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Zoonotic virus spillover in human hosts including outbreaks of Hantavirus and 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) imposes a serious 
impact on the quality of life of patients. Recent studies provide a shred of evidence 
that patients with Hantavirus-caused hemorrhagic fever with renal syndrome 
(HFRS) are at risk of contracting SARS-CoV-2. Both RNA viruses shared a higher 
degree of clinical features similarity including dry cough, high fever, shortness 
of breath, and certain reported cases with multiple organ failure. However, 
there is currently no validated treatment option to tackle this global concern. 
This study is attributed to the identification of common genes and perturbed 
pathways by combining differential expression analysis with bioinformatics and 
machine learning approaches. Initially, the transcriptomic data of hantavirus-
infected peripheral blood mononuclear cells (PBMCs) and SARS-CoV-2 
infected PBMCs were analyzed through differential gene expression analysis for 
identification of common differentially expressed genes (DEGs). The functional 
annotation by enrichment analysis of common genes demonstrated immune 
and inflammatory response biological processes enriched by DEGs. The protein–
protein interaction (PPI) network of DEGs was then constructed and six genes 
named RAD51, ALDH1A1, UBA52, CUL3, GADD45B, and CDKN1A were identified 
as the commonly dysregulated hub genes among HFRS and COVID-19. Later, 
the classification performance of these hub genes were evaluated using Random 
Forest (RF), Poisson Linear Discriminant Analysis (PLDA), Voom-based Nearest 
Shrunken Centroids (voomNSC), and Support Vector Machine (SVM) classifiers 
which demonstrated accuracy >70%, suggesting the biomarker potential of 
the hub genes. To our knowledge, this is the first study that unveiled biological 
processes and pathways commonly dysregulated in HFRS and COVID-19, which 
could be  in the next future used for the design of personalized treatment to 
prevent the linked attacks of COVID-19 and HFRS.
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1. Introduction

Hemorrhagic fever with renal syndrome (HFRS) is a major 
rodent-borne zoonosis caused by different species of hantaviruses 
including Hantaan virus (HTNV) (Lee et al., 1978), Puumala virus 
(PUUV) (Sironen et al., 2001), Seoul virus (SEOV) (Lee et al., 1982), 
and Dobrava-Belgrade virus (DOBV) (Papa, 2012). HFRS is primarily 
transmitted to humans through contact with rodents, excretions, or 
their saliva (Noor et al., 2022; Tariq and Kim, 2022). The disease can 
cause fever, hemorrhage, and kidney failure, and can be fatal in severe 
cases (Krautkrämer et al., 2013; Garanina et al., 2019). HFRS is a 
significant public health concern in some parts of the world, 
particularly in Asia and Europe. Most importantly, some latest studies 
suggested that individuals with HFRS are at increased risk of severe 
COVID-19 infection (Noor, 2020). COVID-19 is a highly infectious 
respiratory disease caused by the SARS-CoV-2 virus that was first 
identified in December 2019 (Li et al., 2020). This disease has spread 
rapidly around the world and has caused a global pandemic (Zhu and 
Cai, 2020). The symptoms of COVID-19 range from mild to severe, 
and the disease can be fatal, particularly in vulnerable populations 
such as the elderly and those with pre-existing health conditions 
(Flaherty et al., 2020). Additionally, the severity of COVID-19 appears 
to be influenced by various factors, including age, comorbidities, and 
viral load (Hasanoglu et al., 2021).

Recent studies reported that patients with HFRS who also had 
COVID-19 had more severe symptoms and longer hospital stays than 
those with HFRS alone (Singh et al., 2020; Subramaniam et al., 2022). 
Their study also reported a higher mortality rate among HFRS patients 
with COVID-19. Geladari et al. (2022) present a case study on patient 
with dialysis-dependent acute kidney injury due to hantavirus 
complicated with SARS-CoV-2 infection. Further, Cetin and Sahin 
(2021) presents a case followed up with the differential diagnosis of 
COVID-19 during the pandemic and diagnosed with HFRS due to 
hantavirus. To sum up, different case studies are reported in the 
literature, but, the absence of proper diagnostic tests hinders the 
diagnosis of co-infection among infected individuals. Overall, the 
evidence suggests a strong link between HFRS and COVID-19 
comorbidity, particularly in terms of increased severity and mortality. 
However, the underlying mechanisms behind the increased severity 
of COVID-19 in individuals with HFRS are not yet fully understood. 
It is believed that the immune response to hantavirus infection may 
predispose individuals to a dysregulated immune response to SARS-
CoV-2, leading to more severe illness (Wan et al., 2021). Furthermore, 
this co-infection leads to a more severe disease course, as both viruses 
can cause respiratory and renal failure, and ultimately their 
co-infection led to diagnostic challenges, as the symptoms of both 
diseases can overlap. The bell is ringing slightly thus, it is the need of 
the hour to develop effective diagnostic tools that can differentiate 
between single and co-infection and provide effective management for 
patients with COVID-19 and HFRS co-infection.

The spread of viral infections can be controlled through early 
detection of co-infections. However, current detection methods such 
as real-time polymerase chain reaction (RT-PCR) are not only time-
consuming but also suffer from limited sensitivity and specificity 
(Bustin, 2000; Auwul et  al., 2021). Moreover, the success of these 
techniques is highly reliant on skilled manpower, appropriate sample 
collection, and preparation, all of which pose significant challenges, 
particularly in developing countries. As a result, there is a pressing 

need for more efficient and reliable detection methods that can 
be easily deployed and implemented in resource-limited settings.

The transcriptomic analysis of COVID-19 and HFRS PBMCs can 
provide valuable insights in understanding the molecular mechanisms 
underlying the co-infection as well as the identification of potential 
biomarkers which could ultimately serve as potential targets for 
developing a single treatment strategy that could tackle both diseases 
simultaneously. Other studies have been carried out assessing other 
potential comorbidities with respect to COVID-19 including chronic 
kidney disease and diabetes mellitus (Auwul et al., 2021; Rahman 
et al., 2021). Thus, sensing these opportunities, this study combined 
transcriptomics and bioinformatics approaches for the identification 
of common genes and shared pathways among HFRS and COVID-19. 
Initially, the Differentially Expressed Genes (DEGs) were identified 
through transcriptomic analysis. The functional enrichment analysis 
was then performed to analyze the shared pathways for elucidating the 
immune response to the co-infection, which can lead to a better 
understanding of disease pathogenesis and potential targets for 
intervention. Later, a Protein–Protein interaction (PPI) network was 
constructed for the identification of hub genes from the pool of DEGs. 
However, the validity of these hub genes needs to be  confirmed 
through rigorous validation processes. Thus, we employed supervised 
machine learning methods including Random Forest (RF), Poisson 
Linear Discriminant Analysis (PLDA), Voom-based Nearest Shrunken 
Centroids (voomNSC), and Support Vector Machine (SVM) to 
determine the validity of these hub genes. Here, for the first time, 
we  have characterized the biological processes and pathways 
commonly dysregulated in COVID-19 and HFRS, which could be in 
the next future used in the designing personalized treatment of 
COVID-19 patients suffering from HFRS as comorbidity.

2. Materials and methods

2.1. Transcriptomic data acquisition

The collection of disease-related datasets is considered a 
preliminary step in the RNA-seq data analysis pipeline. The PBMCs 
transcriptomic datasets of SARS-CoV-2 (COVID-19) and HFRS-
causing hantaviruses were collected from Gene Expression Omnibus 
(GEO) (Clough and Barrett, 2016), a public repository of functional 
high-throughput experimental data obtained through next-generation 
sequencing and microarrays. The criteria for disease-related dataset 
selection were completely based on the fact that all datasets must 
be from Homo sapiens. The dataset must contain transcriptomic data 
and the transcriptomic data contain no drug treatment. Two gene 
expression raw counts datasets of COVID-19 were retrieved through 
accession numbers; GSE160351 and GSE152418. The GSE160351 
dataset was submitted by Brunetta et al. (2021) containing a total of 9 
samples (three healthy controls and six infected individuals). While 
GSE152418 dataset was deposited by Arunachalam et  al. (2020) 
comprising of total 34 samples (17 infected samples and 17 healthy 
samples). On the other hand, the other hantavirus-related dataset were 
obtained with accession number GSE158712 (Li et al., 2020) which 
consists of total of 30 samples (3 control and 27 infected samples) 
(Table 1). The raw sequence data of selected datasets were retrieved 
from the NCBI SRA toolkit using the prefetch command. The data was 
downloaded in .sra file which is not an acceptable format for different 
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tools, therefore fastq-dump command was used for converting .sra 
data to .fastq format.

2.2. Data pre-processing

Depending on the sequencing technology, different strategies are 
used for processing and analyzing the raw sequencing data. 
Pre-processing the raw sequences data, such as performing quality 
control to check the read length, presence of any overrepresented 
sequences (k-mers), average quality score at each sequenced base, and 
percentage of GC content is now the most time-consuming step in 
RNA-seq data analysis. Firstly, the raw binary SRA data was turned 
into sequencing data. Later, the sequence data quality of each sample 
was controlled by FastQC (Brown et al., 2017). Further, to reduce the 
noise level, the obtained sequences were trimmed out for low-quality 
reads and adaptors by applying Sickle (Criscuolo and Brisse, 2013) 
Trimmomatic (Sewe et al., 2022), and FASTp (Sewe et al., 2022) tools 
on raw reads (Chen et al., 2018). Trimming of adapter sequences from 
raw reads was then performed using Sickle, Trimmomatic, and FASTp 
for identification of overlap adapters among forward and reverse 
reads. After trimming, the samples were prepared for further analysis.

2.3. Screening for differentially expressed 
transcripts and genes

After pre-processing, the raw reads were aligned with the 
reference genome to figure out which gene a read came from. Mapping 
and assembly of high-quality reads with reference genomes were 
performed with “New Tuxedo Suit” (HISAT2/StringTie) (Pertea et al., 
2016), using default parameters. HISAT2 is a fast and accurate aligner 
for RNA-seq reads to a reference genome, and it uses a graph-based 
approach to account for splice junctions and other complex features 
in the genome. StringTie, on the other hand, is used for transcript 
assembly and quantification of gene expression. It takes the aligned 
RNA-seq reads produced by HISAT2 and assembles them into 
transcripts, estimates their abundances, and generates a file of gene 
expression values. Initially, indexing of the “Homo sapiens” reference 
genome and alignment of reads to the “Homo sapiens” reference 
genome was done using HISAT2. The aligned reads were then taken 
and used for the transcript assembly using the StringTie Tool. After 
assemblies, samples’ GTF (General Transfer Format) documents and 
Homo_sapiens.GRCh38.109.gtf. Were merged with the StringTie 
-merge option and transcript abundances of each sample were 
estimated with the StringTie-eB option (Goksuluk et  al., 2019). 
Transcripts with variance across samples less than one were removed 
and then differentially expressed transcripts and genes between 
healthy individuals and infected individuals were screened using the 

stattest function from Ballgown [Version 2.12.0 (Weinstein et  al., 
2019)] with the getFC = TRUE parameter. The batch effect of two 
sources of transcriptome data was considered during our analysis. 
Transcripts and genes with a fold change >1.0 and value of p < 0.05 
were identified as differentially expressed transcripts and genes. All 
DEGs, including the genes corresponding to the differentially 
expressed transcripts and differentially expressed genes screened out 
by Ballgown, were used for subsequent steps.

2.4. Identification of common 
transcriptional signatures and pathways 
between COVID-19 and HFRS PBMCs

Our study mainly aims to identify common transcriptional 
signatures, regulators, and pathways between COVID-19 and 
HFRS. At first, all the DEGs related to COVID-19 and HFRS were 
obtained and imported into a venn diagram tool1 to predict overlapped 
genes for uncovering their common pathogenic processes. Eventually, 
a group of mutual genes was acquired and considered for further 
analysis. The overlapped genes were then subjected to Clusterprofiler 
(Yu et al., 2012) and TopGO (Alexa and Rahnenführer, 2009) packages 
of R for the identification of common pathways shared among 
COVID-19 and HFRS. To identify significantly enriched GO terms 
and KEGG pathways in the analysis, a statistical threshold criterion 
was applied, with an adjusted p-value of less than 0.05. This criterion 
was used to select the most relevant and statistically significant GO 
terms and KEGG pathways. In short, the characterization of common 
transcriptional signatures, biological processes, molecular function, 
and pathways dysregulated in COVID-19 and HFRS, could be in the 
next future used for the design of personalized treatment of 
COVID-19 patients suffering from HFRS as comorbidity.

2.5. PPI network construction and 
identification of hub genes

Protein–Protein Interaction (PPI) networks are remarkably 
significant due to their high versatility, adaptability, and specificity. 
The functional interactions among overlapped genes with a combined 
score of more than 0.4 were determined using the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) database (von 
Mering et  al., 2003). Initially, the overlapped genes between 
COVID-19 and HFRS were then submitted to the STRING database 
for the construction of the PPI network. The resulting PPI network 

1 http://bioinformatics.psb.ugent.be/webtools/Venn/

TABLE 1 Characteristics of datasets.

Disease Acc. no# Source Total runs
Mock infected/

control
Infected Instrument

HFRS GSE158712 PBMCs 30 3 27 Bgiseq-500 18

COVID-19 GSE160351 PBMCs 9 3 6 NextSeq 550

GSE152418 PBMCs 33 17 16 Illumina NovaSeq 6,000
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FIGURE 1

Proposed bioinformatics pipelines for the identification of common genes and dysregulated pathways in COVID-19 and HFRS.

was then subjected to Cytoscape version 3.8 (Shannon et al., 2003) for 
the identification of hub genes. Hub genes are the highly connected 
nodes that have a large number of interactions with other genes or 
proteins. These genes are considered critical components of the PPI 
network as they play important roles in maintaining the integrity and 
stability of the network, and they are often associated with key 
biological processes and pathways. Hub genes are identified by 
analyzing the topology of the PPI network, using measures such as 
degree, betweenness, or closeness centrality. In current study, degree 
methods available in CytoHubba was used for the identification of 
hub genes.

2.6. Performance evaluation of the hub 
genes with classification algorithms

To assess the credibility of the identified hub genes, five commonly 
used classification algorithms—support vector machine (SVM) (Boser 
et al., 1992) with radial basis kernel function, random forest (RF) (Ho, 
1995), Poisson linear discriminant analysis (PLDA) (Witten, 2011), 
and Voom-based Nearest Shrunken Centroids (voomNSC)(Goksuluk 
et  al., 2019) were employed. Datasets were split into two subsets, 
training data (70%) and testing data (30%). Then, the classification 
algorithms were conducted through the MLSeq package in R. The 
evaluation of model performance is typically subjective and based on 
a comparison of the model’s predictions with the known values of the 
dependent variable in a given dataset. However, for our study, we have 
defined the ideal model performance as having metrics’ results within 
the range of 70–90%. On the other hand, a performance exceeding 
90–100% may indicate the possibility of overfitting. The DESeq 

normalization and VST transformation methods were applied to the 
count dataset for the SVM and RF classifiers. The HFRS dataset 
GSE158712 was utilized for the classification analysis, in which the 
hub genes were incorporated. The classification performance was 
evaluated using four metrics: accuracy, area under the receiver 
operating characteristic curve (AUC), sensitivity, and specificity based 
on the data with hub genes. An overview of the present study is shown 
in Figure 1.

3. Results

3.1. Screening of DEGs among COVID-19 
and HFRS

We obtained two PBMCs gene expression datasets from 
COVID-19 infected subjects and matched healthy controls (with 
accession numbers, GSE160351 and GSE152418) for a total of 42 
samples, 22 infected individuals and 20 healthy controls. The 
RNA-seq data analysis of GSE160351 and GSE152418 datasets 
yielded 1734 DEGs (1,108 upregulated and 626 downregulated). 
Screening criteria for identification of DEGs were set as value of 
p < 0.05 and LogFC >1.0. For GSE158712, the selection criteria for 
DEGs screening were set as value of p < 0.05 and LogFC >1.0. After 
the screening, 630 DEGs (390 downregulated and 240 upregulated) 
were identified from GSE158712. The volcano plot of DEGs obtained 
from GSE160351, GSE152418, and GSE158712 was shown in Figure 2 
which provides a pictorial representation of upregulated DEGs, 
downregulated DEGs, and non-significant genes obtained from 
each dataset.
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3.2. Identification of common 
transcriptional signatures between 
COVID-19 and HFRS PBMCs

After DEGs identification, a Venn diagram was constructed 
which indicated 32 common genes between COVID-19 and 
HFRS. Among them, 17 genes were commonly upregulated and 15 

DEGs were commonly downregulated in COVID-19 and 
HFRS. Overall, the comparative analysis of the transcriptional 
signatures characterizing COVID-19 and HFRS PBMCs suggests the 
presence of commonly dysregulated genes between COVID-19 and 
HFRS (Figure 3 and Supplementary Table S1). After the identification 
of common genes, a PPI network was constructed for analyzing 
interaction among 32 commonly dysregulated proteins.

FIGURE 2

Volcano plot (A) GSE160351, (B) GSE152418, and (C) GSE152418.

A B

FIGURE 3

(A) Overlapped genes between COVID-19 and HFRS. (B) PPI network of 32 common dysregulated genes among COVID-19 and HFRS.
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FIGURE 4

GO enrichment analysis of common 32 genes between COVID-19 and HFRS.

3.3. Biological insights of the four-module 
genes

GO and KEGG pathway analysis was then performed to obtain 
further biological insight into the commonly dysregulated genes 
of HFRS and COVID-19. The findings of GO analysis revelated 
that in terms of BP, the genes were mainly involved in the intrinsic 
apoptotic signaling pathway, cell cycle G1/S phase transition, 
autophagosome assembly, negative regulation of TORC1 signaling, 
regulation of B cell differentiation, COPII-coated vesicle budding, 
positive regulation of p38MAPK cascade, protein-DNA complex 
subunit organization, cellular response to extracellular stimulus, 
and negative regulation of macroautophagy (Figure 4). The most 
significant cellular components (CC) overlapped genes are 
enriched in several cell compartments. The significant molecular 

function (MF) mainly enriched in the binding-related functions 
including cyclin binding, ubiquitin protein ligase binding, histone 
methyltransferase activity, cyclin-dependent protein serine, 
aldehyde dehydrogenase (NAD+) activity, oxidoreductase activity, 
transcription regulator inhibitor activity, DNA polymerase 
binding, single-stranded DNA helicase activity, and notch binding.

After GO enrichment analysis, KEGG pathway analysis was 
performed for providing biological context and insight into the 
underlying mechanisms of HFRS comorbidity in COVID-19 
patients. Through clusterprofiler, only 16 KEGG pathways were 
identified which fulfill the criteria of value of p < 0.05, while those 
with value of p > 0.05 were excluded from the study. The KEGG 
pathways of overlapped genes are mainly enriched in several 
pathways such as infection-related pathways, i.e., epstein–barr 
virus infection, p53 signaling pathway, forkhead box O (FOXO) 
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signaling pathway, TGF-beta signaling pathway, cell cycle cellular 
senescence, pathways in cancer, metabolic pathways, autophagy, 
and hedgehog signaling pathway. The circos plot represented the 
common genes along with their associated pathway are shown in 
Figure  5A. Gene involvement in the KEGG pathways was 
identified by colored connecting lines. Further, the bubble plot of 
top 10 significant KEGG pathways was presented in Figure 5B.

3.4. Identification of hub genes

The PPI network of common genes was constructed through the 
STRING database. The PPI network was then imported to Cytoscape for 
the identification of hub genes. There are 11 topological methods 
available in cytoHubba. From these methods, degree, MCC, MNC, 
closeness, and betweenness were selected for hub gene identification. The 
top 10 genes obtained from the degree, MCC, MNC, closeness, and 
betweenness were subjected to venn plot (Supplementary Table S2).  
A total of 6 six genes named GADD45B, UBA52, CDKN1A, RAD51, 
CUL3, and ALDH1A1 were found to be  common in each method 
(Figure 6). The logFC values and p-values of selected hub genes are 
presented in Table 2.

3.5. Performance evaluation of the hub 
genes with a classification algorithm

After the identification of hub genes, different supervised machine-
learning classifiers were implemented to evaluate the discriminative 
performance of predicted hub genes. Four different types of popular 

classification algorithms including RF, SVM, PLDA, and voomNSC 
were executed for computing the performance measure including 
sensitivity, specificity, and accuracy of hub genes (Table 3). To execute 
this task, we divided the GSE158712 into test datasets and training 
datasets. MLSeq takes a matrix of raw counts as the input and performs 
normalization within-fold so that the normalization of the test fold is 
performed using coefficients estimated from the training folds. The 
process of randomly splitting samples into training/test folds, training 
the models, and then testing performance was repeated 10 times to 
obtain estimates of model performance. The performance metrics were 
averaged across the repeated folds. Accuracy explains the overall 
correctness of classification, and is defined as the proportion of all cases 
that are correctly classified or diagnosed. Mathematically, accuracy can 
be  expressed as: Accuracy = (True Positives + True Negatives)/(True 
Positives + False Positives + True Negatives + False Negatives). Sensitivity, 
also known as recall or true positive rate, measures the proportion of 
actual positives that are correctly identified by the classification. 
Sensitivity = True Positives/(True Positives + False Negatives). Specificity, 
on the other hand, measures the proportion of actual negatives that  
are correctly identified by the classification or diagnostic test. 
Specificity = True Negatives/ (True Negatives + False Positives).

RF had the highest accuracy of 79.41%, indicating that it was able to 
correctly classify the samples with a high level of accuracy. The sensitivity 
of 88.24% suggests that the model was able to correctly identify most of 
the positive cases (i.e., samples with high expression of the hub genes), 
while the specificity of 70.59% indicates that it was less successful in 
correctly identifying the negative cases (i.e., samples with low expression 
of the hub genes). PLDA had a lower accuracy of 70.59% as compared to 
RF. The sensitivity of 64.71% suggests that the model was not able to 
correctly identify many of the positive cases, while the specificity of 

A B

FIGURE 5

(A) Circos plots of closely related KEGG pathways and differentially expressed genes belonging to relevant pathways. (B) Bubble plot of top 10 
significant KEGG pathways.
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76.47% indicates that it was better at identifying the negative cases 
compared to RF. On the other hand, voomNSC had an accuracy of 
77.94%, indicating that it performed better than PLDA but not as well as 
RF. While the sensitivity was found to be 88.24% suggests that voomNSC 
correctly identify most of the positive cases, while the specificity of 
67.65% indicates that it was less successful in correctly identifying the 
negative cases compared to both RF and PLDA. Finally, SVM had an 
accuracy of 76.47%, which is similar to VoomNSC. The sensitivity of 
82.35% suggests that it was able to correctly identify most of the positive 
cases, while the specificity of 70.59% is similar to RF. Recently, Auwul 
et al. (2021) applied ML algorithms for the performance evaluation of 
hub genes. Their results indicated that SVM provides greater accuracy of 
0.996 followed by RF: 0.955, PLDA: 0.821, and voomDLDA: 0.988. 
Similarly, we also observed satisfactory sample classification performance 
(accuracy >0.70) between affected and health control samples for both 

datasets. An accuracy value greater than 70% indicates great model 
performance The findings of the current study revealed that RF provides 
high accuracy of 79.41%as compared to SVM (76.47%), voomNSC 
(77.94%), and PLDA (70.59%) (Figure 7), suggesting the biomarker 
potential of the hub genes.

4. Discussion

HFRS is a potentially fatal infectious disease with worldwide 
distribution. PUUV, SEOV, DOBV, and HTNV are the primary causative 
agents of HFRS (Shid et al., 2022). PUUV, SEOV, DOBV, and HTNV are 
a member of rodent-borne viruses called hantaviruses that cause life-
threatening human diseases in Europe and Asia. COVID-19 is a 
respiratory disease caused by the novel coronavirus SARS-CoV-2, which 

TABLE 2 Summary of hub genes in COVID-19 and HFRS datasets.

Symbol Gene name
HFRS datasets COVID-19 datasets

log2FC (>1.0) P-value (>0.05) log2FC (>1.0) P-value (>0.05)

RAD51 RAD51 recombinase 4.776201 0.009451 1.223918 3.50E-07

ALDH1A1 Aldehyde dehydrogenase 1 family member A1 4.29785 0.005062 3.74E-05 2.21E-06

UBA52 Ubiquitin A-52 residue ribosomal protein fusion product 1 3.572751 0.018842 1.071183 0.014559

CUL3 Cullin 3 −4.72487 0.010141 −1.32525 0.000372

GADD45B Growth arrest and DNA damage inducible beta −1.85687 0.022523 −1.82173 0.002635

CDKN1A Cyclin dependent kinase inhibitor 1A −1.90911 0.03701 −1.92171 0.001758

TABLE 3 Classification performance of six hub genes.

Classifiers Accuracy (%) Sensitivity (%) Specificity (%)

Random forest (RF) 79.41% 88.24% 70.59%

Poisson linear discriminant analysis (PLDA) 70.59% 64.71% 76.47%

Voom-based Nearest Shrunken Centroids (voomNSC) 77.94% 88.24% 67.65%

Support vector machine (SVM) 76.47% 82.35% 70.59%

A B

FIGURE 6

(A) Venn map of top hub genes of 5 algorithms (degree, MCC, MNC, closeness, and betweenness). (B) PPI network of six hub genes (GADD45B, 
UBA52, CDKN1A, RAD51, CUL3, and ALDH1A1).

https://doi.org/10.3389/fmicb.2023.1175844
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Noor et al. 10.3389/fmicb.2023.1175844

Frontiers in Microbiology 09 frontiersin.org

primarily affects the respiratory system (Yang et al., 2020). While HFRS 
and COVID-19 have distinct modes of transmission and clinical 
presentations, there have been reports of co-infections and comorbidities 
between the two diseases. But the reasons for this are not yet clear, but it 
is believed immune response to one disease may increase susceptibility 
or severity of the other such as kidney damage and compromised 
immune function, which may increase the severity of COVID-19. 
However, further research is needed to fully understand the nature of this 
relationship and to develop appropriate treatment strategies.

The presence of comorbidities in individuals co-infected with 
HFRS and COVID-19 represents a significant challenge that 
necessitates a solution. It is imperative to develop effective strategies 
to manage the comorbidities to improve clinical outcomes and reduce 
the burden of these diseases. Therefore, it is essential to investigate 
the fundamental genes and pathways involved in coninfection in 

order to unravel the molecular associations and mechanisms that are 
shared by these pathologies. To achieve this, the application of whole-
genome transcriptomic analyses has been extensively utilized by 
researchers to explore autoimmune diseases, cancer, and 
neurodegenerative disorders, as well as to identify potential 
pathogenetic mechanisms and novel therapeutic targets. In the 
current study, integrative bioinformatics approaches were used for 
the comprehensive analysis of peripheral blood mononuclear cell 
(PBMC) transcriptomic changes occurring in HFRS and COVID-19. 
Our study uncovered six genes named RAD51, ALDH1A1, UBA52, 
CUL3, GADD45B, and CDKN1A were found to be  commonly 
dysregulated among HFRS and COVID-19. Further, machine 
learning classifiers have gained immense popularity in various 
bioinformatics tasks. Therefore, we  employed different machine 
learning classification algorithms on hub genes data to determine 

A B

C D

E

FIGURE 7

Classification performance of four different types of classifiers (A) RF, (B) PLDA, (C) SVM, and (D) voomNSC. (E) Receiver operating curve (ROC) plot of 
the four classifiers performance based on their accuracy, sensitivity, and specificity.
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their efficacy. Our findings indicate that the classifiers performed 
satisfactorily with an accuracy of >0.70 for the classification of 
samples between COVID-19 and HFRS.

Auwul et al. (2021) applied the similar approach to identify the 
potential drug targets and pathways in COVID-19. Their findings 
proposed that PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, 
CCNB1, KIF2C, DTL, and CDC6 were mainly enriched in the 
inflammatory and immune response, suggesting that these genes are 
significantly associated with viral infectious diseases. Similarly, 
Rahman et  al. (2021) discovered common pathogenetic processes 
between COVID-19 and diabetes mellitus by differential gene 
expression pattern analysis. Their study, for the first time, characterized 
the biological processes and pathways commonly dysregulated in 
COVID-19 and diabetes mellitus, which could be in the next future 
used for the design of personalized treatment of COVID-19 patients 
suffering from diabetes mellitus as comorbidity. Their study proposed 
that SARS-CoV-2 could directly determine an impairment of insulin 
secretion, with consequent disruption of the metabolic control in 
people already suffering from diabetes mellitus or leading to the 
development of new-onset diabetes mellitus. Our study explores the 
possible risk of HFRS after COVID-19 infection by investigating the 
common molecular mechanisms. By taking advantage of the holistic 
viewpoint of systems biology, we were able to consider every aspect of 
both diseases and infer novel hypotheses. Further supplementary 
studies need to be  conducted to clarify the association between 
COVID-19 and HFRS, as, at the moment, there is little known 
regarding both of these disease entities. Overall, our analysis highlights 
various infection-related pathways, i.e., epstein–barr virus infection, 
p53 signaling pathway, FOXO signaling pathway, TGF-beta signaling 
pathway, cell cycle cellular senescence, pathways in cancer, metabolic 
pathways, autophagy, and hedgehog signaling pathway which might 
be the potential links between both COVID-19 and HFRS.

Among six hub genes, RAD51 is a recombinase protein that plays 
a key role in homologous recombination (Huang et al., 2012). Previous 
studies demonstrated a potential association between RAD51 and 
COVID-19. It has been suggested that COVID-19 infection may 
interfere with the expression and activity of RAD51, thereby impairing 
DNA repair and increasing the risk of genetic mutations (Biering et al., 
2021). Furthermore, studies have also shown that RAD51 may 
be  involved in the inflammatory response to COVID-19 infection 
(Morenikeji et al., 2021). Elevated levels of inflammation are associated 
with severe COVID-19, and RAD51 has been shown to modulate 
inflammatory signaling pathways. In the same vein, RAD51 might play 
a role in the virus-host interaction by reducing viral replication during 
hantavirus infection. All these points strengthened the findings that 
dysregulation of RAD51 expression and activity may contribute to the 
development of severe HFRS. In conclusion, further research is needed 
to fully elucidate the mechanisms of RAD51 for understanding the 
common pathogenic processes between COVID-19 and HFRS, which 
could pave the way for the development of novel therapeutic strategies. 
On the other hand, ALDH1A1 has been implicated in the pathogenesis 
of the disease through its potential involvement in modulating  
the immune response and influencing the balance between 
pro-inflammatory and anti-inflammatory cytokines. Furthermore, 
CDKN1A, also known as p21, is a significant regulator of the cell cycle 
by controlling the activity of cyclin-dependent kinases (CDKs). In 
COVID-19, studies have reported that CDKN1A is upregulated in the 
lung tissue of infected patients, which could lead to the inhibition of 

virus replication and decreased inflammation in the host. CDKN1A 
has been shown to inhibit the replication of some viruses, including 
herpes simplex virus (HSV) and human immunodeficiency virus 
(HIV), by blocking the cell cycle progression of infected cells. In HFRS, 
studies have shown that CDKN1A is upregulated in the kidney tissue 
of HFRS patients, which may contribute to the development of renal 
injury (D’Souza, 2022). CDKN1A has been suggested to be involved in 
the regulation of cellular senescence and apoptosis, which are 
important processes in the development of renal injury in HFRS. Thus, 
more future studies are needed to fully understand the role of CDKN1A 
as well as other hub genes in both COVID-19 and HFRS.

There is limited information available on the translational activity 
of UBA52 and CUL3 specifically in HFRS. However, both UBA52 and 
CUL3 are involved in the ubiquitin-proteasome system, which plays an 
important role in the regulation of various cellular processes, including 
protein degradation and immune response (Meyer et al., 2020; Jiang 
et al., 2022). In general, dysregulation of the ubiquitin-proteasome 
system has been implicated in the pathogenesis of viral infections, 
including COVID-19, by influencing viral replication and modulating 
the host immune response (Seyoum, 2023). Therefore, it is possible that 
UBA52 and CUL3 may also play a role in the pathogenesis of 
COVID-19 and HFRS coinfection through their involvement in the 
ubiquitin-proteasome system. In short, there is no direct evidence of 
interactions between these six hub genes in the context of COVID-19 
and HFRS, their involvement in processes related to DNA damage 
response, inflammation, and immune regulation suggests that they 
may be part of a larger interactome in their coinfection.

Further, GO and KEGG pathway analysis revealed that the 
commonly dysregulated genes are mainly involved in infection-
related pathways, i.e., epstein–barr virus infection, p53 signaling 
pathway, forkhead box O (FOXO) signaling pathway, TGF-beta 
signaling pathway, cell cycle, cellular senescence, pathways in cancer, 
metabolic pathways, autophagy, and hedgehog signaling pathway. 
These pathways are known to play important roles in various cellular 
processes, such as cell cycle regulation, DNA damage response, cell 
proliferation, differentiation, and survival, and are often dysregulated 
in diseases such as cancer and viral infections. For instance, targeting 
genes involved in the FOXO signaling pathway may be helpful for 
treating COVID-19 and HFRS coinfection because it regulates 
immune responses, oxidative stress, and inflammation. For example, 
activation of FOXO3a has been shown to enhance the antiviral 
response by increasing the expression of interferon-stimulated genes 
and inhibiting viral replication (Wang et  al., 2017). Additionally, 
FOXO3a regulates oxidative stress by increasing the expression of 
antioxidant enzymes, such as catalase and superoxide dismutase, and 
inhibiting reactive oxygen species production (Higuchi et al., 2013). 
In COVID-19 and HFRS, the immune response can be dysregulated, 
leading to a cytokine storm and inflammation. Activation of FOXO3a 
can suppress pro-inflammatory cytokines and reduce inflammation, 
thereby preventing tissue damage and improving clinical outcomes. 
Moreover, FOXO3a has been shown to promote autophagy which 
helps in clearing viral infections by degrading and recycling viral 
components (Wan et al., 2022). Therefore, the identification of genes 
involved in the FOXO signaling pathway may provide a novel 
therapeutic approach for COVID-19 and HFRS by regulating 
immune responses, oxidative stress, and inflammation. Overall, these 
common pathways may help to better understand the pathogenesis 
of HFRS and COVID-19, and targeting the linked genes could help 
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in the development of new therapies to fight against the coinfections. 
As this field continues to evolve, future studies may benefit from 
incorporating network-based approaches to predict host-pathogen 
interactions, Therefore, future studies could incorporate the host-
pathogen interactome to gain a deeper understanding of the disease 
mechanisms and identify additional potential therapeutic targets. For 
instance, Basu et al. (2022) reported the potential of network-based 
approaches to predict host-pathogen interactions and identify key 
host factors involved in viral infections. This approach could be a 
valuable addition to our computational pipeline in future studies.

To sum up, the integration of transcriptomic with bioinformatics 
approaches uncovered several pathways and common genes that are 
involved in both HFRS and COVID-19, suggesting potential 
similarities in their underlying pathophysiological mechanisms. The 
identified pathways and genes may serve as potential targets for the 
development of new therapeutics and which may lend a helping hand 
in understanding the pathogenesis of both diseases. However, it is 
important to note that RNA-seq analysis is just one tool in the 
development of potential therapies for comorbid HFRS and COVID-
19. Other factors, such as clinical trials, animal studies, and 
epidemiological data, also need to be considered before any therapies 
can be developed and implemented. Additionally, the differences and 
similarities between HFRS and COVID-19 in terms of genetic factors, 
clinical manifestations, and disease progression need to be further 
investigated to develop targeted and effective treatments.

5. Conclusion

Comorbidities are associated with a higher risk of developing 
severe forms of COVID-19, with a consequent need for mechanical 
ventilation and an increased death rate. Increased severity of 
COVID-19 has been observed in patients with HFRS. Following 
that, the present research aimed to identify gene expression 
patterns and molecular pathways that were shared between 
COVID-19 and HFRS. A total of 32 genes were found to 
be common among COVID-19 and HFRS. From these 32 genes, 
six named RAD51, ALDH1A1, UBA52, CUL3, GADD45B, and 
CDKN1A were identified as the hub genes. Later, we demonstrated 
the classification performance of hub genes with an accuracy 
greater than 0.70 suggesting the biomarker potential of the hub 
genes. Further, our study uncovered immune-related pathways that 
were commonly dysregulated in PBMCs of both COVID-19 and 
HFRS. In summary, this study provides valuable insights into the 
molecular mechanisms of HFRS and COVID-19, which may lead 
to potential therapies for comorbidities. We propose that these 
events may have important roles in the onset or progression of 
HFRS. To sum up, our analysis describes possible mechanisms 
linking COVID-19 and HFRS, elucidating some unknown clues in 
between. Nonetheless, as this is a thorough computational work, 

further case reports and follow-up experiments of COVID-19 
patients can corroborate these links.
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