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Introduction: Pulmonary fibrosis is a consequential complication of microbial 
infections, which has notably been observed in SARS-CoV-2 infections in 
recent times. Macrophage polarization, specifically the M2-type, is a significant 
mechanism that induces pulmonary fibrosis, and its role in the development of 
Post- COVID-19 Pulmonary Fibrosis is worth investigating. While pathological 
examination is the gold standard for studying pulmonary fibrosis, manual review 
is subject to limitations. In light of this, we have constructed a novel method that 
utilizes artificial intelligence techniques to analyze fibro-pathological images. This 
method involves image registration, cropping, fibrosis degree classification, cell 
counting and calibration, and it has been utilized to analyze microscopic images 
of COVID-19 lung tissue.

Methods: Our approach combines the Transformer network with ResNet for 
fibrosis degree classification, leading to a significant improvement over the use 
of ResNet or Transformer individually. Furthermore, we employ semi-supervised 
learning which utilize both labeled and unlabeled data to enhance the ability of the 
classification network in analyzing complex samples. To facilitate cell counting, 
we applied the Trimap method to localize target cells. To further improve the 
accuracy of the counting results, we utilized an effective area calibration method 
that better reflects the positive density of target cells.

Results: The image analysis method developed in this paper allows for 
standardization, precision, and staging of pulmonary fibrosis. Analysis of 
microscopic images of COVID-19 lung tissue revealed a significant number of 
macrophage aggregates, among which the number of M2-type macrophages 
was proportional to the degree of fibrosis.

Discussion: The image analysis method provids a more standardized approach 
and more accurate data for correlation studies on the degree of pulmonary 
fibrosis. This advancement can assist in the treatment and prevention of 
pulmonary fibrosis. And M2-type macrophage polarization is a critical mechanism 
that affects pulmonary fibrosis, and its specific molecular mechanism warrants 
further exploration.
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1. Introduction

Microbial infections represent a major culprit behind the onset of 
pulmonary fibrosis. A variety of microorganisms have been identified 
as potential inducers of this debilitating disease, including the human 
T-cell leukemia virus, the human immunodeficiency virus, 
cytomegalovirus, Epstein–Barr virus, influenza virus, avian influenza 
virus, Middle East respiratory syndrome coronavirus, heavy acute 
respiratory syndrome coronavirus, SARS-CoV-2 (Huang and Tang, 
2021), Mycobacterium tuberculosis, Chlamydia and Mycoplasma. The 
pathogenesis of pulmonary fibrosis due to microbial infections, 
especially viral infections, consists of two distinct mechanisms. The 
pathogenesis of viral-induced pulmonary fibrosis entails two distinct 
mechanisms. Firstly, direct viral damage during the infection leads to 
acute and heavy injury to the lungs. This acute insult results in 
persistent lung damage and/or abnormal wound healing, thus 
facilitating the progression of pulmonary fibrosis. Secondly, viral 
infections trigger an immune-mediated response that causes tissue 
damage. Upon infection, immune cells aggregate at the site of injury, 
releasing a vast array of pro-inflammatory and pro-fibrotic cytokines 
that mediate the progression of fibrosis. Consequently, the synergistic 
interplay between viruses and these factors culminates in sustained 
and substantial lung damage, ultimately leading to the development 
of pulmonary fibrosis.

In recent years, COVID-19 caused by SARS-CoV-2 infection has 
had a profound impact on the global population. In fact, over 
one-third of heavy COVID-19 pneumonia survivors discharged from 
hospitals have been found to develop pulmonary fibrosis (Han et al., 
2021). Furthermore, forensic examination of deceased COVID-19 
patients by the Liu Liang team has revealed copious amounts of 
viscous gray-white liquid and visible fibrous strands on lung sections 
(Liu et al., 2020). Grillo and colleagues conducted a systematic analysis 
of lung slice samples from eight COVID-19 patients who died in 
intensive care, and noted significant pulmonary fibrosis remodeling, 
characterized by fibroblast proliferation and alveolar occlusion (Grillo 
et al., 2021). This underscores the fact that pulmonary fibrosis is a 
significant complication that can lead to heavy illness and death in 
COVID-19 patients.

Tissue-resident macrophages are highly plastic cells that can 
polarize into classical activation phenotype (M1) macrophages or 
alternative activation phenotype (M2) macrophages (Sica and 
Mantovani, 2012; Vasse et al., 2021). M2 macrophages can be induced 
by various cytokines and are associated with fibrosis (Zhong et al., 
2014). M2 macrophages can produce pro-fibrotic mediators such as 
transforming growth factor-β (TGF-β), which sustain the activation 
of fibroblasts and promote myofibroblast proliferation, leading to 
excessive deposition of extracellular matrix (ECM) and structural 
remodeling of lung tissue, ultimately resulting in pulmonary fibrosis 
and respiratory failure (Song et  al., 2000). Therefore, after SARS-
CoV-2 invasion, do pulmonary macrophages polarize into M2 
macrophages in large numbers, participating in the initiation of 
pulmonary fibrosis? If the degree of lung tissue fibrosis can 
be correlated with the number of macrophages, it would provide solid 
evidence for this hypothesis.

For a long time, the gold standard for diagnosing pulmonary 
fibrosis has been pathological examination of the affected lung tissue, 
making histopathology the foundation for related research. Therefore, 
the analysis of microscopic images of pathological tissue sections is 

particularly important. However, traditional microscopic image 
analysis techniques have the following main limitations. Firstly, they 
rely on subjective judgments by humans and are experiential in nature, 
with results being significantly influenced by the observer’s individual 
biases. Secondly, image analysis and cell counting only represent 
partial views and are difficult to analyze globally. Finally, because 
different staining for different markers often requires different sections 
of the same tissue block, even consecutive sections on different slides 
are difficult to accurately match for subsequent analysis, making it 
challenging to perform correlation analysis of different indicators in 
the same area. Therefore, using artificial intelligence algorithms is of 
high demand to effectively solve the aforementioned problems.

This paper presents an artificial intelligence-based image analysis 
method for registering, cropping, and classifying fibrosis degree in lung 
FFPE (Formalin-Fixed and Parrffin-Embedded) slice. To automate the 
classification of fibrosis degree, we utilize the ResNet network (He 
et al., 2016) to extract high-dimensional features of lung tissue from 
pathological microscopy images. Then, we  use the self-attention 
mechanism of Transformer (Dosovitskiy et al., 2020) to select the most 
discriminative local features. We  further employ semi-supervised 
learning to improve classification accuracy with a large number of 
unlabeled pathological images. Our results demonstrate that our 
classification model can accurately focus on the pathological tissue in 
the lung and classify images in a way that mimics human interpretation. 
Moreover, we apply the Trimap distance method to automatically count 
the number of macrophages in immunohistochemistry images of lung 
tissue. Given the characteristics of lung tissue, such as the presence of 
many empty areas like blood vessels and airway cavities, we employ an 
effective area calibration method in addition to cell counting to better 
reflect the positive density of the target cells. We applied the above-
mentioned intelligent analysis method for lung FFPE slice images to 
quantitatively analyze SARS-CoV-2-induced lung fibrosis and 
investigate the role of macrophage polarization in the mechanism of 
SARS-CoV-2-induced lung fibrosis.

2. Materials and methods

2.1. Pathological tissue samples

The data used to train the algorithm model in this paper comes 
from 10 lung FFPE slices of COVID-19 death cases. The experimental 
data comes from lung tissue samples of 4 different COVID-19 death 
cases with pulmonary lesions, as well as 3 lung tissue samples without 
pulmonary lesions. HE  staining, CD68 immunohistochemical 
staining, and CD163 immunohistochemical staining were used as 
staining methods, where CD68 represents total macrophages and 
CD163 represents M2 macrophages. HE staining was used for the 
classification task, while immunohistochemical staining was used for 
the counting task.

2.2. Preparing image analysis samples via 
image registration and cropping

Due to spatial position deviation between the original HE staining 
images and immunohistochemical images, we registered them using 
affine transformation in OpenCV to achieve optimal alignment. 
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Moreover, the original pathological image size was extremely large, 
ranging from 600 million to 1.2 billion pixels, which precluded direct 
input into the network for classification and counting. To overcome 
this challenge, we manually selected the region of interest and cropped 
it into patches with a resolution of 1,600 × 1,600 pixels, resulting in 
1589 labeled patches. We separate all labeled patches into 1,082, 269, 
and 198 patches for training, validation, and testing, respectively. 
Furthermore, to enhance the classification accuracy, we  obtained 
1,420 unlabeled patches. We  then used deep learning models to 
automatically classify registered HE  staining patches and count 
macrophage on the corresponding immunohistochemical images. 
Finally, we spliced the target images to restore them to the original 
slice size and analyzed the corresponding classification and counting 
results in the corresponding regions.

2.3. Lung tissue fibrosis classification via 
deep learning

Various improvements have been made to the Visual Transformer 
(ViT) method (Dosovitskiy et  al., 2020), including knowledge 
distillation (Touvron et al., 2021a), Re-attention (Zhou et al., 2022), and 
LayerScale (Touvron et  al., 2021b). In this paper, we  followed the 
automatic classification model Tokens-to-Token ViT (Yuan et al., 2021) 
which consists of a pre-trained ResNet backbone and a Transformer 
encoder-decoder. The ResNet network extracts high-dimensional 
features from image patches. We normalize these features and combine 
them with the positional encoding before they are input into the 
encoder-decoder with multi-head self-attention. The output of the 
encoder-decoder (i.e., the class token) is fed into a prediction head that 
is made up of fully connected layers. Then the output of the prediction 
head determines the specific classification (Figure  1). To further 
improve the classification accuracy, we employed the semi-supervised 
method which combines self-training and consistency learning 
(Tarvainen and Valpola, 2017), and designed a model from the 
perspective of pseudo-labeling (Arazo et  al., 2020). We  adopted a 
similar structure of Cross Pseudo Supervision (Chen et al., 2021) in our 
approach. The loss function is comprised of two parts: supervised and 
unsupervised. The supervised part calculates the cross-entropy loss 
between the predicted classes and the labels. For unlabeled data, 
one-hot pseudo-labels are generated using the output of another model, 
and the cross-entropy loss is calculated between the predicted values 
and the pseudo-labels generated by the other model. By merging the 
ResNet feature extractor and Transformer classifier, our approach is able 
to leverage both high-dimensional image features and long-term 
dependencies of sequence data for classification. This allows for training 
with advanced features, which reduces the need for extensive training 
data, making it ideal for medical datasets. Furthermore, through the use 
of semi-supervised learning, our model effectively integrates finely 
labeled and unlabeled data to improve classification accuracy.

2.4. Manual-labeled fibrosis rubric

After referencing to the refined Ashcroft score criteria (Hubner et al., 
2008), our study evaluated the degree of pulmonary fibrosis in detail, 
assigning a score of 1–8 based on the specific morphological 
characteristics of the lung fibrosis. The score and detailed morphological 

descriptions are shown in Table  1. Based on the morphological 
characteristics, scores of 1–3 were classified as light, 4–5 as moderate, 
and 6–8 as heavy. The annotations were conducted by 5 pathologists with 
experience, who independently evaluated HE-stained patches in the 
algorithm training dataset and scored them according to the standard. 
The group results were then collected and compared for final calibration.

2.5. Cell counting and effective area 
calibration

The post-processing technique extracts the area of minimum 
distance in each local region of the predicted distance map, which 
represents the center of a cell. The number of centers detected 
corresponds to the number of cells in the image. Finally, the density 
of positive cells is calculated by adjusting for the effective tissue area. 
We adopt Trimap (Arteta et al., 2016) which involves three semantic 
segmentation classes to count the number of target cells. Specifically, 
the cell region is divided into two semantic classes, namely the 
segmentation region closer to the cell center and the cell region farther 
away from the center. The third semantic class is defined as the 
background class. To differentiate the two classes in the cell region 
based on proximity to the cell center, such as the orange region in 
Figure 2, the two regions closest to the center (black regions) can 
be  used to separate two adherent cells. To implement Trimap, 
we leveraged the UNet segmentation network (Ronneberger et al., 
2015) which employs a combination of upsampling and downsampling 
layers to extract high-level features and predict a distance map for 
each pixel in the input image. Since the center of a cell is typically 
located within regions closer to the cell centers, the post-processing 
algorithm extracts the local minimum region and calculates the 
centroid to obtain the cell center. To obtain the density of positive 
cells, we calculated the area of valid tissues in the patch to determine 
the effective tissue area. The invalid tissues are typically white in color, 
and threshold can be used to extract the blank connected regions in 
the image. Any small connected regions that are not relevant are then 
excluded based on their minimum area of the alveolar space in the 
patch. The effective tissue area is calculated by subtracting the sum of 
areas of all connected regions larger than the minimum area from the 
total area of the patch.

Finally, the density of cells in each patch is calculated as follow:
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where Re is the rate of effect area Ae  to the total area of the 
patch Atotal , Awhite , is the area of the white regions in the patch and 
pi  is the predicted count of cells in the image.

Compared to existing counting algorithms (Wan and Chan, 2019; 
Wan et al., 2021), the Trimap distance algorithm is capable of handling 
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adhesive samples by utilizing the distance between pixels and the 
centroid and the use of effective area calibration allows the calculation 
of the effective positive density in combination with the cell count.

3. Results

3.1. Image registration and cropping

The original images contained approximately 900 million pixels. 
After image registration and manual delineation to maximize the 
target area, the samples were cropped into 1600×1600 patches for 
subsequent model training and analysis (as shown in Figure 3 for the 
registration and segmentation results).

3.2. Classification experiments

3.2.1. Evaluation metrics
We utilized the widely-used metrics: Precision, Recall and F1_score 

to evaluate the performance of fibrosis degree classification. Precision 

refers to the proportion of correctly predicted positive samples among 
all samples predicted as positive, as shown in Eq. (4). In Eqs. (4, 5) TP 
(True Positive) represents the number of positive samples correctly 
predicted as positive by the model, FP (False Positive) represents the 
number of negative samples incorrectly predicted as positive, and FN 
(False Negative) represents the number of positive samples incorrectly 
predicted as negative. Recall refers to the proportion of correctly 
predicted positive samples among all actual positive samples. F1_score 
is the harmonic mean of precision and recall as shown in Eq. (6), which 
comprehensively reflects the predictive ability and coverage of the model.
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FIGURE 1

This is the flow chart of our classification model. When an original image is input to the ResNet feature extractor, the extractor outputs high-
dimensional features maps of the image. Afterwards, the feature maps are split into blocks(in this case, there are 4 × 4 blocks), flattened, and fed into 
fully connected layer block by block. Meanwhile, a class token is initialized separately and fed into the transformer encoder together with each block of 
the output from the fully connected layer. Finally, the class token is extracted and fed into an MLP to get the classification result.
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3.2.2. Results of classification
The results of pulmonary fibrosis degree classification are shown 

in Table 2.
We compare our final method, i.e., ResNet+Transformer (w/SSL) 

with several variants, including using only ResNet18 for classification, 
using only Transformer for classification, using ResNet+Transformer 
without semi-supervised learning (SSL). Experimental results suggest 
that utilizing ResNet as a feature extractor in combination with a 
Transformer network leads to a significant improvement in 
performance compared to using either ResNet or Transformer 
individually. Additionally, using semi-supervised learning can further 
enhance the model’s capability to focus on the target area and analyze 
complex samples. The normalized confusion matrix for the 
classification task is shown in Figure 4.

3.2.3. Visualization of lung tissue fibrosis 
classification

In Transformer, the key component is the multi-head attention 
module. In each head, the correlation between every two tokens is 
calculated to obtain an attention map. We  focus on those values 
involving the class token, which represent the degree of the influence 
of features from different patches on the classification decision. The 
attention maps in all heads (4 heads) of the multi-head attention 
module of each layer (10 layers) are extracted, then averaged and the 
elements related to the class token(calculated between a patch’ s token 
and the class token) are selected and adjusted to a two-dimensional 
matrix in order to match them with the corresponding locations in the 

original image for visualization. The shades of color are used to 
indicate the relative position of each vector to the class token in this 
two-dimensional space. Darker shades represent closer relative 
distances (i.e., higher correlation with the classification result), while 
lighter shades represent farther relative distances (i.e., lower 
correlation with the classification result; Figure 5). The B4 and D2 
regions are the darkest in the image, indicating that the corresponding 
areas of pathological images have more prominent fibrosis features. 
As a comparison, the token map without SSL(as shown as Figure 5C), 
though it can also focus on some of the fibrotic areas, the areas of 
focus are incomplete and partially incorrect.

In the global visualization map (Figure 6), the deep blue region 
represents heavy fibrosis classification, the lighter region represents 
moderate fibrosis classification, and the colorless region is not 
included in the study due to insufficient tissue.

3.3. Results of cell counting and calibration

The visualization results of the positive cell identified by our cell 
counting method in immunohistochemical staining images (Figure 7), 
in which Figure 7A contains some white regions, while 7B only has 
tissue. Direct counting and calibrated counting results of positive cells 
in Figure 7 are shown in Table 3.

3.4. Results of image analysis of Covid-19 
lung tissue sections

3.4.1. Lung tissue image patch fibrosis 
classification

The HE-stained section images of the new coronal lung tissue 
were cut into 282 patches, and after the classification, the lung fibrosis 
light group (COV-L) 10 patches, the lung fibrosis moderate group 
(COV-M) 144 patches, the lung fibrosis heavy group (COV-H) 128 

TABLE 1 Modified Ashcroft score(Hubner et al., 2008).

Rate Description

1

Alveolar septa: Isolated gentle fibrotic changes (septum ≤3× thicker 

than normal)

Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic 

masses present

2

Alveolar septa: Clearly fibrotic changes (septum >3× thicker than 

normal) with knot-like formation but not connected to each other

Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses

3

Alveolar septa: Contiguous fibrotic walls (septum >3× thicker than 

normal) predominantly in whole microscopic field

Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses

4
Alveolar septa: Variable

Lung structure: Single fibrotic masses (≤10% of microscopic field)

5

Alveolar septa: Variable

Lung structure: Confluent fibrotic masses (>10% and ≤ 50% of 

microscopic field). Lung structure severely damaged but still preserved

6

Alveolar septa: Variable, mostly not existent

Lung structure: Large contiguous fibrotic masses (>50% of microscopic 

field). Lung architecture mostly not preserved

7

Alveolar septa: Non-existent

Lung structure: Alveoli nearly obliterated with fibrous masses but still 

up to several air bubbles

8
Alveolar septa: Non-existent

Lung structure: Only fibrotic masses in microscopic field

FIGURE 2

Distance map visualization.
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TABLE 2 Results of pulmonary fibrosis degree classification.

Method Precision Recall F1_Score

ResNet18 0.928 0.941 0.934

Transformer 0.936 0.925 0.929

ResNet+Transformer(w/ o SSL) 0.954 0.960 0.957

ResNet+Transformer(w/ SSL) 0.960 0.966 0.963

FIGURE 4

The normalized confusion matrix for the classification task.

patches, and the normal lung tissue sections were segmented into 477 
control groups (Control). The pathological images of lung tissues in 
each group are shown in Figure 8. Because the number of patches in 
the COVID-19 light group was too small, they were combined with 
COVID-19 moderate and analyzed as COVID-19 light-moderate 
group (COV-L/M) to reduce the error, reflecting the early stage of 
COVID-19 fibrosis.

3.4.2. Morphological manifestations of 
immunohistochemical staining of macrophages 
in each group of COVID-19 and control group

CD68 and CD163 immunohistochemically positive cells were 
yellow-brown darkly stained cells in the sections. The common 
results of these four immunohistochemistry groups were 
characterized by a higher number of CD68 positive staining fine 
than CD163 positive staining cells in the field of view (e.g., 
Figures 9–12).

3.4.3. Macrophage counts in COV-L/M Group, 
COV-H group and control group

The results of macrophage counts and M2/total macrophage ratios 
in the COV-L/M, COV-H and Control groups are shown in Table 4.

The total macrophage count and M2/total macrophage ratio were 
significantly higher in the COV-L/M and COV-H groups compared 

with the Control group, but there was no statistical difference between 
the COV-L/M and COV-H groups (e.g., Figures 13A,C). The M2-type 
macrophages were elevated in the COV-H and COV-L/M groups 
compared with the Control group, and the elevation in the COV-H 
group compared with the COV-L /M group were more significantly 
elevated (e.g., Figure 13B).

4. Discussion

Image registration can be understood as the consistency of two or 
more images in spatial coordinates or visual perception. In 

FIGURE 3

Image registration and cropping visualization.

https://doi.org/10.3389/fmicb.2023.1176339
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2023.1176339

Frontiers in Microbiology 07 frontiersin.org

pathological research, different staining methods are used to display 
different structures or components of the same tissue. In this case, it 
is necessary to align the images of different staining methods to the 
same coordinate system. The AI-based image analysis method 
proposed in this paper solves the problem of image registration for 
histological sections. By registering the HE-stained images with the 
immunohistochemical CD68 and CD163-stained images, the 
differences caused by changes in orientation for each section are 
eliminated, allowing HE staining results to be combined seamlessly 
with immunohistochemical results. Therefore, the image registration 
method proposed in this paper can unify information from different 

staining methods and lay the foundation for subsequent correlation 
analysis of research indicators.

In the process of building the classification model, we compared 
several state-of-the-art models in the literature with ResNet, which 
served as the baseline. By utilizing various combinations of data 
augmentation, we were able to achieve the best performance, as shown 
in Table 2. In this task, since image features are highly abstract, ResNet 
is better equipped to capture the complex features in the images. On 
the other hand, the Transformer pays more attention to local features 
and spatial relationships. However, because only one convolutional 
layer is used for feature extraction, the Transformer is not as effective 

A B C

FIGURE 5

Classification task visualization. From left to right is the original input image (A), the token map with SSL method (B) and the token map without SSL (C).

FIGURE 6

Global visualization map.
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A B

FIGURE 7

Visualization of cell prediction results (red dots are predicted cell locations). A:The patch contains some white regions; B:The patch only contains 
tissue.

TABLE 3 Cell count results of patch with white area (Figure 7A) and patch 
only contains tissues (Figure 7B).

Program Figure 7A Figure 7B

Before calibration 867.0 994.0

After calibration 851.0 859.0

The second and the third row correspond to the original counting results and the density 
results after the effective area calibration.

as ResNet in this regard. After using the pre-trained ResNet model as 
a feature extractor, the model was able to extract higher-dimensional 
features, leading to significant improvements in model accuracy, 
recall, and F1 score. Furthermore, after augmenting the unlabeled 
samples with semi-supervised learning, the model’s performance was 
further enhanced. We observed that, with the use of SSL, our model 
provides more accurate and reasonable feature representations for 
different target regions, as evidenced by the visualized token 
map results.

From an application perspective, our proposed method is not only 
applicable to lung fibrosis classification, but also has broad potential 
applications in other medical imaging tasks or industrial image 
classification that require similar features. However, the current model 
also has certain limitations. For example, since the task is limited by 
the number of light cases, we supplemented some control cases into 
the light group, making it difficult for the current model to distinguish 
between the light and control groups. Patches with limited useful 
information were removed during annotation and were not included 
in the training set. In addition, the differences in semi-supervised 
learning algorithms may also affect the performance of the model. 
Currently, the two mainstream directions are to explore more suitable 
pseudo label strategies and to start with consistency learning to 
explore better data augmentation methods. In future, researcher could 
continue to optimize the model from points above.

By combining cell counting with effective area calibration, the 
counting algorithm presented in this paper can to some extent 

mitigate the influence of large blood vessel and bronchial lumens on 
lung parenchyma area, providing a more accurate reflection of the 
number of target cells in the lung parenchyma. Compared with 
fibrosis classification annotation, manually annotating cells in each 
image requires much more effort than classification, which is a major 
burden for researchers. Therefore, designing algorithms that can learn 
features from a small amount of annotation is a future 
research direction.

This paper is the first to apply artificial intelligence-based image 
analysis methods to systematically analyze lung tissue samples from 
COVID-19 patients. The samples analyzed in this paper showed 
predominantly moderate to heavy levels of lung fibrosis, with only a 

FIGURE 8

HE staining PATCH (1,600 × 1,600 pixels).
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FIGURE 9

COV-L group immunohistochemical staining PATCH (1,600 × 1,600 pixels).

FIGURE 11

COV-H group immunohistochemical staining PATCH (1,600 × 1,600 pixels).

FIGURE 10

COV-M group immunohistochemical staining PATCH (1,600 × 1,600 pixels).
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small proportion showing light fibrosis, which may be attributed to 
the fact that the samples were obtained from COVID-19 patients with 
underlying conditions. HE staining revealed that the light fibrosis 
group had a higher incidence of exudative lesions in the pulmonary 
alveolar spaces, such as edema and inflammatory cells, and the 
pulmonary alveolar septa were slightly thickened without the 
formation of fibrotic nodules. In the moderate fibrosis group, fibrotic 
nodules appeared but did not exceed 50% of the field of view. Almost 
all cases in the heavy fibrosis group showed fibrotic masses with only 
a small amount of free space.

Through immunohistochemical staining and statistical analysis, 
it was found that compared to the Control group, the COVID-19 
group had significantly elevated levels of total macrophages and 
M2-type macrophages. Furthermore, there was a positive 
correlation between the level of M2-type macrophages and the 

degree of fibrosis, with the level of M2-type macrophages being 
higher in the heavy fibrosis group than in the light to moderate 
fibrosis groups. These findings suggest that COVID-19 leads to the 
accumulation of macrophages and an increase in M2-type 
polarization, which is associated with the severity of pulmonary 
fibrosis. The M2/total macrophage ratio was significantly increased 
in all COVID-19 groups compared to the Control group, but there 
was no difference between the different fibrosis groups, which may 
be  due to the increase in both total macrophages and M2-type 
macrophages during disease progression. These results indicate that 
both the total number of macrophages and the M2-type polarization 
phenomenon are significant factors in COVID-19-induced 
pulmonary fibrosis.

In summary, macrophages play an important role in the 
process of COVID-19-induced pulmonary fibrosis, with the 

FIGURE 12

Control immunohistochemical staining PATCH (1,600 × 1,600 pixels).

TABLE 4 Results of macrophage counting in COVID-19 group, paraquat group and Control group.

CD68 (Total macrophages) CD163 (M2-type macrophages) M2/total macrophage ratio

COVID-19 light to moderate group 940.2 ± 289.8 792.2 ± 272.2 1.015 ± 0.7863

COVID-19 heavy group 982.0 ± 355.1 1,020 ± 299.0 1.367 ± 1.070

Control group 440.7 ± 214.2 168.9 ± 135.9 0.3681 ± 0.2383

Values are mean ± standard deviation.

A B C

FIGURE 13

Comparative histogram of each macrophage count in each COVID-19 group and Control group (A) total macrophages, (B) M2-type macrophages, 
[(C) M2/total macrophage ratio; *p < 0.05, ****p < 0.0001].
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number of M2-type macrophages positively correlated with the 
degree of fibrosis. The specific molecular mechanism by which 
M2-type macrophage polarization leads to pulmonary fibrosis 
warrants further exploration.

5. Conclusion

Pulmonary fibrosis is not only a common complication of 
microbial infection of the lung but a serious threat to human health, 
and its pathogenesis and associated targets need to be  further 
explored. In this paper, an artificially intelligent image analysis method 
is developed to align, slice, and discriminate the degree of fibrosis in 
microscopic images of lung tissue. The application of the artificial 
intelligence image analysis method constructed in this paper enables 
a standardized, precise, and staged study of pulmonary fibrosis, 
providing a more standardized method and more accurate data for the 
correlation of the degree of pulmonary fibrosis and aiding in the 
treatment and prevention of pulmonary fibrosis.

Furthermore, in this paper, we also applied this newly developed 
artificial intelligence image analysis method to explore the mechanism 
of Post-COVID-19 pulmonary fibrosis. We  found that the 
accumulation of macrophages is a common pathological manifestation 
of Post-COVID-19-induced pulmonary fibrosis, in which M2-type 
macrophages play a major role. In the future, the related signaling 
molecules before and after the polarization of M2-type macrophages 
can be further explored to identify the key targets of Post-COVID-19-
induced pulmonary fibrosis.
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