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This experiment was conducted to evaluate effects of zine oxide (ZnO) and 
condensed tannins (CT), independently or in combination, on the growth 
performance and intestinal health of weaned piglets in enterotoxigenic Escherichia 
coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets 
into 4 groups. Dietary treatments included the following: basic diet group (CON), 
1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), 
and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). 
Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 
28 days, and 0 to 28 days (p  < 0.05) and no significant on growth performance. 
The effect of CT on reducing diarrhea rate and diarrhea index was similar to 
the results of ZnO. Compared with the CON group, ZnO increased the ileum 
villus height and improved intestinal barrier function by increasing the content 
of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of 
zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin 
in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function 
genes were similar to that of ZnO. Moreover, the mRNA expression of cystic 
fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was 
reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by 
decreasing CFTR expression and promote water reabsorption by increasing AQP3 
expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of 
phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and 
genera Lactobacillus in colonic contents. These results indicated that ZnO and 
CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs 
in ETEC-challenged environment. In addition, the application of ZnO combined 
with CT did not show synergistic effects on piglet intestinal health and overall 
performance. This study provides a theoretical basis for the application of ZnO 
in weaning piglet production practices, we also explored effects of CT on the 
growth performance and intestinal health of weaned piglets in ETEC-challenged 
environment.
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1. Introduction

Piglets are susceptible to a series of effects such as nutrition, 
pathogenic microorganisms, and environment after weaning, resulting 
in reduced feed intake, stunted growth performance, and diarrhea (Hu 
et  al., 2018). Previous studies have shown that zinc oxide (ZnO) 
supplementation to the diet of weaned piglets enhanced growth 
performance, improves intestinal morphology (Conway et al., 2022), 
and has a positive effect on immune function (Pei et  al., 2019). At 
present, ZnO plays a crucial role in the prevention of diarrhea in weaned 
piglets. It has been reported that the maximum allowable supplemental 
dose of ZnO within 14 days after weaning is 2,500 mg/kg in most parts 
of the world (Nielsen et al., 2021). However, soil and water pollution 
caused by the use of high doses of ZnO has become a serious problem.

Tannins are the largest polyphenols in plant extracts and can 
be classified into hydrolysable or condensed subgroups (Caprarulo et al., 
2021). In recent years, it has been found that extracted tannins have been 
widely exploited on intensive pig farms and used in different physiological 
stages of pigs (especially after weaning; Girard et al., 2020; Girard and Bee, 
2020). Starčević et  al. found that condensed tannins (CT) have a 
significant effect on improving animal performance, antibacterial activity 
and regulating intestinal flora (Starčević et al., 2015). Several other studies 
have reported that CT also enhance the antioxidant capacity, regulate 
intestinal microbiome composition, and improve the quality of the meat 
(Reggi et al., 2020; Buyse et al., 2021). This shows the great potential of CT 
feedstuff development and utilization.

To our knowledge, there is limited data about the effects of dietary 
supplementation with ZnO and CT on growth performance, 
antioxidation, and intestinal health of weaned pigs. In the 
K88-polluted environment in this study, we added CT to the diets of 
weaned piglets and combined it with ZnO to explore whether CT 
could substitute for ZnO, and whether the combination of ZnO and 
CT would have interactive effects on growth performance and 
intestinal health.

2. Materials and methods

All animal experimental protocols used in present study were 
according to the Chinese guidelines for animal welfare and approved 
by the Animal Care and Use Committee of Guangdong Academy of 
Agricultural Sciences.

2.1. Reagents

ZnO is feed grade (Guangzhou Zelong Chemical Co, China). CT 
were extracted from Kenwood, with molecular mass of 1700-1900u, 
consisting of 33% dimer, 37% trimer, 21% tetramer, 8% pentamer, and 
1% heptamer (Guangzhou Youbei Technology Co, China). The hand-
held sprayer for spraying mushrooms is produced by Guangzhou Yitai 
Zheng Co, China.

2.2. Escherichia coli liquid preparation

The enterotoxigenic Escherichia coli (ETEC-K88) used in this 
experiment was purchased from China Veterinary Drug Control 

Institute. The strain was thawed from the refrigerator at −20°C, added 
into the centrifugation tube with 10 ml Luria-Bertani (LB) broth 
culture medium, and the tubes were cultured in an incubator at 37°C 
for 12 h. Thereafter, the 10 ml LB broth was poured into a triangular 
flask containing 2 l LB broth, and cultured at 37°C for 18 h. The LB 
broth was stored in at 4°C refrigerator and used as a concentrated 
bacterial solution.

2.3. Animal treatment

A total of 72 healthy (Duroc × Landrace × Yorkshire, 26 ± 2 days 
of age, body weight of 8.40 ± 0.20 kg) weaned piglets were divided 
into 4 groups according to the principle of similar weight with half 
male and half female in each group, 6 replicates per group, 3 pigs 
per replicate, and the diet treatment was divided into basic diet 
group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg 
condensed tannins group (CT), and 1,500 mg/kg zinc oxide 
+1,000 mg/kg condensed tannins group (ZnO + CT). The basal 
diet (Supplementary Table S1) was formulated according to NRC 
to meet the nutritional requirements of piglets from 7 to 11 kg. 
During the whole experiment, the animals were free to access feed 
and water. The piggery should not be disinfected before the start 
of the test. After the start of the experiment, the Escherichia coli 
liquid should be sprayed every 4 days without flushing the piggery. 
The specific method is as follows.

2.4. Simulation of K88 challenged 
environment

The 200 ml of concentrated bacterial solution was diluted with 
saline to 3 L as the working bacterial solution, and the working 
bacterial solution was poured into the electric sprayer (the flow rate 
was 250 ml/min), and the nozzle was aligned with the partition, the 
slatted floor, the drinking fountain, and the feeding trough. After 
spraying, the concentration of working bacterial solution was 
collected from the nozzle of the spray machine for verification. 
After gradient dilution, the bacterial liquid was dropped onto the 
eosin methylene blue medium for 24 h. The colonies were counted 
and the concentration of the working bacterial liquid was calculated 
to be 6 × 108 CFU/ml. The bacteria were sprayed once on the first 
day of the experiment, and every 4 days thereafter, for a total of 7 
times (the 1st, 5th, 9th, 13th, 17th, 21st, and 25th days of 
the experiment).

2.5. Sample collection

The experimental period was 28 days. On the morning of the 
15th day of the trial, one pig from per pen was weighed and blood 
was collected from the anterior vena cava. Then, plasma and serum 
were separated stored at −80°C. After the pigs sacrificed, and 
intestinal segments of approximately 2 cm of proximal duodenum, 
middle jejunum, and distal ileum were selected then washed with 
phosphate buffered saline (PBS) and placed in 4% paraformaldehyde 
for overnight fixation. The liver, proximal duodenum, mid-jejunum, 
distal ileum, and intestinal mucosa were collected and quickly placed 
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in liquid nitrogen, and then stored at −80°C for long-term storage. 
The colonic contents were collected and put into liquid nitrogen for 
the detection of intestinal microorganisms.

2.6. Measurement of serum and liver 
antioxidant capacity

The activities of total antioxidant capacity (T-AOC, A015-2-1), 
malondialdehyde (MDA, A003-2), total superoxide dismutase 
(T-SOD, A001-1), and glutathione peroxidase (GSH-Px, A005) were 
determined by commercial kits provided by Nanjing Jiancheng 
Institute of Bioengineering (Nanjing, China). The liver samples were 
homogenized with normal saline and centrifuged to obtain 
supernatant. Then, the supernatant was diluted to 10% for 
determination. The protein concentrations of sample were measured 
using a bicinchoninic acid assay (BCA) kit (Thermo Fisher, USA, 
23225), and results were expressed as per milligram protein.

2.7. Enzyme-linked immunosorbent assay

The concentration of inflammation cytokines (IL-1B, ml025973, 
TNF-α,ml002360 TGF-β, ml002363, IL-6, ml025981 IL-8, ml02598, 
IL-10, and ml025956) and immunoglobulin (IgM, ml002334, IgG, and 
ml002328,) in serum was determined by ELISA kits (Shanghai Meilian 
Biotechnology Co., Ltd., Shanghai, China), as well as the concentration 
of secreted immunoglobulin (sIgA, ml026686) and mucin-2 (MUC-2) 
in jejunum and ileum mucosa. The mucosa of jejunum and ileum was 
added into normal saline to make 10% homogenate, and supernatant 
was collected after centrifugation at low temperature for 10 min, 
finally detected them according to the instructions.

2.8. The intestinal morphology examination

Briefly, the fixed duodenum, jejunum, and ileum were dehydrated 
in a gradient manner, then embedded in paraffin, cut into 5 μm thick 
sections, and stained with hematoxylin and eosin (HE). Finally, 
images of intestinal morphology were captured using camera fitted 
light microscope. Pannoramic Viewer was used to measure intestinal 
villus height and crypt depth, and 5 fields were randomly selected for 
observation and measurement in each slice.

2.9. Quantitative real-time polymerase 
chain reaction

Total RNA was extracted from the jejunum, ileum and colon 
using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to 
manufacturer instructions. The purity of RNA was confirmed by 
measuring absorbance at 260 nm and 280 nm using NanoDrop 1,000 
spectrophotometer (Thermo Fisher Scientific, Waltham, USA). Then, 
cDNA was synthesized according to the protocol of the PrimeScriptTM 
II 1st Strand cDNA Synthesis Kit (Takara, Tokyo, Japan). Quantitative 
real-time PCR was performed using a CFX Connect Detection System 
(Bio-Rad, Hercules, CA, USA). Primers used in this study are listed in 
Supplementary Table S2.

2.10. Microbial composition analysis

In short, the V3-V4 regions of the 16S rRNA genes were 
amplified using the forward primer 341F(5′-
CCTAYGGGRBGCASCAG-3′) and the reverse primer 806R(5′-
GGACTACHVGGGTWTCTAAT-3′). PCR products were recovered 
and purified by using GeneJET Extraction Kit (Thermo Fisher 
Scientific, Wilmington, USA) after gel electrophoresis. Validated 
libraries were sequenced on the IonS5TMXL platform provided by 
Personalbio (Shanghai, China). The 16S rRNA gene sequence data 
were deposited in the National Center for Biotechnology Information 
(NCBI) Sequence Read Archive (SRA) under the accession 
number PRJNA877369.

2.11. Statistical analyses

Data obtained were analyzed by two-factor ANOVA and 
Duncan multiple comparison method (SPSS 22.0; IBM-SPSS Inc., 
Chicago, IL, USA). The results were expressed as mean and 
standard error (SEM), and p < 0.05 was the significant 
difference level.

3. Result

3.1. Growth performance

The body weight (BW), average daily gain (ADG), average daily 
feed intake (ADFI), feed intake: body gain (F: G), diarrhea rate, and 
diarrhea index are shown in Table 1. There was no significant effect of 
ZnO or CT supplementation on BW, ADG, ADFI, and F/G (p > 0.05). 
Dietary supplementation with ZnO or CT decreased the diarrhea rate 
and diarrhea index from 0 to 14 days, 15 to 28 days, and 0 to 28 days, 
compared with CON group (p < 0.05). And compared to CON group, 
ZnO + CT group also decreased the diarrhea rate and diarrhea index 
from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05), but it is not 
significant compared with ZnO group (p > 0.05).

3.2. Effects of ZnO and CT on serum 
antioxidant capacity, immunoglobulins, 
and inflammatory cytokines in weaned 
piglets with K88 challenged

We observed the effect of ZnO or CT on the antioxidant capacity 
of piglets by detecting T-AOC, T-SOD, GSH-px, and MDA in serum 
and liver, and the results are shown in Figure  1. We  found no 
significant effect of either ZnO or CT on the antioxidant capacity of 
piglets (p > 0.05). As shown in Table 2 and Figure 2, ZnO + CT group 
increased the concentration of immunoglobulin M (IgM), compared 
with CON and CT group (p < 0.05), but not significant compared with 
ZnO group (p > 0.05). And we found no significant effect of either 
ZnO or CT on the secretory immunoglobulin A (sIgA) of piglets 
(p > 0.05). In addition, the ZnO group and ZnO + CT group decreased 
the concentration of interleukin-8 (IL-8) compared to CON group 
(p < 0.05). However, serum inflammatory cytokines were not markedly 
affected by CT treatment.
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3.3. The effects of ZnO and CT on intestinal 
barrier function

The intestinal morphology (duodenum, jejunum, and ileum) 
was observed by measuring the crypt depth, villus height, and the 
ratio of villus height to crypt depth (Figure 3 and Table 3). The 
morphology of intestinal villi was normal in ZnO groups and CT 
group, compared with the CON group. However, ZnO + CT group 
had a lower ileum villus height (p < 0.05), compared with the ZnO 
group. As shown in Figure  4, dietary supplementation of ZnO 
increased the MUC-2 content in jejunum and ileum mucosa 
(p  < 0.05), compared with the CON group. And the ZnO + CT 
group also increased the MUC-2 content in ileum mucosa 
(p < 0.05), compared with the CON group. The effects of ZnO or CT 
on ZO-1 and Occludin gene expression in weaned piglets are shown 
in Table 4. We found ZnO or CT no significant effect of the mRNA 
expression of Occludin in the duodenum (p  > 0.05). However, 
compared with the ZnO or CT group, the mRNA expression of 
Occludin in the duodenum was decreased in the ZnO + CT group 
(p  < 0.05). And compared with the CON group, the mRNA 
expression of zonula occludens-1 (ZO-1) in the jejunum was 
increased in the ZnO or CT group and the ZnO + CT group 

(p < 0.05). In addition, compared with the CON group, the mRNA 
expression of Occludin in the ileum was increased in the ZnO or 
CT group (p < 0.05), but no significant change in the ZnO + CT 
group (p > 0.05).

3.4. The effects of ZnO and CT on the gene 
expression of diarrhea-related channels In 
weaned piglets

Effects of ZnO or CT on diarrhea-related channel gene 
expression in weaned piglets under K88-challenged environment 
are shown in Table 5. We  found that compared with the CON 
group, the mRNA expression of cystic fibrosis transmembrane 
conductance regulator (CFTR) in the jejunum and ileum was 
decreased in the ZnO or CT group and the ZnO + CT group 
(p  < 0.05). In addition, the mRNA expression of the Na+/H+ 
exchanger (NHE3) in colon was lower in the ZnO or CT group 
and the ZnO + CT group than CON group (p < 0.05). And the 
mRNA expression of NHE3 in colon was lower in ZnO + CT group 
than ZnO group (p < 0.05).

TABLE 1 Effects of ZnO and CT on growth performance of weaned piglets in K88-challenged environment.

CON ZnO CT ZnO + CT SEM p-value

BW, kg

0 day 8.42 8.42 8.36 8.38 0.02 0.731

14 days 11.76 12.58 11.77 12.18 0.14 0.129

28 days 20.60 22.45 20.83 21.48 0.41 0.396

ADG, g

0–14 days 238.77 297.30 243.37 270.87 10.28 0.152

15–28 days 631.55 704.52 647.14 664.64 23.57 0.747

0–28 days 435.18 500.83 445.24 467.80 14.56 0.413

ADFI, g

0–14 days 341.98 404.05 338.79 347.74 11.42 0.135

15–28 days 852.32 1046.31 897.26 970.71 30.80 0.118

0–28 days 597.16 725.18 618.03 659.23 18.65 0.064

F:G

0–14 days 1.44 1.39 1.41 1.29 0.03 0.417

15–28 days 1.35 1.5 1.42 1.47 0.04 0.529

0–28 days 1.37 1.47 1.4 1.42 0.03 0.731

Diarrhea rate, %

0–14 days 40.80a 4.02b 15.37b 2.87b 3.70 <0.001

15–28 days 31.03a 1.73c 18.16b 1.73c 3.12 <0.001

0–28 days 35.92a 2.87c 16.76b 2.30c 3.25 <0.001

Diarrhea index

0–14 days 0.76a 0.12c 0.32b 0.13c 0.06 <0.001

15–28 days 1.24a 0.04c 0.66b 0.10c 0.11 <0.001

0–28 days 1.00a 0.08c 0.49b 0.11c 0.08 <0.001

BW = body weight; ADG = average daily gain; ADFI = average daily feed intake; F: G = feed intake: body gain; SEM = standard error of the mean. a,bMeans lacking common superscript letter 
indicated significant differences (p < 0.05) within a row.
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FIGURE 1

Effects of ZnO and CT on serum and liver antioxidant capacity of weaned piglets under K88-challenged environment. (A) The concentrations of 
T-AOC in serum and liver. (B) The concentrations of T-SOD in serum and liver. (C) The concentrations of GSH-Px in serum and liver. (D) The 
concentrations of T-MDA in serum and liver. T-AOC = total antioxidant capacity; T-SOD = total superoxide dismutase; GSH-Px = glutathione peroxidase; 
MDA = malondialdehyde. Values are means and standard errors represented by vertical bars (n = 6).

https://doi.org/10.3389/fmicb.2023.1181519
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yi et al. 10.3389/fmicb.2023.1181519

Frontiers in Microbiology 06 frontiersin.org

3.5. The effects of ZnO and CT on colonic 
microflora of weaned piglets

Figure 5A shows the distributions of common and specific 
OTUs among the four groups. As shown in the NMDS plot 
(Figure  5B), we  can see the clustering of the four groups of 
samples. We observed the Chao1, Shannon, and Simpson indexes 
in the all groups (Figures  5C–E), there was no significant 
difference (p > 0.05). A phenetic tree of the four groups was 
constructed based on unweighted UniFrac distance using UPGMA 
clustering method (Figure  5F). The LEfSe analysis identified 
discriminative species among the different groups (Figure 5G). 

Regarding the microbial composition at phylum level (Figure 5H), 
we observed that dietary supplementation of ZnO increased the 
relative abundance of Bacteroidetes, but decreased the relative 
abundance of Firmicutes. At the genus level (Figure  5I), the 
relative abundance of Prevotella was increased in ZnO group, 
compared with CON group, but the relative abundance of 
Lactobacillus was decreased. Furthermore, at the species level, 
dietary supplementation of ZnO increased the relative abundance 
of Prevotella_copri, but decreased the relative abundance of 
Lactobacillus_helveticus and Lactobacillus_hamsteri (Figure 5J). 
However, the microbial composition was not markedly affected by 
CT treatment.

TABLE 2 Effects of ZnO and CT on immunoglobulin contents in serum and intestinal mucosa of weaned piglets in K88-challenged environment.

CON ZnO CT ZnO + CT SEM p-value

Serum

IgA, pg/ml 13.87 12.84 11.19 10.21 0.75 0.329

IgM, pg/ml 11.34bc 15.80ab 10.31c 16.27a 0.77 0.002

IgG, μg/ml 59.78 48.22 58.99 47.10 3.48 0.438

Intestinal mucosa

Jejunum sIgA, ng/mg 

prot
2.90 3.88 3.14 3.59 0.15 0.081

Iluem sIgA, ng/mg 

prot
2.99 2.87 3.07 2.65 0.14 0.770

IgA = immunoglobulin A; IgM = immunoglobulin M; IgG = immunoglobulin G; sIgA = secretory immunoglobulin A; SEM = standard error of the mean. a,bMeans lacking common superscript 
letter indicated significant differences (p < 0.05) within a row.

FIGURE 2

Effects of ZnO and CT on serum inflammatory factors in weaned piglets under K88-challenged environment. (A) The concentrations of IL-1β, TNF-α, 
and TGF-β. (B) The concentrations of IL-6, IL-8, and IL-10. IL-1β = interleukin-1β; IL-6 = interleukin-6; IL-8 = interleukin-8; IL-10 = interleukin-10; 
TNF-α = tumor necrosis factor; TGF-β = transforming growth factor-β. Values are means and standard errors represented by vertical bars (n = 6). a,bMeans 
lacking common superscript letter indicated significant differences (p < 0.05).

https://doi.org/10.3389/fmicb.2023.1181519
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yi et al. 10.3389/fmicb.2023.1181519

Frontiers in Microbiology 07 frontiersin.org

4. Discussion

Pigs are one of the most important livestock and the most 
critical stage of their breeding is weaning. Post-weaning diarrhea 
(PWD) is a common disease in piglets after weaning, and its main 
pathogenic factor is enterotoxigenic Escherichia coli (Fairbrother 
et al., 2005). Dietary supplementation of traditional ZnO (2,000–
4,000 mg/kg) can promote growth, relieve diarrhea, increase 
intestinal barrier function, and alter the composition of the 

intestinal microbiota in weaned piglets (Chen et al., 2015). However, 
it is still unknown whether 1,500 mg/kg ZnO or CT can improve 
piglet health as an alternative to traditional pharmacological doses 
of ZnO. In this study, we found that there was an upward trend in 
ADG an ADFI after ZnO or CT supplementation, but it was not 
significant, and F/G was also higher than the CON group. But 
we demonstrated that dietary supplementation of 1,500 mg/kg ZnO 
effectively inhibit diarrhea of weaned piglets in ETEC-polluted 
environment, which is consistent with previous studies (Yu et al., 

FIGURE 3

Effects of ZnO and CT on intestinal morphology of weaned piglets in K88-challenged environment.

TABLE 3 Effects of ZnO and CT on intestinal morphology of weaned piglets in K88-challenged environment.

CON ZnO CT ZnO + CT SEM p-value

Villus height, μm

Duodenum 432.91 478.15 469.53 455.67 13.69 0.697

Jejunum 328.09 408.64 456.88 413.69 21.25 0.188

Ileum 284.54ab 367.25a 298.06ab 247.34b 14.68 0.020

Crypt depth, μm

Duodenum 259.79 261.57 275.02 279.35 8.99 0.850

Jejunum 203.10 217.65 237.66 206.39 7.99 0.437

Ileum 184.04 182.31 198.57 175.26 6.05 0.610

VCR

Duodenum 1.72 1.83 1.74 1.67 0.06 0.814

Jejunum 1.61 1.93 1.94 2.04 0.09 0.409

Ileum 1.58 2.05 1.56 1.43 0.09 0.096

SEM = standard error of the mean. a,bMeans lacking common superscript letter indicated significant differences (p < 0.05) within a row.
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2017; Wang et al., 2019). And supplementation of CT also inhibited 
diarrhea of weaned piglets in ETEC-polluted environment during 
the whole experimental period (from 0 to 28 days). However, the 
effect of ZnO in combination with CT to relieve diarrhea was similar 
to the effect of ZnO alone. Girard et al. found that gavage of weaned 
piglets with ETEC bacterial solution followed by dietary 
supplementation of 1% chestnut hydrolyzed tannins reduced the 
severity and duration of diarrhea, but did not completely prevent 
the occurrence of diarrhea (Girard et al., 2018), and the CT used in 
this study showed a similar function. The results indicated that 
1,500 mg/kg ZnO or CT can reduce the risk of environmental 
pollution-induced diarrhea in piglets, but CT cannot be used as a 
substitute for ZnO.

Oxidative stress has negative effects on the health of weaned 
piglets. Usually, the body will produce SOD, CAT, GSH-Px, and other 
antioxidant enzymes to maintain balance in the body. If the body’s 
antioxidant capacity is insufficient, oxidative damage will occur to 
tissues and organs (Panov and Dikalov, 2020). But in this study, 
supplementation with ZnO or CT did not significantly affect T-AOC, 
T-SOD, GSH-px, and MDA in serum and liver.

Immunoglobulins are one of the important components of the 
body’s immune system and an important basis for humoral immunity. 

The increase in immunoglobulin concentration in pigs can improve 
immune function and promote the development of their own immune 
system, thus alleviating weaning stress (Macpherson et al., 2012). IgM 
is the first antibody produced when stimulated by an antigen (Teng 
et al., 2020). In this study, serum IgM were increased in ZnO + CT 
group, compared with CON group and CT group. Interestingly, there 
was insignificant difference in CT group. Therefore, we hypothesize 
that this result is due to the addition of ZnO, which can prevent 
improve immune status. To further explore the effects of ZnO and CT 
on intestinal immune function, we detected the levels of cytokine in 
serum. Interleukin-1β (IL-1β), IL-8, interleukin-6 (IL-6), and tumor 
necrosis factor (TNF-α) have a synergistic and inducible relationship 
and are responsible for regulating and mediating the body’s immune 
function (Wang et al., 2020; Wu et al., 2021). Some studies have shown 
that ETEC can increase the expression of these cytokines (Ren et al., 
2020; Yi et al., 2021). In this research, dietary supplementation of ZnO 
reduced the concentration of IL-8 and had no significant effect on 
other cytokines. Wu et  al. found that supplementation with ZnO 
(2,500 mg/kg) increased the mRNA expression levels of IL-8 in colon 
tissues, which is inconsistent with our results (Oh et al., 2021). In 
addition, ZnO + CT group also had a lower expression levels of IL-8 
than CON group, but no significant than ZnO group. The above 
results indicated that supplementation with ZnO does not cause a rise 

FIGURE 4

Effects of ZnO and CT on MUC-2 of weaned piglets in K88-
challenged environment. MUC-2 = mucin-2. Values are means and 
standard errors represented by vertical bars (n = 6). a,bMeans lacking 
common superscript letter indicated significant differences (p < 0.05).

TABLE 4 Effects of ZnO and CT on intestinal tight junction gene 
expression in weaned piglets under K88-challenged environment.

CON ZnO CT ZnO + CT SEM p-
value

Duodenum

ZO-1 1.00 1.00 1.12 1.13 0.03 0.109

Occludin 1.00ab 1.05a 1.11a 0.87b 0.03 0.003

Jejunum

ZO-1 1.01b 1.50a 1.66a 1.71a 0.07 <0.001

Occludin 1.03 0.85 1.01 1.02 0.04 0.394

Ileum

ZO-1 1.06 1.43 1.31 1.40 0.07 0.293

Occludin 1.00b 1.27a 1.35a 1.13ab 0.04 0.003

ZO-1 = zonula occludens-1; SEM = standard error of the mean. a,bMeans lacking common 
superscript letter indicated significant differences (p < 0.05) within a row.

TABLE 5 Effects of ZnO and CT on diarrhea-related channel gene 
expression in weaned piglets under K88-challenged environment.

CON ZnO CT ZnO + CT SEM p-
value

Jejunum

AQP3 1.01 1.00 1.10 1.08 0.04 0.731

AQP8 1.00 0.94 1.07 1.06 0.03 0.257

CFTR 1.02a 0.44b 0.53b 0.32b 0.06 <0.001

NHE3 1.02 0.99 0.97 1.02 0.03 0.951

SGLT1 1.01 0.86 0.87 0.87 0.03 0.126

NKCC1 1.00 1.06 1.03 1.03 0.03 0.958

Ileum

AQP3 1.01 1.07 0.95 1.07 0.05 0.804

AQP8 1.04 0.82 0.94 0.86 0.05 0.366

CFTR 1.01a 0.58b 0.46b 0.42b 0.06 <0.001

NHE3 1.01 0.95 0.92 1.05 0.04 0.702

SGLT1 1.04 1.18 1.25 1.23 0.06 0.585

NKCC1 1.00 0.87 0.96 1.02 0.03 0.209

Colon

AQP3 1.02b 1.28ab 1.40a 1.54a 0.06 0.007

AQP8 1.01 1.29 1.05 1.27 0.06 0.171

CFTR 1.05 0.76 0.94 1.01 0.05 0.145

NHE3 1.00a 0.49b 0.46b 0.27c 0.06 <0.001

SGLT1 1.03 1.08 1.02 1.02 0.04 0.966

NKCC1 1.01 0.99 0.97 0.87 0.04 0.692

AQP3 = Aquaporin3; AQP8 = Aquaporin8; CFTR = CFTR; NHE3 = Na+/H+ exchanger; 
SGLT1 = Na + −glucose cotransporter 1; NKCC1 = Na + -K + -2Cl- cotransport carrier 1; 
SEM = standard error of the mean. a,bMeans lacking common superscript letter indicated 
significant differences (p < 0.05) within a row.
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in inflammatory factors and has some anti-inflammatory effects in 
ETEC-polluted environments. Our results indicated dietary 
supplementation of CT had no significant effect on cytokines. 
Persimmon-derived tannin was reported to reduce the expression of 
IL-1β, TNF-α, IL-6 (Matsumura et al., 2017; Kitabatake et al., 2021), 
which is inconsistent with our results. The possible reasons are related 
to the animal species and the sources of the CT.

Intestinal morphology is directly related to the digestion and 
absorption of nutrients and the mucosal barrier (Cera et al., 1988). In 
our study, dietary supplementation of ZnO or CT had no effect on 
intestinal morphology. But the villi height of the ileum was decreased 
in ZnO + CT group, compared with ZnO group. In addition, previous 
studies have shown that coated ZnO can improve ileum villus height 
(Sun et al., 2022). This may be due to the interaction between ZnO and 

FIGURE 5

Effects of ZnO and CT on colonic microflora species composition of weaned piglets in K88-challenged environment. (A) Venn diagram illustrating 
common and special OTUs distributed among the four groups. (B) OUTs-based NMDS plot. (C–E) Species diversity and homogeneity were evaluated 
using Chao1, Shannon’s, and Simpson’s indices. (F) UPGMA clustering was conducted based on unweighted UniFrac distance. (G) Significantly different 
biomarkers in the four groups. (H–J) Effects of ZnO and CT on the composition of colonic microbiota in weaned pigs at the phylum, genus and 
species level.
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CT. Liu et al. found that hydrolyzed tannin increased the villus height 
of ileum, which was inconsistent with our results. This may be caused 
by different forms of tannin (Liu et al., 2020). The intestinal barrier 
includes chemical barrier, mechanical barrier, and immune barrier. 
And mucin-2 is an important component of the mucus layer as the 
first barrier of the intestine (Yao et al., 2021). We further examined the 
levels of mucin-2 in ileum and jejunum, and the expression of tight 
junction genes in duodenum, jejunum, and ileum. Our results 
revealed that the content of muc-2 in jejunum and ileum mucosa was 
increased in ZnO group. And the content of muc-2  in jejunum 
mucosa increased in ZnO + CT group than CON group, but no 
significant difference compared to ZnO group. This indicated that CT 
could not significantly effect muc-2. In addition, dietary 
supplementation of ZnO combined with CT decreased the mRNA 
expression of Occludin in duodenum. But the mRNA expression of 
ZO-1 in jejunum was elevated in all treatment groups In addition, 
supplementation with ZnO or CT increased the mRNA expression of 
Occludin in ileum. Dietary supplementation with conventional doses 
of ZnO increased the mRNA expressions of ZO-1 in jejunum (Xia 
et  al., 2017). Moreover, due to the complexity of the intestinal 
environment of piglets, the effects of ZnO or CT on each intestine may 
not be consistent. As our experimental results shown, supplementation 
of ZnO or CT increased the expression of Occludin in duodenum and 
ileum, but does not affect expression of Occludin in duodenum. The 
above results suggest that ZnO (1,500 mg/kg) and CT may have a 
potential function that can parallel the doses of traditional ZnO in 
improving the intestinal barrier of weaned piglets.

Diarrhea occurs mainly due to abnormal transport of electrolytes 
and water. Numerous transporter proteins related to electrolyte 
absorption are present in intestinal epithelial cells, such as NHE3, Na + −
glucose cotransporter 1 (SGLT1), and water channel protein (AQP). In 
addition, the transporter proteins related to secretion are mainly CFTR 
and Na + -K + -2Cl- cotransport carrier 1 (NKCC1; Singh et al., 2014). To 
further explore the potential mechanism of ZnO and CT reducing 
diarrhea, we detected diarrhea-associated transporter protein genes by 
RT-PCR. AQP3 and AQP8 are closely associated with water transport in 
the colon (Zhao et al., 2016). AQP3 and AQP8 have been reported to 
be down-regulated in rats with colitis and ETEC induced diarrhea (Zhao 
et al., 2014; Yue et al., 2020). In our research, we found that the expression 
of AQP3 were up-regulated in CT group compared with the CON group, 
suggesting that CT prevent diarrhea by promoting water reabsorption 
and reducing the water content of stool. And there was an up-regulated 
trend of AOP3 in ZnO group. NHE3 plays an important role in the 
absorption of Na + in the intestinal lumen, and NHE3 knockout mice 
developed chronic diarrhea (Gawenis et al., 2002). And studies have 
shown that ETEC produces heat-stable enterotoxin or heat-labile 
enterotoxin which recognizes specific receptors and turns on CFTR, 
ultimately leading to watery diarrhea (Ren et al., 2022). In our study, 
dietary supplementation of ZnO or CT decreased the mRNA expression 
of CFTR in jejunum and ileum. In addition, the mRNA expression of 
NHE3 was down-regulated in ZnO or CT group. And the expression of 
NHE3 in ZnO + CT group was lower than that in ZnO group. Diarrhea 
leads to inhibition of NHE3 expression, which means that the intestinal 
absorption of Na + is reduced (Niu et al., 2021). Interestingly, the reduced 
expression of NHE3 in this study did not cause diarrhea in piglets, so 
we speculate that it may be that AQP in the colon has a stronger ability 
to interfere with water reabsorption than NHE3. The above results 
suggested that the potential mechanism of ZnO or CT anti-diarrhea is 

to reduce the expression of CFTR in the small intestine to prevent it over-
activation and decrease intestinal fluid secretion. Moreover, CT can 
enhance the expression of AOP3  in the colon to promote water 
reabsorption. These results implied that the mechanism of CT to inhibit 
diarrhea was similar to that of ZnO.

Gut microbes are an important part of the animal organism and have 
a significant impact on animal health (Valdes et al., 2018). At the phylum 
level, the microbiota can be  divided into three dominant phyla: 
Bacteroides, Firmicutes, and Actinomycetes. The ratio of Firmicutes to 
Bacteroides is an important indicator to evaluate the balance of the 
intestinal microbial community (Mariat et  al., 2009). An increased 
Firmicutes/Bacteroidetes ratio has been observed in ZnO group. Ley et al. 
reported that an increase in Firmicutes/Bacteroidetes ratio was directly 
related to weight gain (Ley et al., 2006). Lactobacillus is considered to be a 
beneficial species in the intestinal flora. Prevotella is known to be one of 
the indispensable floras for the production of short-chain fatty acids 
(SCFAs), which metabolize a variety of complex oligosaccharides and 
polysaccharides and also protect animals from intestinal inflammation 
(Megahed et al., 2019). In this study, the abundance of Prevotella increased 
in the ZnO group, while the abundance of Lactobacillus decreased. 
However, previous studies have found that ZnO reduces the abundance 
of harmful bacteria and also reduces the abundance of Lactobacillus 
(Pajarillo et al., 2021). The above results suggest that ZnO can improve 
growth performance by regulating the composition of intestinal flora.

5. Conclusion

In K88-challenged environment, ZnO could alleviate diarrhea, 
enhance intestinal function, and alter the composition of the intestinal 
flora in piglets. Similar to ZnO, dietary supplementation of CT also 
showed the potential to improve intestinal function and alleviate 
diarrhea. The mechanism by which CT alleviated diarrhea may have 
been to reduce intestinal fluid secretion by decreasing CFTR 
expression and promote water reabsorption by increasing AQP3 
expression. Moreover, the application of zinc oxide in combination 
with CT did not show a good improvement.
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