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Post-transcriptionally RNA modifications, also known as the epitranscriptome, play 
crucial roles in the regulation of gene expression during development. Recently, 
deep learning (DL) has been employed for RNA modification site prediction and 
has shown promising results. However, due to the lack of relevant studies, it is 
unclear which DL architecture is best suited for some pyrimidine modifications, 
such as 5-methyluridine (m5U). To fill this knowledge gap, we first performed 
a comparative evaluation of various commonly used DL models for epigenetic 
studies with the help of autoBioSeqpy. We  identified optimal architectural 
variations for m5U site classification, optimizing the layer depth and neuron 
width. Second, we  used this knowledge to develop Deepm5U, an improved 
convolutional-recurrent neural network that accurately predicts m5U sites from 
RNA sequences. We successfully applied Deepm5U to transcriptomewide m5U 
profiling data across different sequencing technologies and cell types. Third, we  
showed that the techniques for interpreting deep neural networks, including 
LayerUMAP and DeepSHAP, can provide important insights into the internal 
operation and behavior of models. Overall, we offered practical guidance for the 
development, benchmark, and analysis of deep learning models when designing 
new algorithms for RNA modifications.
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Introduction

To date, over 170 types of chemical modifications have been identified in cellular RNAs, 
which contain not only some common types such as N6-methyladenosine (m6A), 
5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ), 
5-hydroxymethylcytosine (5hmC), and 2’-O-methylation of ribose (2’-O-Me), but also several 
rare types, including 7-methylguanosine (m7G), adenosine-to-inosine (A-to-I), 
dihydrouridine (D), N2-methylguanosine (m2G), and N4-acetylcytidine (ac4C; El Allali et al., 
2021). All four RNA bases, as well as the ribose sugar, can be the targets for modification, and 
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almost all RNA species are modified, with transfer RNA (tRNA) and 
ribosomal RNA (rRNA) being the most heavily modified (Roundtree 
et al., 2017; Chen et al., 2020). RNA modifications affect numerous 
biological processes, including regulation of post-transcriptional 
gene expression, mRNA life cycle, RNA localization, ncRNA 
biogenesis and function (Alarcón et al., 2015; Meyer et al., 2015; 
Nachtergaele and He, 2018). Accordingly, aberrant modifications are 
widely lined to developmental disease (Jonkhout et  al., 2017). 
Increasing evidence suggests that RNA modification pathways are 
also misregulated in cancers and may be ideal targets for cancer 
therapy (Delaunay and Frye, 2019; Barbieri and Kouzarides, 2020).

Recent advances in studying RNA modifications have been 
benefited tremendously from improved detection methods. Liquid 
chromatography coupled with mass spectrometry (LC–MS) and 
next-generation sequencing (NGS) are two main methodologies 
for identifying and quantifying RNA modifications (Wiener and 
Schwartz, 2021). The LC–MS allows direct measurement of many 
modifications with excellent sensitivity and specificity, but is 
limited in its ability to determine sequence context (Su et al., 2014; 
Wetzel and Limbach, 2016). In contrast to LC–MS, high-
throughput sequencing can provide information about the 
sequence context of long RNAs, which facilitates the detection of 
modifications in a transcriptome-wide manner (Li et al., 2016). 
However, most RNA modifications cannot be directly detected by 
NGS-based approaches, because all RNA-sequencing NGS library 
generation protocols include a reverse transcription step where 
RNA is converted into DNA (Sarkar et  al., 2021). This step is 
sensitive to specific RNA modifications that can slow down or 
block the reverse transcriptase or induce the misbinding of 
nucleotides in the cDNA (Suzuki et al., 2015).

Owing to the high cost and technical challenge of 
experimentally detecting all possible modification candidates, 
researchers have attempted to computationally identify the 
epitranscriptome. Most modern computational approaches use 
machine learning (ML) algorithms based on handcrafted features 
to train a predictive model (Zhou et al., 2016; Chen et al., 2019). 
Although such models seem to be  more transparent and 
controllable in construction, the bias of user assumptions in feature 
engineering limits their performance. In keeping with the general 
trend in artificial intelligence (AI), there has been a switch from 
classical machine learning to deep learning in newly developed 
RNA modification predictors. For instance, the m6A site predictors 
DeepM6ASeq (Zhang and Hamada, 2018), PM6ACNN (Alam 
et al., 2020), and DNN-m6A (Zhang et al., 2021b); Ψ site predictors 
iPseU-CNN (Tahir et  al., 2019a), MU-PseUDeep (Khan et  al., 
2020), and PseUdeep (Zhuang et al., 2021); 5hmC site predictor 
iRhm5CNN (Ali et al., 2021); 2’-O-Me site predictors Deep-2’-
O-Me (Mostavi et al., 2018), iRNA-PseKNC (2methyl) (Tahir et al., 
2019b), and DeepOMe (Li et  al., 2021); ac4C site predictors 
DeepAc4C and CNNLSTMac4CPred (Wang et al., 2021; Zhang 
et al., 2022); and a disease-associated m7G site predictor HN-CNN 
(Zhang et al., 2021a). A strength of these predictors is that they can 
learn modification determinants directly from sequencing data, 
avoiding biased user-defined features. Thus, many DL methods 
outperform classical ML approaches in benchmarks with different 
RNA modifications (Tahir et al., 2019a; Wang et al., 2021). Despite 
its successes, deep learning also poses challenges and limitations. 
First, the accessibility remains riddled with technical challenges for 

the nonexpert users. As most DL methods are available as source 
code, running them proficiently requires advanced knowledge 
specific to the field. Second, due to the complexity of network 
architectures and large training parameters, DL models are often 
treated as black boxes that simply mapping a given input to a 
model output without the explanation of how and why they work.

As another critical and abundant epigenetic mark, the 
5-methyluridine (m5U) modification has attracted the attention of 
researchers worldwide. This modification is not only frequently 
detected in cytosolic tRNAs (Carter et al., 2019; Powell and Minczuk, 
2020), but also found in other non-coding RNAs such as mRNA and 
rRNA (Phizicky and Alfonzo, 2010; Keffer-Wilkes et al., 2020). Some 
typical enzymes are involved in the catalytic procedure of m5U 
modification in different organisms, including RlmC, RlmD, and 
TrmA in Escherichia coli (Urbonavicius et  al., 2007; Powell and 
Minczuk, 2020), Trm2 in Saccharomyces cerevisiae (Nordlund et al., 
2000), and TRMT2A and TRMT2B (Sequence homology to TrmA 
and Trm2 respectively) in mammals (Carter et al., 2019; Jiang et al., 
2020; Pereira et al., 2021). For this modification, the conserved T-loop 
motif has been found in various RNAs, which plays an important role 
in stabilizing the tertiary structure of RNAs (Powell and Minczuk, 
2020; Pereira et  al., 2021). To clarify its biological functions and 
understand the relevant biological processes, there is an urgent need 
to accurately identify RNA m5U sites.

Some experimental and computational methods have been 
developed for this mark, such as FICC-Seq, miCLIP-Seq, m5UPred 
and RNA-m5U (Carter et al., 2019; Jiang et al., 2020; Feng and Chen, 
2022). More recently, the RNA domain separation network 
(RNADSN) has been proposed to abstract common features between 
tRNA and mRNA m5U modifications to improve the prediction of 
m5U sites, which mixes several layers from the convolutional neural 
network (CNN) and long short-term memory (LSTM; Li et al., 2022). 
However, studies on the identification and functional characterization 
of m5U remain limited and unexplored in current literature, and a 
further study on the application of deep learning in m5U prediction is 
still very necessary and useful.

In the present study, we  explore the use of state-of-art DL 
algorithms and advanced interpretable techniques, and propose a 
novel computational tool for rapidly and accurately identifying RNA 
m5U sites. In ordor to save calculation time and make direct 
comparisons, only the one-hot encoding method was utilized to code 
RNA sequences here. Five different DL architectures such as the 
convolutional neural network (CNN), recurrent neural networks 
(RNNs) with bidirectional long short-term memory (BiLSTM) or 
bidirectional gated recurrent units (BiGRU), and the combination of 
the two networks (CNN-BiLSTM and CNN-BiGRU), were employed 
to build the DL models. Experimental results showed that the 
CNN-BiLSTM model achieved the best overall prediction 
performance on both of the Full_train and Full_test datasets, providing 
the highest scores of ACC (92.32 and 92.91%), and MCC (0.8465 and 
0.8584). When performing on the cross-cell-type and cross-technique 
validation, the CNN-BiLSTM model also obtained satisfactory 
prediction results, and was eventually named Deepm5U. Using the 
same datasets, the predictive performance of Deepm5U was superior 
to that of the exiting method. Furthermore, our Deepm5U was 
visualized to understand how the model is processing information and 
making decisions. Finally, we used autoBioSeqpy (Jing et al., 2020) to 
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develop, train, and assess different DL models, and offered a step-by-
step guide on how to execute them.

Materials and methods

Benchmark datasets

A high-quality dataset is essential for developing a reliable 
prediction model. Currently, there are several public databases 
focused on RNA modifications, including versatile database for 
multiple modification types, such as RMBase (Sun et al., 2016; 
Xuan et al., 2018), MODOMICS (Boccaletto et al., 2018, 2022), 
and RMVar (Luo et  al., 2021), and specialized database for a 
particular modification type, like Met-DB (Liu et al., 2015, 2018, 
2021), REPIC (Liu et  al., 2020), m6A-Atlas (Tang et  al., 2021), 
CVm6A (Han et  al., 2019), m6AVar (Zheng et  al., 2018), 
m5C-Atlas (Ma et  al., 2022) and m7GHub (Song et  al., 2020). 
Unfortunately, until now, there has not been such a database 
available for m5U data. Therefore, we  chose a published 
benchmark dataset constructed by Jing et al. (2020) to develop our 
deep learning models. Experimentally validated m5U sites 
(positive samples) were generated by integrating the sequencing 
results of FICC-seq and miCLIP-seq technologies on two cell 
lines, HEK293 and HAP1. The same number of unmodified 
uridine sites (non-m5U, negative samples) were randomly sampled 
from the same transcripts of positive samples. All samples were 
41 nt in length, with the modified and unmodified uridine sites 
located in the center of these sequences. Based on the genomic 
location, positive and negative m5U sites were further divided into 
two categories: full transcript mode (uridine sites located in both 
exonic and intronic regions) and mature mRNA mode (uridine 
sites only located on mature mRNA transcripts). For each mode, 
total sequences were split into two mutually exclusive datasets: a 
training dataset of ~80% of the instances used for model 
derivation and an independent test set of the remaining 20% used 
to evaluate model accuracy (Supplementary Table S1).

In addition, Jing et al. (2020) separated the benchmark dataset 
into eight subsets, namely HAP1_full, HEK293_full, FICC_full, 
miCLIP_full, HAP1_mature, HEK293_mature, FICC_mature, and 
miCLIP_mature, to investigate the effects of two experimental 
parameters, sequencing technique, and cell type, on model prediction 
performance. Leave-one-subset-out cross-technique and cross-cell-
type validations were performed by repeating the training-test 
procedure iteratively such that each subset was used as the test set 
exactly once. For instance, when training with the HAP1_full or 
HAP1_mature, the performance of model was evaluated by the 
HEK293_full or HEK293_mature, and vice versa. Notably, all subsets 
were constructed with a 1:10 positive-to-negative ratio 
(Supplementary Table S2).

Deep learning techniques

Deep learning, so far the most successful form of machine 
learning, uses a synthetic neural network architecture composed 

of multiple sequential layers that can be  trained on input 
data to achieve a prediction task. The idea of deep learning is that 
stacks of simple layers can learn end to end, automatically 
discovering a higher-level representation of the original data, 
which is extremely powerful and flexible in a variety of 
relationships that they can model (Wainberg et al., 2018). Various 
types of network layers, such as convolution layers, pooling layers, 
recurrent layers, activation layers, and fully connected layers, have 
been proposed to support the construction of highly flexible 
model architectures. CNN layers use convolution operations to 
fuse features that are close to each other and transfer them 
by kernels:
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where X is the layer input, i and k are the indices of output 
position and filter kernel, respectively (LeCun et  al., 2015). 
Convolutional filter wk  is the M N×  weight matrix with M and 
N being the window size and input channel, respectively. 
Additionally, the convolution operation can be adapted to a wider 
range of information fusion by changing the padding size and 
dilation size. For sequential data, CNN can fusion the 
environment of each base so that the bases differ depending on 
their neighbors. Sometimes similar performance can be achieved 
using K-mer or sliding window operations, but using CNNs can 
result in lower sparsity and an editable number of channels for 
further processing of the data. The pooling layer usually follows 
the convolution layer, and its function is to downsample layer’s 
input by computing the maximum or average value of the features 
over a region. In the RNN family, the layers use each unit of the 
sequence to update the hidden state for learning and inference 
from context. In the recurrent layer, tensors are used to represent 
the hidden state, and each unit of the sequence will be encoded 
by one or more fully connected layers for updating the hidden 
cells. For example, the long short-term memory (LSTM) layer 
contains hidden states and cell states that are updated in 
each iteration:
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h o Ct t t� � � �tanh

  
(7)

Where Ct  and ht  are the cell state and hidden state, respectively 
(Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Jin et al., 2021). 
Whereas the gate recurrent unit (GRU) layer only updates the 
hidden state:

 
r W h W x bt rh t rx t r� � �� ��� 1   

(8)

 
h W r h W x bt h hh t t hx t h�� �� � � �� ��1   

(9)

 
z W h W x bt zh t zx t z� � �� ��� 1   

(10)
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(11)

In addition, bidirectional operation, which allows RNN layers to 
learn a sequence starting from both head and tail directions, since 
RNNs process sequences without a predetermined direction. Dense 
layer, also known as fully connected layer, is the simplest type of layer, 
where every input is connected to every output. The role of activation 
function is to introduce the nonlinearity in the input–output 
relationship. Frequently used activation functions include sigmoid 
and rectified linear unit (ReLU), which are given by:
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Usually, ReLU is used for the nonlinear gain of the model, while 
sigmoid is used in the output layer of the binary classification model.

Model architectures

We designed five architectures, namely, CNN, BiLSTM, BiGRU, 
CNN-BiLSTM and CNN-BiGRU, which use 20 nucleotides on each 
side of a position of interest as input, and output the probability of the 
position being an m5U site and a non-m5U site. The input to the models 
is a sequence of one-hot encoded nucleotides, where A, C, G, and U are 
encoded as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] respectively 
and the output of the models is a score in the range [0, 1], representing 
positive (T or 1) and negative (F or 0) classes. We run a grid search to 
exhaustively test the combinations of convolution layers (1, 2, 3), kernel 
size (3, 5, 7, 9, 11), number of filters (50, 150, 250), pool size (2, 4, 6, 8, 
10), LSTM layers (1, 2, 3), number of units in the LSTM layer (32, 64, 
128, 256), GRU layers (1, 2, 3), and number of units in the GRU layer 
(32, 64, 128, 256) to select the best hyperparameters for the models. 
Details about optimal hyperparameters and model architectures are 

provided in Supplementary Figure S1; Supplementary Tables S3–S5 and 
below, respectively.

Convolutional neural network architecture (CNN).

 (1) Convolution layer (250 filters; kernel size, 11; ReLU activation; 
0% dropout; step size, 1)

 (2) Convolution layer (250 filters; kernel size, 11; ReLU activation; 
0% dropout; step size, 1)

 (3) Pooling layer (maximum value; pool size, 10, step size, 10)
 (4) Fully connected layer (256 units)
 (5) Dropout layer (20% dropout)
 (6) Activation layer (ReLU activation)
 (7) Output layer (1 units, sigmoid activation)

Bidirectional long short-term memory architecture (BiLSTM).

 (1) Bidirectional LSTM layer (256 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)

 (2) Bidirectional LSTM layer (256 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)

 (3) Fully connected layer (256 units)
 (4) Dropout layer (20% dropout)
 (5) Activation layer (ReLU activation)
 (6) Output layer (1 unit, sigmoid activation)

Bidirectional gated recurrent unit architecture (BiGRU).

 (1) Bidirectional GRU layer (256 units, tanh activation; sigmoid 
recurrent activation; 0% dropout)

 (2) Fully connected layer (256 units)
 (3) Dropout layer (20% dropout)
 (4) Activation layer (ReLU activation)
 (5) Output layer (1 unit, sigmoid activation)

Convolutional-bidirectional long short-term memory architecture 
(CNN-BiLSTM).

 (1) Convolution layer (250 filters; kernel size, 7; ReLU activation; 
0% dropout; step size, 1)

 (2) Convolution layer (250 filters; kernel size, 7; ReLU activation; 
0% dropout; step size, 1)

 (3) Pooling layer (maximum value; pool size, 4, step size, 4)
 (4) Bidirectional LSTM layer (64 units, tanh activation; sigmoid 

recurrent activation; 0% dropout)
 (5) Fully connected layer (256 units)
 (6) Dropout layer (20% dropout)
 (7) Activation layer (ReLU activation)
 (8) Output layer (1 unit, sigmoid activation)

Convolutional-bidirectional gated recurrent unit architecture 
(CNN-BiGRU).

 (1) Convolution layer (250 filters; kernel size, 11; ReLU activation; 
0% dropout; step size, 1)

 (2) Pooling layer (maximum value; pool size, 10, step size, 10)
 (3) Bidirectional GRU layer (256 units, tanh activation; sigmoid 

recurrent activation; 0% dropout)
 (4) Fully connected layer (256 units)
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 (5) Dropout layer (20% dropout)
 (6) Activation layer (ReLU activation)
 (7) Output layer (1 unit, sigmoid activation)

Model training

All models were trained using the Adam optimizer with a learning 
rate of 0.001, epoch of 20 and batch size of 64. During training, the 
sequences were first re-shuffled and subsequently randomly split into 
training (70%), validation (10%) and testing (20%) fractions. The 
validation set was used to evaluate the binary cross-entropy loss after 
each epoch, and the test set was used to evaluate the model. For each 
architecture, we repeated the training procedure 5 times and used the 
average result of five trained models as the final prediction. To 
implement the models, we used the autoBioSeqpy software with Keras 
framework (Chollet, 2015) and trained them on a standard PC 
equipped an Intel Core i7-9700K CPU, 16GB working memory and a 
16 GB NVIDIA GeForce RTX 2070 GPU.

Model interpretation and visualization

We tried to interpret the DL models by visualizing the manifold 
of intermediate outputs and measuring the contribution of the 
inputs. Currently, uniform manifold approximation and projection 
(UMAP) library is available for projecting a high-dimensional layer 
into lower dimension (usually 2D for visualization) while keeping 
the distances of every pair of samples as possible (McInnes and 
Healy, 2018). To better visualize the outputs of hidden layers, 
we integrated the UMAP library into LayerUMAP, a new plugin for 
autoBioSeqpy. Using LayerUMAP, we  can generate the manifold 
projection of any hidden layer and observe the evolution of internal 
representation layer by layer during the training process. Similarly, 
we  integrated SHAP (SHapley Additive exPlanations) into 
autoBioSeqpy to develop DeepSHAP for measuring the contribution 
of sequence inputs. SHAP is an implementation of computing 
shapely values, which is a solution concept in game theory:
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where M  is the number of features, S  is a subset of the features, 
f  is the model, S iall /� �  is all the possible subset exclude feature i , 

and fx  is the conditional expectation function. The total contribution 
of features can be represented by a linear combination of Shapley value:

 
f x f f x
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(15)

where �0 f fx� � � �� � . DeepSHAP can visualize the SHAP values 
of input sequences using the heat maps or logo plots for the 
downstream analysis.

Evaluation metrics

For evaluation, we  calculated the accuracy (ACC), precision 
(PRE), F-value, recall, and Matthew’s correlation coefficient (MCC) as 
quantification metrics, which are defined as follows:

 
ACC TP TN

TP FP TN FN
�

�
� � �   

(16)

 
PRE TP

TP FP
�

�   
(17)

 
F value TP

TP FP FN
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Recall TP

TP FN
�

�   
(19)

 

MCC
TP TN FN FP

TP FN TN FP TP FP TN FN
�

�� � � �� �
�� �� �� �� �� �� �� �   

(20)

where TP, TN, FP, and FN stand for true positive, true negative, 
false positive and false negative, respectively. Moreover, we plotted 
receiver operating characteristic (ROC) and precision-recall (PR) 
curves, and summarized model performance by computing areas 
under both ROC and PR curves, resulting in auROC and auPR, 
respectively.

Overview of autoBioSeqpy

The autoBioSeqpy is a Keras-based deep learning software for fast 
and easy development, training, and analysis of deep learning model 
architectures for biological sequence classification (Jing et al., 2020). 
Compared with other tools or libraries, the biggest advantage of 
autoBioSeqpy is its simplicity and flexibility, which is especially 
suitable for nonexperts or users with little or no knowledge of deep 
learning techniques. No programming required, users only need to 
prepare input datasets and model templates. The operation is also 
simple. The entire workflows, including file reading, data encoding, 
parameter initialization, model training, evaluation, and visualization, 
can be automatically executed with just one-line instruction.

Results

Evaluation of representative DL models

Five representative DL models constructed with different network 
architectures were used for benchmarking (“Model architectures” 
section). Using the instruction 1 as shown in Figure 1, we first assessed 
basic prediction performance of each model on full transcript mode 
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FIGURE 1

autoBioSeqpy workflow and usage. The basic framework of autoBioSeqpy consists of six modules, including four self-write modules (ParaParser, 
dataProcess, moduleRead and analysisPlot) and two dependent modules (Keras and sklearn). The dataProcess module encodes DNA, RNA, protein and 
compound character sequences into model-readable numerical vectors. The moduleRead module loads and initializes the neural network model 
designed by the users. The analysisPlot module evaluates the models on the test set. The following are some commonly used commands of 
autoBioSeqpy, including model training, prediction and visualization.

using a stratified random sampling strategy. With the parameter 
“--dataSplitScale” set to 0.8, autoBioSeqpy randomly split the input 
sequences into 80% training-validation set and 20% test set, stratified 
by class. We used the shuffle mechanism (−-shuffleDataTrain 1) for 
each call of instruction 1 to avoid overfitting and to ensure that the 
model demonstrated differences. For each model, we  repeated the 
instruction 1 five times to estimate mean and standard deviation of the 
seven metrics (“Evaluation metrics” section). Full results were listed 
and shown in Table 1; Supplementary Figure S2A, respectively. Overall, 
all models performed well in the intra-dataset evaluation. CNN model 
showed slightly worse performance compared with hybrid models, but 
performed better than individual RNN models. The hybrid 
CNN-BiLSTM model achieved the best prediction performance and 

provided the highest scores for ACC (92.32%), F-value (92.29%), MCC 
(0.8465), auROC (0.9740), and auPR (0.9781). CNN-BiGRU afforded 
the highest Recall score (92.46%), while CNN offered the highest PRE 
score (93.04%). In addition, an independent test set was employed to 
evaluate the robustness and reproducibility of the presented DL 
models. Here, both instruction 2 and instruction 3 can be used for this 
purpose, but they are suitable for different application conditions 
(Figure 1). For example, we can combine instruction 1 and instruction 
2 to predict the probability and class of unlabelled datasets or single-
labelled datasets, while for the datasets containing both positive and 
negative labels, we  can directly call instruction 3 to generate their 
assessment results together with the related plots and confusion matrix. 
In this comparison, we see that CNN-BiLSTM still achieved the best 
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performance, followed by CNN-BiGRU, CNN, BiGRU and BiLSTM, 
which was consistent with the results of the training dataset (Table 1; 
Supplementary Figure S2B). Next, we benchmarked the performance 
of above five models using the mature mRNA mode. Like the full 
transcript mode, no models achieved equivalent performance to 
CNN-BiLSTM. On average, its prediction accuracy was 91.12% for 
training dataset and 92.07% for independent test set 
(Supplementary Table S6). The ROC and PR curves were illustrated in 
Supplementary Figure S3.

To further assess the predictive performance of CNN-BiLSTM, 
41 m5U sites identified by Oxford Nanopore Techniques (ONT) have 
been collected from the DirectRMDB database (Zhang et al., 2023) as 
the second independent test set. As shown in supplementary Table S7, 
36 of them are correctly predicted by CNN-BiLSTM, and only 5 are 
misclassified. Hence, CNN-BiLSTM achieves a satisfactory ACC 
(87.80%) once again. Taken together, CNN-BiLSTM constantly 

outperformed the other DL models and therefore was chosen as the 
core classification algorithm for Deepm5U, a new predictor for the 
m5U identification.

Full view of interpretable DL models from 
hidden layers and input features

Immediately following instruction 1 or instruction 3, we can use 
the layerUMAP tool to visually investigate the trained DL models via 
instruction 4 (Figure 1). By default, layerUMAP outputs the last hidden 
layer projection of the model. However, using the “--interactive” 
parameter, we can project any hidden layer by specifying the name or 
index of the layer using a list provided by layerUMAP. We  first 
dissected the best CNN-BiLSTM model layer by layer to verify its 
ability to distinguish between m5U and non-m5U sites (Figure 2A). 

TABLE 1 Performance comparison of different deep learning models on the full transcript mode.

Model ACC (%) F-value (%) Recall (%) PRE (%) MCC auROC auPR

Training dataset (Full_train)

CNN 91.56 91.50 90.04 93.04 0.8319 0.9637 0.9690

BiLSTM 88.59 88.55 87.58 89.65 0.7730 0.9419 0.9477

BiGRU 87.22 87.27 87.04 87.60 0.7820 0.9536 0.9544

CNN-BiLSTM 92.32 92.29 91.93 92.65 0.8465 0.9740 0.9781

CNN-BiGRU 91.85 91.94 92.46 91.44 0.8370 0.9632 0.9676

Independent test set (Full_test)

CNN 91.67 91.63 91.25 92.05 0.8336 0.9689 0.9738

BiLSTM 88.39 88.53 88.60 88.47 0.7676 0.9560 0.9584

BiGRU 88.63 89.01 92.06 86.22 0.7751 0.9631 0.9646

CNN-BiLSTM 92.91 92.96 93.79 92.16 0.8584 0.9773 0.9810

CNN-BiGRU 91.87 92.07 94.39 89.95 0.8393 0.9749 0.9788

FIGURE 2

LayerUMAP reveals the inner working mechanism of the DL models. (A) UMAP projection of layer-to-layer evolution of the CNN-BiLSTM model for the 
full transcript training dataset. Colored point clouds represent m5U and non-m5U sites, showing how the model clusters the categories. 
(B) Comparison of the UMAP maps of the last hidden layer representation for other DL models and datasets.
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FIGURE 3

Feature importance analysis. Sequence logos representing the nucleotide composition at each position of the input sequence (Top panel). Feature 
importance scores associate with m5U identification determined by DeepSHAP (CNN-BiLSTM classifier). The height of the letter indicates the SHAP 
value of the relevant feature for the input sequence (Middle panel). Positive and negative normalized SHAP values represent favored and disfavored 
relevant features as shown in the Bottom panel.

We  analyzed features extracted from six hidden layers of the 
classification model. First, the features in the reshape layer (original 
one-hot encoding) were completely mixed and indistinguishable. 
Along the hierarchy of layers, the features became clearly 
distinguishable, and in the last two layers (BiLSTM layer and fully 
connected layer), features separated point populations into two distinct 
clusters according to their labels. These results demonstrated the 
powerful feature extraction capability of deep learning algorithm that 
can automatically extract the useful information from raw inputs. It is 
worth noting that some hidden layers, such as reshape layer, 
convolution layer and pooling layer, cannot be projected directly into 
2D space for visualization due to their multidimensional data. 
Therefore, we performed dimensionality reduction on these layers to 
compress the multi-dimensional data into low-dimensional data from 
different directions. Figure 2B showed the projection of the last hidden 
layer for other models and datasets. Unsurprisingly, UMAP visually 
revealed two-point clusters that correspond to m5U and non-m5U sites, 
which were in line with the performance of the corresponding 
DL models.

One of the Jupyter notebook tutorials in the autoBioSeqpy 
demonstrated how to use DeepSHAP to measure and visualize the 
contribution of input sequences to a trained DL model.1 We used 
the logo plots generated by the Logomaker package instead of the 
commonly used summary violin plots to display the computed 

1 https://github.com/jingry/autoBioSeqpy/blob/2.0/notebook/

Understanding%20the%20contributions%20from%20the%20inputs%20

using%20shaps%20(onehot%20case).ipynb

SHAP values (Kim et al., 2020; Tareen and Kinney, 2020). These 
logos allowed visualization of how important a certain nucleotide 
at a certain position was for the model’s classification decision. 
We first generated the classical sequence logos for the full-length 
input sequences to reveal the potential cis-regulatory patterns of 
m5U (Figure 3, top panel). Using 2,956 and 985 training sequences, 
we calculated nucleotide compositions for the full transcript mode 
and mature mRNA mode, respectively. We  did not observe a 
significant difference in the motifs between the two modes. Guanine 
was overrepresented in the upstream region relative to the m5U 
sites, while some positions in the downstream region were enriched 
for cytosine. The feature importance scores associated with m5U 
identification determined by DeepSHAP were shown in the middle 
panel of Figure 3. Inspired by sequence logos, the height of each 
letter corresponded to the SHAP value of that base. Since uracil was 
located at the center position of all samples, its contribution to the 
overall prediction was zero. Nucleotides near the center contributed 
more to the prediction (high SHAP values), while nucleotides 
located on both sides had low SHAP values. GGU at positions 
{18–20} and CXAXCCC at positions {23–29} made a significant 
contribution to predicting m5U for both modes. This observation 
also coincided with the above sequence analysis. Finally, 
we  normalized the SHAP values to highlight the favored and 
disfavored features. The calculated SHAP values were first scaled to 
the range of [−0.25, 0.25] to confirm that the summation values 
could lie in the range of [−1, 1], and then these values were 
accumulated according to the position of the base and plotted on 
the bottom panel of Figure  3. It was clear that adenine was a 
disfavored sequence feature for m5U recognition, regardless of 
the mode.
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Performance evaluation of Deepm5U on 
the cross-techniques and cross-cell-type 
datasets

While it is important to evaluate classification performance within 
a dataset (intra-dataset), realistic scenarios where classifiers are useful 
require to be evaluated across datasets (inter-dataset). We used eight 
datasets (“Benchmark datasets” section) to test the Deepm5U’ ability 
to predict m5U sites. We  evaluated the classification performance 
when training on one dataset and testing on the other. Within intra-
dataset predictions, we observed very high prediction accuracy, with 
ACC larger than 97.00% for all datasets (Table  2). However, high 
accuracy does not guarantee good predictive performance of model, 
especially with the presence of extremely unbalanced sample ratios in 
these datasets. We therefore examined other metrics that are more 
sensitive to sample imbalance, such as Recall. The average Recall of 
Deepm5U prediction was 87.73%, and 6 of 8 datasets were predicted 
with recall of at least 85.00%. The lowest Recall score was 79.90%, 

obtained by FICC_full dataset. These results confirmed good 
predictive accuracy of Deepm5U in identifying m5U sites. 
Supplementary Figure S4 showed the ROC and PR curves evaluated 
per sequencing protocol and per cell type for two modes. Deepm5U 
achieved an average auROC of 0.9841 and an auPR of 0.9507 on 
different classification tasks. We  also visualized the positive and 
negative samples for all datasets using LayerUAMP based on the 
features learned in the last hidden layer. As shown in 
Supplementary Figure S5, Deepm5U mapped input sequences into 
different clusters according to the two-class label, and we see that the 
structures of red and purple classes were similar for all cases.

SHAP values explained the bias observed in 
cross-evaluation

When evaluating the performance of Deepm5U across datasets, 
we found that the performance of different datasets varied greatly, and 

TABLE 2 Cross-cell-type and cross-technique validation using Deepm5U.

Mode Testing 
method

Evaluation 
metric

Cross-technique validation Cross-cell-type validation

miCLIP-Seq FICC-Seq HEK293 HAP1

Full transcript Intra-dataset 

evaluation

ACC (%) 98.31 97.41 98.21 97.61

F-value (%) 90.16 84.84 89.77 85.86

Recall (%) 87.09 79.90 87.01 81.50

PRE (%) 93.49 90.45 92.76 90.97

MCC 0.8932 0.8362 0.8886 0.8478

auROC 0.9769 0.9729 0.9858 0.9770

auPR 0.9387 0.8975 0.9460 0.9269

Inter-dataset 

evaluation

ACC (%) 95.64 93.90 97.10 94.33

F-value (%) 71.79 54.02 82.31 58.60

Recall (%) 61.05 39.44 74.29 44.13

PRE (%) 87.57 85.93 92.40 87.22

MCC 0.7093 0.5574 0.8135 0.5967

auROC 0.9324 0.8332 0.9727 0.8700

auPR 0.7958 0.6079 0.9062 0.6627

Mature mRNA Intra-dataset 

evaluation

ACC (%) 99.36 98.30 99.38 98.22

F-value (%) 96.54 89.94 96.51 90.15

Recall (%) 94.62 87.80 94.89 89.04

PRE (%) 98.56 92.47 98.22 91.41

MCC 0.9621 0.8913 0.9619 0.8922

auROC 0.9999 0.9820 0.9928 0.9856

auPR 0.9998 0.9466 0.9863 0.9641

Inter-dataset 

evaluation

ACC (%) 98.28 95.06 98.62 94.88

F-value (%) 90.37 64.02 92.52 61.03

Recall (%) 89.14 48.41 93.90 44.77

PRE (%) 91.68 94.81 91.32 97.81

MCC 0.8945 0.6574 0.9181 0.6408

auROC 0.9931 0.8893 0.9943 0.8733

auPR 0.9056 0.7014 0.9508 0.6951
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FIGURE 4

Factors affecting m5U identification for different datasets are revealed by DeepSHAP.

the Recall scores ranged from 39.44 to 93.90%, with a mean value of 
61.89% (Table 2; Supplementary Figure S6). Closer examination of the 
inter-dataset evaluation revealed one interesting observation. 
Deepm5U models trained on miCLIP-Seq dataset or HEK293 dataset 
can better predict FICC-Seq dataset or HAP1 dataset, but not vice 
versa. The Recall score of the former (miCLIP-Seq Recall: 89.14%, 
HEK293 Recall: 93.90%) was nearly twice as high as that of the latter 
(FICC-Seq Recall: 48.41%, HAP1 Recall: 44.77%), especially for the 
mature mRNA mode. This phenomenon can be well explained by our 
DeepSHAP method (Figure 4). The distribution of SHAP values for 
these datasets was significantly different. The features near the central 
m5U sites played the most important role in the FICC-Seq dataset and 
HAP1 dataset, while for both miCLIP-Seq dataset and HEK293 
dataset, features at many positions contributed to the predictions. In 
terms of the total SHAP values, the FICC-Seq and HAP1 datasets did 
not contain enough feature information to support their accurate 
predictions for the other two datasets.

Variant predicting probabilities from 
saturation mutagenesis reveals potential 
valuable region

autoBioSeqpy supports variant effect prediction (Figure  5). 
We first called the instruction 5 to train the CNN-BiLSTM model on 
the FICC-Seq dataset. After that, we performed in silico saturation 
mutagenesis of four experimentally verified m5U sites, using 
instruction 6 to convert every position in the sequence to every other 
possible base. We predicted these mutated sequences (instruction 7) 
and calculated mutation effect scores by measuring the changes in 
their predicted probabilities (instruction 8). A Jupyter notebook 
tutorial was provided for showing the details of plot generation.2 

2 https://github.com/jingry/autoBioSeqpy/blob/2.0/notebook/An%20

Example%20of%20Mutation%20Plotting.ipynb

According to the distribution displayed in the heatmap, we found that 
for the sites which the CNN-BiLSTM model correctly predicted, the 
difference values were very small (less than 1e-4), but the sites which 
did not correctly predicted by the CNN-BiLSTM model, a part of the 
mutation increased the probability by more than 50%. This 
observation can be explained by the structure of LSTM structure that 
few change of a word vector (i.e., the mixture one-hot encoded bases 
by CNN in this work) will change the hidden states and thus will affect 
the final decision layer. Based on this property, the region contain high 
different probabilities can be a reference for further research. At the 
same time, we also observed that the distribution of high difference 
probabilities in heat map is similar with the region of large SHAP 
values, which could support that the region of high difference 
probabilities contains research value.

Performance comparison of Deepm5U 
with the exiting method

We compared Deepm5U’s performance against the recently 
published algorithm m5UPred, which was that trained and tested 
on the same benchmark datasets as ours. Deepm5U produced 
more accurate training classification results (ACC scores of 92.32 
and 91.47%) for full transcript mode and mature mRNA mode, 
respectively, than does m5UPred (88.32%, 89.91%; Table  3). 
We  also observed better independent test performance with 
Deepm5U (ACC scores of 92.91% and 92.48%% for full transcript 
mode and mature mRNA mode) than that of m5UPred (88.35%, 
89.70%). For the cross-technique and cross-cell-type evaluations, 
the comparison results were shown in Supplementary Table S7. In 
this comparison we  see that Deepm5U produced the better 
performance (miCLIP-Seq MCC: 0.7093 and 0.8945, FICC-Seq 
MCC: 0.5574 and 0.6574, HEK293 MCC: 0.8135 and 0.9181, HAP1 
MCC: 0.5967 and 0.6408) compared with m5UPred (miCLIP-Seq 
MCC: 0.6520 and 0.8090, FICC-Seq MCC: 0.4950 and 0.4490, 
HEK293 MCC: 0.7260 and 0.8450, HAP1 MCC: 0.5070 and 0.4610) 
for the two modes.
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Discussion

RNA chemical modifications can influence biological function. 
Accurate transcriptome-wide mapping and single-nucleotide 
resolution detection of these dynamic RNA modifications are critical 
for understanding gene regulation and function. In recent years, deep 

learning methods have provided remarkably good results in various 
biological applications, including the identification of various 
epitranscriptomic marks. Nevertheless, choosing the best-suited 
models and proper fine-tuning strategies remains a significant 
challenge for the development of personalized prediction algorithms 
based on the user’s data. There is a pressing need to develop 

FIGURE 5

autoBioSeqpy visualization of in silico mutagenesis on the CNN-BiLSTM model for four selected m5U sequences in the FICC-Seq dataset.
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user-friendly and model-adjustable environments for building and 
running DL models.

autoBioSeqpy is our contribution to the field for the 
accessibility and dissemination of deep learning techniques in 
biology. The autoBioSeqpy environment facilitates the creation of 
reproducible workflows and results for developers and end users, 
reducing the tedious modeling process in the routinely performed 
biological sequence classification tasks. By leveraging 
autoBioSeqpy, here we have explored the use of DL methods to 
identify RNA modifications such as m5U methylation. Various 
common DL model architectures were evaluated, including CNN, 
BiGRU, BiLSTM, CNN-BiGRU and CNN-BiLSTM. Our systematic 
and comprehensive benchmark study suggests that deep-learning-
based algorithms that rely only on RNA sequence are effective in 
predicting potential m5U sites, outperforming current state-of-
the-art tool. In particular, the performance of CNN-BiLSTM 
model was consistently better than all other DL models and was 
therefore chosen as the final predictor, called Deepm5U, for 
subsequent experiments and comparisons. We have also introduced 
two interpretability approaches to elucidate the mechanism of 
model and the influence of features. This has explained quite a few 
interesting phenomena that cannot be uncovered by conventional 
motif analysis. Furthermore, we have provided a step-by-step guide 
on how to use autoBioSeqpy to run model development and 
analysis tasks, and hope that this strategy can be  extended to 
facilitate the study of other RNA modifications.
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TABLE 3 Performance comparison of Deepm5U and m5UPred on the training and independent test datasets for two modes.

Method ACC (%) F-value (%) Recall (%) PRE (%) MCC auROC auPR

Full transcript (Training dataset)

m5UPred 88.32 – 87.59 – 0.7670 0.9560 –

Deepm5U 92.32 92.29 91.93 92.65 0.8465 0.9740 0.9781

Full transcript (Independent test set)

m5UPred 88.35 – 87.90 – 0.7670 0.9560 –

Deepm5U 92.91 92.96 93.79 92.16 0.8584 0.9773 0.9810

Mature mRNA (Training dataset)

m5UPred 89.91 – 88.64 – 0.7980 0.9560 –

Deepm5U 91.47 91.04 89.83 92.58 0.8304 0.9640 0.9648

Mature mRNA (Independent test set)

m5UPred 89.70 – 87.44 – 0.7950 0.9540 –

Deepm5U 92.48 92.47 92.65 92.30 0.8498 0.9511 0.9473
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