomic dataset showed similar results, with less drastic 
but still significant changes in centrality scores when compared to 
metatranscriptomic data, which was expected given that the number 
of unknown nodes was much lower in proportion. Amplicon 
networks, however, only showed similarities in the lower taxonomy 
levels when compared to original and bootstrap networks, showing 
larger differences in centrality scores when approaching higher 
taxonomy levels.

3.6. Evaluation of top scoring hubs 
revealed unknown taxa occupy important 
roles within ecosystem for all data types

Top scoring hubs were analyzed to evaluate the presence of known 
and unknown taxa amongst the most highly connected hubs within 
the community (Figure  5; Supplemental Figures  14–16). First, 
we focused on those hubs that corresponded to known taxa at the 
phylum, class, order, family, and genus levels. The known top scoring 
hubs for amplicon and metagenomic data were enriched in the 
phylum Proteobacteria (Figure 5). Furthermore, the amplicon and 
metatranscriptomics datasets contained the highest number of 
different phyla, while metagenomics contained only four different 
classifications. Furthermore, known metatranscriptomics hubs were 
enriched in Cyanobacteria, and included phyla Bacteroidota, 
Chloroflexi, Planctomycetota, Proteobacteria and Sumerlaeota. These 
taxa likely represent the most metabolically active phyla in 
this environment.

This pattern of increased diversity for the amplicon and 
metatranscriptomics datasets could be observed when looking at the 
top scoring known hubs for subsequent classification levels 
(Supplementary Figures 14–16). The inclusion of the unknown taxa 
into the analysis allowed us to analyze the prevalence of unknown 
organisms amongst the top scoring hubs (Table 1). For the amplicon 
data set, 40% of the top  20 scoring hubs were unclassified at the 
domain level and four of these unclassified taxa were in the top five, 
suggesting the top scoring hubs likely belong to previously 
undescribed lineages. The remaining taxa in the top  20 belonged 
mostly to the domain Bacteria, and phyla Proteobacteria, Chloroflexi 
and Bacteroidota. Moreover, one hub classified as Archaea phyla 
Thermoplasmatota was also found amongst the top 20 scoring hubs. 
The taxa that were unclassified at the domain or phyla level were 
blasted against the NCBI database to investigate similarities to other 
existing taxa. Only one hub had no significant matches, the rest 
matched with a similarity >95% to “uncultured bacterium,” 
“uncultured organism” or “uncultured delta proteobacterium,” 
indicating that, despite this taxon being unknown, they had been 
previously observed in other ecosystems.

In the metagenomic data known taxa dominated the higher 
scoring hubs at least at the phylum level, with none of them classified 
at the species level (Table 2). Despite this, two of the top scoring hubs 
were unclassified at the domain level, and four were unclassified at the 
order level. The classified hubs belonged mostly to the phyla 
Proteobacteria with two hubs belonging two phyla Desulfobacteria 

FIGURE 3

Networks created at the phyla and genus level for amplicon, 
metagenomic and metatranscriptomic datasets showing structural 
changes in network connectivity when comparing networks created 
with and without microbial dark matter (MDM).
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and Cyanobacteria. A BLAST search of the two taxa unclassified at the 
domain level resulted in most of them matching to different 
uncultured bacterium.

Expectedly, the metatranscriptomic data was different from the 
metagenomic and amplicon data. Seven of the top 20 scoring hubs 
(Table  3) were unclassified at the domain level, and five were 
unclassified at the order or family levels. The classified taxa belonged 
mostly to phyla cyanobacteria, with one of them belonging to phylum 
Planctomycetota. Most of the unknown hubs matched to sequences 
to different cyanobacterium, uncultured fungus, or uncultured 
bacterium sequences.

4. Discussion

In this study, we applied a network approach to model microbial 
interactions in microbialite-forming communities utilizing data from 
amplicon, metagenomic and metatranscriptomic data sets to 

understand the role of unknown taxa within these communities and 
extend the network methodology of MDMnets to other types of data. 
We analyzed how these different sequencing approaches impacted the 
detection of the unknown components in the microbialite-forming 
communities. The results of this study suggest that: (1) microbial dark 
matter is abundant within microbialite-forming communities and 
they play an important role in maintaining community structure; (2) 
unknown taxa occupy keystone positions within the microbialite 
community; and (3) different types of sequencing data can used for 
network analysis and provide different perspectives and insight into 
microbial communities.

Amplicon sequencing is often the preferred method to investigate 
the composition of a microbial ecosystem and studies have shown that 
utilizing amplicon data to model microbial communities using 
co-occurrence networks can lead to the identification of unknown 
keystone taxa (Zamkovaya et al., 2021). Network approaches can lead 
to a better understanding of which organisms to prioritize for 
subsequent sequencing and characterization. In this study, we adapted 

FIGURE 4

Comparison of centrality scores for the metatranscriptomic dataset between the original network, the network without unknown taxa and the 
bootstrap network at the phylum and genus levels. The evaluated network metrics of the hubs represent connectivity including betweenness centrality, 
closeness centrality and co-occurrence (i.e., degree centrality; ns, p  >  0.05; *, p  ≤  0.05; ** p  ≤  0.01; ***, p  ≤  0.001; ****, p  ≤  0.0001).
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TABLE 1 Classification for all taxonomic levels of the top 20 highest scoring hubs found in the amplicon dataset.

Score Domain Phylum Class Order Family Genus Species

1 MDM MDM MDM MDM MDM MDM MDM

0.747 Bacteria Chloroflexi Anaerolineae SBR1031 A4b A4b MDM

0.684 MDM MDM MDM MDM MDM MDM MDM

0.643 MDM MDM MDM MDM MDM MDM MDM

0.611 MDM MDM MDM MDM MDM MDM MDM

0.611 Bacteria Bdellovibrionota Bdellovibrionia Bacteriovoracales Bacteriovoracaceae Peredibacter MDM

0.556 MDM MDM MDM MDM MDM MDM MDM

0.540 MDM MDM MDM MDM MDM MDM MDM

0.532 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae MDM MDM

0.518 Bacteria Proteobacteria Alphaproteobacteria MDM MDM MDM MDM

0.517 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae MDM MDM

0.478 Bacteria MDM MDM MDM MDM MDM MDM

0.477 Bacteria Bacteroidota Bacteroidia Cytophagales Amoebophiliaceae MDM MDM

0.475 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Stappiaceae Labrenzia MDM

0.464 MDM MDM MDM MDM MDM MDM MDM

0.460 Bacteria Proteobacteria Alphaproteobacteria Rhodospiralles Magnetospiraceae MDM MDM

0.454 Bacteria Patescibacteria Gracilibacteria MDM MDM MDM MDM

0.452 Bacteria Chloroflexi Anaerolineae SBR1031 SBR1031 SBR1031 MDM

0.447 MDM MDM MDM MDM MDM MDM MDM

0.445 Archaea Thermoplasmota Thermoplasmata Marine Gp II Marine Gp II Marine Gp II MDM

MDM, microbial dark matter, or unknown taxa.

TABLE 2 Classification for all taxonomic levels of the top 20 highest scoring hubs found in the metagenomic dataset.

Score Domain Phylum Class Order Family Genus Species

1 Bacteria Proteobacteria Alphaproteobacteria MDM MDM MDM MDM

0.974 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Limibaculum MDM

0.782 Bacteria Proteobacteria Alphaproteobacteria Thalassobaculales MDM MDM MDM

0.759 Bacteria Proteobacteria Alphaproteobacteria Kiloniellales Kiloniellaceae Tistlia MDM

0.727 Bacteria Proteobacteria Alphaproteobacteria Thalassobaculales MDM MDM MDM

0.722 Bacteria Desulfobacteria Desulfovibrionia Desulfovibrionales Desulfovibrionaceae Desulfovibrio MDM

0.705 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales Xenococcaceae MDM MDM

0.686 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiales_Incertae_

Sedis

Dichotomicrobium MDM

0.683 Bacteria Proteobacteria Alphaproteobacteria Kiloniellales Kiloniellaceae MDM MDM

0.611 MDM MDM MDM MDM MDM MDM MDM

0.588 Bacteria Proteobacteria Alphaproteobacteria MDM MDM MDM MDM

0.588 Bacteria Proteobacteria Alphaproteobacteria MDM MDM MDM MDM

0.544 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Tropicimonas MDM

0.541 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Parvularculaceae Parvularcula MDM

0.540 Bacteria Proteobacteria Alphaproteobacteria Tistrellales Geminicoccaceae MDM MDM

0.524 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae MDM MDM

0.520 Bacteria Proteobacteria Alphaproteobacteria Defluviicoccales Defluviicoccaceae Defluviicoccus MDM

0.514 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Limibaculum MDM

0.512 MDM MDM MDM MDM MDM MDM MDM

0.509 Bacteria Proteobacteria Alphaproteobacteria MDM MDM MDM MDM

MDM, microbial dark matter, or unknown taxa.
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the previously described methodology to other types of sequencing 
data to understand to which extent the type of sequencing profiling 
biases the assessment of unknown taxa relevance. Our strategy for 
adaptation of the MDMnets approach to metagenomic and 
metatranscriptomic data was to extract SSU reads from these datasets 
to subsequently process in a similar way as amplicon data. An 
expansion of this approach to include both metagenomic and 
metatranscriptomic data can provide valuable insight into active 
members of the community. Furthermore, the adaptation of this 
methodology to metagenomics and metatranscriptomics data allows 
the mining of these data in cases where no other data type is available. 
Analysis of the networks generated for all three datasets showed that 
uncultured and unsequenced microbes were highly abundant in 
microbialite-forming communities, regardless of origin, type and 
method used.

To make sure the obtained SSU sequences from metagenomics 
and metatranscriptomics had enough information for taxonomic 
classification, we applied a filter based on percentage of identity to the 
sequences on the SILVA database, which resulted in a significant 
reduction of the number sequences considered for network analysis. 
While this filtering approach guarantees the removal of low-quality 
sequences from our analysis, it may also exclude unknown taxa with 
divergent SSU genes present in our ecosystem, reflecting a limitation 

of current databases. Still, many these high information content 
sequences could not be  taxonomically assigned at levels such as 
phylum, class or order, reflecting the widespread prevalence of 
insufficiently characterized microorganisms within the 
microbialite environments.

Our study found that the exclusion of unknown taxa from the 
network caused an alteration in network metrics for all datasets, 
showing that “microbial dark matter” was not only abundant in 
microbialites, but they also comprised an important component of the 
metabolically active fraction.

Typically, different network metrics normally indicate various 
characteristics of the microbial environment (Proulx et al., 2005). 
Degree centrality represents nodes that interact with most members 
in the network, whereas betweenness centrality refers to those nodes 
that have a high influence on the flow of information in a graph and 
closeness centrality describes nodes that are central to a network. 
Analyzing these metrics provided insight into the importance of 
different nodes within the community. For example, nodes that 
exhibited both high degree and high betweenness centrality were 
identified as hubs and may represent the most important members 
within the microbialite community as they were involved in many 
interactions and connections. Thus, their removal altered the structure 
of the network and resulted in the fragmentation.

TABLE 3 Classification for all taxonomic levels of the top 20 highest scoring hubs found in the metatranscriptomic dataset.

Score Domain Phylum Class Order Family Genus Species

1 Bacteria Cyanobacteria Cyanobacteria Phormisdemiales Nodosilineaceae Nodosilinea_PCC-

7104

MDM

0.925 Bacteria Cyanobacteria Cyanobacteria Phormisdemiales Phormidesmiaceae Phormidium_

MBIC10003

MDM

0.882 Bacteria Cyanobacteria Cyanobacteria MDM MDM MDM MDM

0.871 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales Xenococcaceae Pleurocapsa_

PCC-7,319

MDM

0.843 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales Phormidiaceae Lyngbya_PCC-

7,419

MDM

0.831 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales MDM MDM MDM

0.816 MDM MDM MDM MDM MDM MDM MDM

0.810 MDM MDM MDM MDM MDM MDM MDM

0.807 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales Xenococcaceae MDM MDM

0.803 MDM MDM MDM MDM MDM MDM MDM

0.800 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales Xenococcaceae MDM MDM

0.797 MDM MDM MDM MDM MDM MDM MDM

0.795 MDM MDM MDM MDM MDM MDM MDM

0.794 MDM MDM MDM MDM MDM MDM MDM

0.794 Bacteria Cyanobacteria Cyanobacteria MDM MDM MDM MDM

0.789 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales MDM MDM MDM

0.786 Bacteria Cyanobacteria Cyanobacteria MDM MDM MDM MDM

0.781 Bacteria Cyanobacteria Cyanobacteria Cyanobacteriales Microcystaceae MDM MDM

0.773 Bacteria Planctomycetota Phycisphaerae Phycisphaerales Phycisphaeraceae SM1A02 MDM

0.770 MDM MDM MDM MDM MDM MDM MDM

MDM, microbial dark matter, or unknown taxa.
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A deeper look into each individual data type showed differences 
in taxonomic identification and unknown taxa prevalence between 
amplicon, metagenomic and metatranscriptomic. However, a core 
of 10 phyla were identified by all three methods (i.e., Proteobacteria, 
Bacteroidota, Myxococcota, Cyanobacteria, Planctomycetes, 
Chloroflexi, Desulfobacterota, NB1-j, Acidobacteriota and 
Bdellovibrionota) out of 23 different identified phyla classifications, 
revealing the presence a consistent microbial identity for the 
environment regardless the genomics assay applied, and the 
utilization of public data obtained from different sources and 
locations. Observed differences across datasets may reflect the 
sampling and sequencing strategy used in each case. Amplicon 
sequencing consists of the targeted sequencing of hypervariable 
regions within the highly conserved 16S rRNA marker gene. These 
regions are then utilized for taxonomy profiling, however, the 
adequate classification of taxa through amplicon sequencing is 
affected by a variety of biases, such as the choice of hypervariable 
region to utilize (Chakravorty et al., 2007; Haas et al., 2011) or even 
PCR or sequencing errors generated during library preparation. 
These biases impact both community profiling and diversity 
estimation in datasets (Smith et  al., 2012; Nelson et  al., 2014; 

Salipante et  al., 2014; Brooks et  al., 2015; Onywera and 
Meiring, 2020).

Unlike the amplicon dataset, metagenomic sequencing is a 
shotgun approach that aims to sample the collective genome of the 
microbial ecosystem in any chosen environment. Previous studies 
have shown that when comparing 16S rRNA gene sequencing with 
whole metagenome, the resulting microbial profiles are often 
different. Specifically, shotgun sequencing methods have a difficulty 
capturing lowly abundant species (Zhang et al., 2021; Jin et al., 2022) 
or lowly expressed genes in metatranscriptomic datasets (Kuske 
et al., 2015).

Our results indicate that the lack of amplification bias in 
metagenomic and metatranscriptomic sequencing could be  the 
reason for the higher abundance of unknown taxa in these datasets 
when compared to amplicon data. Although amplicon sequencing 
introduces biases by including an amplification step that may 
exclude taxa that cannot be  amplified with the normally used 
primers, this approach can help reduce the number of queried 
sequences, thus better capturing lowly-expressed or lowly-
abundant sequences.

Despite having a similar approach and biases, metagenomic and 
metatranscriptomic approaches represent different aspects of a 
microbial community. While the metagenomic networks reflected the 
abundance of unknown taxa in microbialite-forming communities 
without the amplification biases of amplicon sequencing, 
metatranscriptomic networks revealed their high transcriptional 
activity. In addition, the extraction of SSU reads from 
metatranscriptomics results in the identification of more taxa than in 
metagenomics, as SSU genes are highly expressed, whereas in 
metagenomics the SSU genes represent a small portion of the 
genome, which results in less identified taxa. Here, we were able to 
show that the network approach can be used with different types of 
meta-omics data. Additionally, the adaptation of this methodology 
to different types of data revealed unknown keystone taxa that are 
abundant and occupy active metabolic roles within the microbialite-
forming communities. This insight can be used to prioritize taxa for 
downstream characterization. Finally, our results show that the 
capacity for detecting “microbial dark matter” depends on the 
adopted-omics technology, and their different strengths and biases 
must be considered.

5. Conclusion

“Microbial dark matter” is highly prevalent and active in 
microbialite-forming communities. Using different sequencing 
methodologies, we  were able to apply a co-occurrence network 
approach to understand community structure and find keystone taxa. 
Furthermore, the use of different methodologies allowed us to 
measure different aspects of the biological system, such as taxa 
presence or absence and the transcriptionally active portion. 
However, methods present different biases that may impact analysis 
results. While our study illustrates the gap of knowledge in the 
composition of microbialite-forming communities, this work 
provides a methodology to identify and prioritize taxa for 
downstream analyses.

FIGURE 5

Bar plots showing microbial diversity in phylum (A) and genus (B) for 
top 20 hubs in the presence (+) and absence (-) of microbial dark 
matter in the amplicon (A), metagenomic (MG), and 
metatranscriptomic (MT) data sets.
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