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Background: Studies showed that development of gut microbial dysbiosis has a 
close association with type 2 diabetes (T2D). It is not yet clear if there is a causal 
relationship between gut microbiota and T2D.

Methods: The data collected from the published genome-wide association studies 
(GWASs) on gut microbiota and T2D were analyzed. Two-sample Mendelian 
randomization (MR) analyses were performed to identify causal relationship 
between bacterial taxa and T2D. Significant bacterial taxa were further analyzed. 
To confirm the findings’ robustness, we  performed sensitivity, heterogeneity, 
and pleiotropy analyses. A reverse MR analysis was also performed to check for 
potential reverse causation.

Results: By combining the findings of all the MR steps, we  identified six 
causal bacterial taxa, namely, Lachnoclostridium, Oscillospira, Roseburia, 
Ruminococcaceae UCG003, Ruminococcaceae UCG010 and Streptococcus. 
The risk of T2D might be  positively associated with a high relative abundance 
of Lachnoclostridium, Roseburia and Streptococcus but negatively associated 
with Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010. 
The results of MR analyses revealed that there were causal relationships between 
the six different genera and T2D. And the reverse MR analysis did not reveal any 
evidence of a reverse causality.

Conclusion: This study implied that Lachnoclostridium, Roseburia and 
Streptococcus might have anti-protective effect on T2D, whereas Oscillospira, 
Ruminococcaceae UCG003 and Ruminococcaceae UCG010 genera might have 
protective effect on T2D. Our study revealed that there was a causal relationship 
between specific gut microbiota genera and T2D.
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Introduction

Type 2 diabetes (T2D) is typically diagnosed in older individuals 
or middle-aged people. It is a metabolic disorder that can be caused 
by either beta cell dysfunction or insulin resistance (Taylor, 2013). The 
evidence supporting the increasing prevalence of T2D has shown a 
steady rise over the past few decades (Lastra et al., 2014). The rapid 
emergence and prevalence of diabetes has attracted global attention 
(Jaacks et  al., 2016). In 2021, International Diabetes Federation 
released that the global diabetes prevalence rate among 20-79-year-old 
people is expected to increase to 12.2% in 2045, and most of them will 
be T2D (Sun et al., 2022).

The development of T2D can be triggered by various factors, such 
as unhealthy lifestyle and genetic factors. It has been theorized that the 
composition of gut microbiome plays a role in pathogenic mechanism 
of T2D (Cani, 2018; Hsieh et al., 2018; Zaky et al., 2021; Liu et al., 
2022). Recently, great interest has been attracted by the gut microbiota 
which have been demonstrated in studies regulating host physiological 
activities. Studies have shown that gut microbiome were important in 
maintaining homeostasis (Geva-Zatorsky et  al., 2017) and the 
establishment of immune system (Shi et al., 2017). Gut microbiota 
have important roles in the pathological process for various diseases 
by affecting the cell differentiation (Jubair et al., 2018) and cytokine 
release(Chappert, 2014), as well as regulating drug absorption and 
metabolism (Scher et al., 2020). Gut microbiota in individuals with 
T2D differs from non-diabetic ones (Larsen et al., 2010; Kashtanova 
et al., 2018; Takagi et al., 2020), the development of gut microbial 
dysbiosis has known to be a clinical manifestation of T2D (Forslund 
et al., 2015; Wu et al., 2017). But the results of various studies differ 
from one another. Larsen’s study indicated that the proportion of 
Firmicutes was significantly higher in healthy individuals compared 
with the diabetic, Bacteroidetes was somewhat enriched in the diabetic 
group, which results in a lower Firmicutes/Bacteroidetes ratio (Larsen 
et al., 2010). Nevertheless, Sedighi et al. found that an increased level 
of Firmicutes and decreased level of Bacteroidetes in T2D individuals, 
which means a higher Firmicutes/Bacteroidetes ratio in diabetic group 
(Sedighi et  al., 2017). Whilst the specific microbiome features 
identified as responsible for the appearance of T2D have differed 
among studies (Doumatey et al., 2020; Kitten et al., 2021), Kootte’s 
study showed that insulin sensitivity increased in obese metabolic 
syndrome participants who received fecal microbiota transplantation 
(FMT) from lean donors (Kootte et al., 2017). As a valid treatment for 
patients with T2D, FMT introduced (transplanted) gut microbiota 
acquired from the faeces of healthy donors into the patient’s 
gastrointestinal tract (Antushevich, 2020). This is also a good 
application of gut microbiota in the treatment of T2D. The most 
important intention for research is to provide guidance for microbiota-
orientated interventions treating T2D clinically.

Although the correlation between the gut microbiome and T2D 
is widely acknowledged, the exact causal relationship remains unclear. 
Elucidation of the causal relationships could be helpful for deepening 
comprehending of the responsibility of gut microbiota for the 
pathogenesis of T2D. As a statistical method, Mendelian 
randomization (MR) is usually used to clarify causal relationship 
between exposures to outcomes. MR uses single-nucleotide 
polymorphisms (SNPs) which strongly related to exposure as 
instrumental variables (IVs), and the relationship between the 
exposure and outcome could be evaluated (Emdin et al., 2017). The 

results of large-scale genome-wide association studies (GWASs) of the 
gut microbiota and diseases have led to the widespread use of MR 
analysis in various research fields (Bonder et al., 2016; Goodrich et al., 
2016). Unlike traditional observational studies, MR assists researchers 
in identifying the causal relationship between the exposure and 
outcome directly, and interference of reverse causation and 
confounding factors can be avoided (Zheng et al., 2017). Our research 
performed a two-sample MR analysis to explore relationship between 
gut microbiota and T2D.

Materials and methods

Ethics statement

Our analyses used the summary statistics of publicly available 
GWASs. No new data was collected, and the study was conducted 
without new ethical approval. The whole process that we studied was 
presented in a flowchart in Figure  1. The gut microbiota was the 
exposure, and T2D was outcome. A reverse MR analysis was also 
performed to examine the effects of T2D on the gut microbiota.

Gut microbiota sample

The summary statistics data collected from a large-scale GWAS 
meta-analysis which analyze the gut microbial taxa of 18,340 
participants from various ethnic groups (Kurilshikov et al., 2021). 
The twenty cohort studies included single ancestry samples from 
various regions, such as European (n = 13,266), Middle Eastern (n = 
481), Latin American (n = 1,097), East Asian (n = 811), African 
American (n = 114). The data collected from four cohorts included 
multiple ancestries (n = 2,571). The researchers analyzed the 
microbial composition using seven different extraction methods and 
three different rRNA regions. All the datasets were rarefied to around 
10,000 reads per sample to be  obligated to sequencing depth 
differences. Only taxa that belonged to over 10% of all the samples 
were included in this study to examine the effects of host genetic 
variation on gut bacterial species. The researchers analyzed 211 taxa. 
The total included 131 genera, 35 families and 20 orders, as well as 16 
classes, 9 phyla.

T2D sample

GWAS summary statistics for T2D were gathered from a large 
sample meta-analysis from the publicly available GWAS analyses. The 
study investigated T2D cases (62,892) and controls (596,424), which 
included over 16 million genetic variants by combining three GWAS 
datasets of European (Xue et al., 2018).

Selection of IVs

The total bacterial taxa included 211 species at five taxonomic 
levels. We analyzed with genus level which is the smallest and most 
specific of above illustrated levels with the current 16S rRNA gene 
sequencing technology. We  analyzed 131 taxa and excluded 12 
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unknown group taxa. Then, we included 119 bacterial taxa in the 
subsequent MR analyses.

To select potential IVs, we first included SNPs those associated 
with gut bacterial taxa at the genome-wide significance threshold 
p < 5.0 × 10−6. Eligible IVs must meet the followed quality control 
steps. First, the linkage disequilibrium (LD) threshold for 
clumping was set to r2 < 0.001 and the window size for clumping 
10,000 kb to minimize the effects of LD on the results. Second, 
we selected only exposures those had at least three independent 
genetic instruments. Third, we excluded palindromic SNPs with 
middle allele frequency. We calculated the F statistic based on the 
formula: F = (β/SE)2.

Statistical analysis

Effects of gut microbiota on T2D were estimated through a multi-
test MR analysis. For the bacterial genera, various tests were 
performed included the random-effects inverse variance weighted 
(IVW) (Burgess et  al., 2013), MR-Egger regression and weighted 
median. The evaluation of the heterogeneity related to each bacterial 
genus was conducted by the Cochrane’s Q statistics. The random-
effects IVW test was used to make sure a conservative but robust 
estimate when heterogeneity existed (p < 0.05). The weighted median 
test can also provide consistent estimates if more than 50% of the 
weights come from valid IVs (Bowden et al., 2016). The MR-Egger 

FIGURE 1

The flowchart of the study.
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regression allows for the presence of pleiotropy in more than 50% of 
IVs (Bowden et  al., 2015). Further analyses were conducted on 
bacterial genera that were identified to be significant in the previous 
steps. With MR-Egger regression, we detected horizontal pleiotropy. 
Based on the “leave-one-out” method, we  conducted sensitivity 
analysis (Dong et al., 2023).

Reverse MR analysis

We carried out reverse MR analysis to examine the effect of 
T2D on the identified bacterial genus. SNPs related to T2D were 
used as IVs. The results of the various statistical analyses were 
generated using R (version 4.2.2). The “TwoSampleMR” package 
was applied to perform IVW, weighted median, and MR-Egger 
regression. Through the “MRPRESSO” package, we  conducted 
MR-PRESSO test.

Results

Selection of IVs

According to the selection criteria of IVs, 482 SNPs associated 
with 97 genera were selected as IVs. F statistics for all SNPs were 
greater than 10, which suggested there were no weak IVs 
(Supplementary Table S1).

Causal effects of gut microbiota on T2D

Of all the 97 genera, six significant bacterial genera were selected 
for further MR analyses. Furthermore, four independent SNPs were 
associated with Lachnoclostridium and Oscillospira, respectively. Five 
independent SNPs were associated with Ruminococcaceae UCG010, 
eight SNPs were associated with Roseburia and Streptococcus. Nine 
SNPs were associated with Ruminococcaceae UCG003 
(Supplementary Table S2). SNP detailed message (Position, OR, 
Effect, Function) of significant genera in MR analyses were shown 
in Table 1.

The genetically predicted relative abundances of six genera were 
associated with T2D. Indeed, high genetically predicted levels of 
Oscillospira (OR: 0.834, 95% CI: 0.712–0.976), Ruminococcaceae 
UCG003 (OR: 0.885, 95% CI: 0.811–0.967) and Ruminococcaceae 
UCG010 (OR: 0.812, 95% CI: 0.713–0.925) were negatively 
associated with the risk of T2D. Nevertheless, Lachnoclostridium 
(OR: 1.175, 95% CI: 1.011–1.366), Roseburia (OR: 1.192, 95% CI: 
1.033–1.374) and Streptococcus (OR: 1.199, 95% CI: 1.600–1.357) 
were positively associated with the risk of T2D. The weighted median 
method also supported parts of the results. The genetically predicted 
Streptococcus level was positively associated with the risk of T2D 
(OR: 1.211, 95% CI: 1.051–1.395). Meanwhile, Oscillospira (OR: 
0.840, 95% CI: 0.707–0.998), Ruminococcaceae UCG003 (OR: 0.888, 
95% CI: 0.791–0.996) and Ruminococcaceae UCG010 (OR: 0.823, 
95% CI: 0.700–0.967) might have protective effect on T2D 
(Tables 2, 3). The underlying mechanisms of significant genera on 
T2D were shown in Figure 2.

Sensitivity analyses

There was no heterogeneity (A genetic trait can be  caused by 
changes in multiple different genetic materials) within the IVs of all the 
six genera (Supplementary Table S3). The MR-Egger regression 
intercepts indicated no horizontal pleiotropy (p > 0.05) 
(Supplementary Table S4). The scatter plots illustrated that Oscillospira, 
Ruminococcaceae UCG003 and Ruminococcaceae UCG010 genera 
might have protective effect on T2D, whereas Lachnoclostridium, 
Roseburia and Streptococcus genera might have anti-protective effect 
on T2D. The weights of MR analysis methods described in the scatter 
plots are listed in order, the IVW method, the MR-Egger, weighted 
median, weighted mode, and simple mode. The lines moving upward 
from left to right were found to be positive indicators of the relationship 
between the genus and T2D, while those going down from left to right 
were protective genera (Figure 3). There were no potential outliers of 
the IVs of all six genera for T2D in “leave-one-out” analysis, suggesting 
that all the identified causal associations were not influenced by single 
IV (Figure 4). Reverse MR results analysis revealed that T2D had no 
causal impact on all six genera (Table 4).

Discussion

Using two-sample MR methods, the causal relationship between 
the gut microbiota and T2D was clarified. By combining evidence 
from MR and sensitivity analyses, we  identified that the bacterial 
genera Lachnoclostridium, Oscillospira, Roseburia, Ruminococcaceae 
UCG003, Ruminococcaceae UCG010 and Streptococcus were causally 
associated with T2D. Among all six genera, Lachnoclostridium, 
Roseburia and Streptococcus were positively associated with the risk of 
T2D, they might have anti-protective effect on T2D. Oscillospira, 
Ruminococcaceae UCG003 and Ruminococcaceae UCG010 were 
negatively associated with the risk of T2D, in other words, the three 
genera might have protective effect on T2D.

The pathogeneses of T2D are controversial and only partly 
understood, in which gut microbiota might be  included in several 
underlying mechanisms (Figure 2). Short-chain fatty acids (SCFAs) and 
bile acids (BAs) could activate several key receptors expressed by 
enteroendocrine cells, thus increasing the secretion of key gut peptides 
including glucagon-like peptide (GLP)-1, GLP-2, and peptide YY (PYY). 
GLP-1, GLP-2, and PYY lower glucose concentrations (Meier, 2012), 
intestinal permeability (Cani et al., 2009), cytokine and amylase release 
(Vona-Davis and McFadden, 2007), thereby improving metabolic 
disorders and inflammation during diabetes. Butyrate has been described 
in numerous studies which provide essential energy for proliferating of 
colonic cells and maintain the gut barrier (Martin-Gallausiaux et al., 2021; 
Stoeva et al., 2021; Tang et al., 2022). Indeed, butyrate contributes to 
control of the anaerobic condition in the colon which is a key requirement 
for the remain of anaerobic bacteria in the close vicinity of the epithelium 
through activating the β-oxidation in the mitochondria (Rardin et al., 
2013). A reduce of butyrate-producing bacteria might active immune cells 
including T cells, which secrete pro-inflammatory cytokines including 
IL-1β, IL-6 and TNF (Castoldi et al., 2015; Li et al., 2021). Through these 
underlying mechanisms, gut microbiota is associated with T2D 
development by regulate numerous metabolic pathways in the gut and at 
distance such as in the muscles, the adipose tissue, and the liver.

https://doi.org/10.3389/fmicb.2023.1184734
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li and Li 10.3389/fmicb.2023.1184734

Frontiers in Microbiology 05 frontiersin.org

Bacterial genera Oscillospira, Ruminococcaceae UCG003 and 
Ruminococcaceae UCG010 are all members of family Ruminococcaceae, 
phylum Firmicutes. Gut microbiota affected the major human diseases, 
such as obesity and diabetes, through metabolic and immune signals 
that enter the circulation (Holmes et  al., 2012). Gut microbiota 
involving genera from family Ruminococcaceae can affect the 
production of SCFAs and the conversion of primary BAs to secondary 
BAs (Koh et al., 2016). SCFAs are important metabolites in maintaining 
intestinal homeostasis among which butyrate has been investigated 
most extensively (Parada Venegas et al., 2019). Gut microbiota could 
reshape the host metabolic, signaling pathways and intestinal barrier 
functions, which are related to the insulin resistance in T2D (Sharma 

and Tripathi, 2019). As a member of family Ruminococcaceae, 
Oscillospira is a genus capable of producing SCFAs such as butyrate. 
Studies have shown that the variation in Oscillospira abundance has a 
obviously favorable influence on human health (Konikoff and Gophna, 
2016) especially for metabolic diseases (Konikoff and Gophna, 2016; 
Gophna et al., 2017) and it has been referred to as a potential next-
generation probiotic (Yang et al., 2021). Through over 6.2 years of 
follow-up for 2,731 participants without T2D initially, Miao et al. found 
that compared with 276 diabetics, Oscillospira were enriched in 
participants without T2D (Miao et al., 2020). Shen et al. investigated 
the effect of L-arabinose for preventing or treating T2D, and they found 
that L-arabinose reversed the decrease in the relative abundance of 

TABLE 1 SNP message of significant genera.

Bacterial taxa (exposure) SNP Position OR Effect Function

Lachnoclostridium rs4738679 chr8:59370320 1.009 Anti-protective effect Intergenic

rs6112314 chr20:19300846 0.994 Protective effect Intron

rs789029 chr18:1053252 0.989 protective effect Intron

rs615997 chr3:23037786 1.011 Anti-protective effect Downstream

Oscillospira rs12206468 chr6:18093691 1.007 Anti-protective effect Intergenic

rs28889936 chr4:89483300 0.977 Protective effect Intron

rs1954532 chr14:28151415 0.974 Protective effect Intron

Roseburia rs16910295 chr11:12009569 0.999 Protective effect Intron

rs9300744 chr13:103117486 0.984 Protective effect Intergenic

rs6445851 chr3:57116228 1.024 Anti-protective effect Upstream

rs6930661 chr6:12774611 0.999 Protective effect Intron

rs2160994 chr12:50650057 0.990 Protective effect Intron

rs2943022 chr5:89598914 1.004 Anti-protective effect intergenic

Ruminococcaceae UCG003 rs73341549 chr7:51541468 1.009 Anti-protective effect Intergenic

rs16959793 chr15:35071718 1.016 Anti-protective effect Intron

rs3013089 chr1:13794594 1.007 Anti-protective effect Intergenic

rs4532474 chr6:105781538 1.001 Anti-protective effect Intron

rs11243416 chr9:134416970 0.998 Protective effect Upstream

rs4452755 chr8:82026852 1.011 Anti-protective effect Upstream

rs11613919 chr12:75496463 0.992 Protective effect Intron

rs10490280 chr2:37905976 1.011 Anti-protective effect Intron

rs646327 chr19:49209851 0.986 Protective effect Downstream

Ruminococcaceae UCG010 rs2820282 chr6:104728618 0.991 protective effect Intergenic

rs12597105 chr16:5233941 1.010 Anti-protective effect Intergenic

rs6958419 chr7:16349864 1.016 Anti-protective effect Intron

rs682403 chr9:135968557 1.015 Anti-protective effect Downstream

Streptococcus rs11720390 chr3:94103591 1.031 Anti-protective effect Intergenic

rs7916711 chr10:28588269 0.998 Protective effect Intron

rs10448310 chr9:93556174 0.985 Protective effect Intergenic

rs6806351 chr3:132058723 1.009 Anti-protective effect Intron

rs4968759 chr17:61298020 0.995 Protective effect Intron

rs11764382 chr7:46774896 0.974 Protective effect Intron

rs17708276 chr8:10199548 0.973 Protective effect Intron

rs11110281 chr12:100584014 0.979 Protective effect Intron
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Oscillospira in T2D rats as well as aggravation symptoms of diabetes 
mellitus (Shen et al., 2021). These results are evidence of the protective 
effect of Oscillospira on T2D. Butyrate-producing bacteria produce 
butyrate by fermenting carbohydrate. Accumulating evidences have 
shown that the butyrate can interact with various physiological 
function, such as glucose homeostasis and appetite (Canfora et al., 
2015). Butyrate has important functions for host health (McMurdie 
et al., 2022); studies have illustrated that butyrate-producing bacteria 
can protect against various types of metabolic diseases (Qin et al., 2012; 
Valles-Colomer et al., 2019; Stoeva et al., 2021; McMurdie et al., 2022). 
Depletion in butyrate-producing taxa has been linked to the 
development of T2D (Qin et al., 2012). Although Roseburia is a major 
genus of butyrate-producing bacteria in the intestinal tract of animals 
and humans, we found it might be risk factor for T2D. Roseburia is also 
a member of phylum Firmicutes, the various species of Roseburia that 
are all known to produce SCFAs (Tamanai-Shacoori et al., 2017). Some 
works observed that Roseburia exerts beneficial effects on human 

health through producing metabolites to prevent intestinal 
inflammation and maintain energy homeostasis (Tamanai-Shacoori 
et  al., 2017; Song et  al., 2021). A metagenome-wide association 
study(MGWAS) discovered that patients with T2D showed a 
decreasing trend of R. intestinalis (Qin et al., 2012), which was different 
from our study.

Ruminococcaceae UCG003 and Ruminococcaceae UCG010 are two 
bacterial genera in the same family. Recent studies discovered that 
Ruminococcaceae UCG003 is one of the main genera that plays a 
positive role in chronic insomnia and cardiometabolic diseases (Jiang 
et al., 2022), as well as depressive symptoms (Radjabzadeh et al., 2022). 
Huang et al. (2022) characterized the change in the gut microbiota 
composition after metabolic surgery in patients with diabetes. They 
found that the abundance of the Ruminococcaceae UCG003 group 
increased after metabolic surgery (Huang et al., 2022), implying that 
the abundance of Ruminococcaceae UCG003 was negatively associated 
with diabetes. In another study (Gao et  al., 2020), levels of 

TABLE 2 Significant MR analysis results.

Bacterial taxa (exposure) MR method No. SNP OR 95% Cl p

Lachnoclostridium IVW 4 1.175 1.011–1.366 0.036

Weighted median 1.182 0.995–1.405 0.058

MR-Egger 1.023 0.167–6.285 0.982

Simple mode 1.190 0.953–1.486 0.223

Weighted mode 1.191 0.945–1.500 0.235

Oscillospira IVW 3 0.834 0.712–0.976 0.024

Weighted median 0.840 0.707–0.998 0.048

MR-Egger 1.391 0.719–2.691 0.506

Simple mode 0.790 0.619–1.009 0.200

Weighted mode 0.878 0.680–1.132 0.421

Roseburia IVW 6 1.192 1.033–1.374 0.016

Weighted median 1.128 0.950–1.339 0.169

MR-Egger 0.772 0.464–1.284 0.376

Simple mode 1.089 0.866–1.369 0.498

Weighted mode 1.089 0.854–1.388 0.523

Ruminococcaceae UCG003 IVW 9 0.885 0.811–0.967 0.007

Weighted median 0.888 0.791–0.996 0.043

MR-Egger 1.091 0.805–1.480 0.591

Simple mode 0.860 0.709–1.045 0.167

Weighted mode 0.879 0.736–1.049 0.190

Ruminococcaceae UCG010 IVW 4 0.812 0.713–0.925 0.002

Weighted median 0.823 0.700–0.967 0.018

MR-Egger 1.533 0.145–16.195 0.756

Simple mode 0.851 0.693–1.045 0.221

Weighted mode 0.852 0.701–1.037 0.208

Streptococcus IVW 8 1.199 1.600–1.357 0.004

Weighted median 1.211 1.051–1.395 0.008

MR-Egger 1.211 0.797–1.841 0.404

Simple mode 1.344 1.065–1.695 0.041

Weighted mode 1.300 1.017–1.661 0.074
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Ruminococcaceae UCG003 abundance were observed significantly 
reduced in women with hyperglycemia in pregnancy. Our findings also 
support the result that Ruminococcaceae UCG003 has protective effect 
against diabetes. Chen et al. (2021) performed a microbiome-wide 
study with a large population to examine the role of gut microbiome 
composition in insulin resistance as well as T2D. They found 12 groups 
of bacteria were related to T2D, which included Ruminococcaceae 
UCG010, and a high abundance of Ruminococcaceae UCG010 was 
negatively associated with the risk of T2D, suggesting its protective 
effects against T2D. Differ from the above study, Esquivel-Hernández 
et al. observed that Ruminococcaceae UCG010 is one of the genera 
which driving the progress of T2D in a Mexican cohort (Esquivel-
Hernández et al., 2023).

A case–control study conducted by Allin et al. (2018) analyzed the 
gut microbiota between normal and anormal glucose regulation 
individuals, and they found that the abundance of various bacterial 
genera and over 30 operational taxonomic units (OTUs) were 
differentially between the two groups. In their findings, the abundance 
of Streptococcus increased in adults with prediabetes. Studies have 
shown that Streptococcus was closely related to various inflammation 
(Takahashi et al., 2011; Ge and Sun, 2014; Zbinden et al., 2015), which 
might be  involved in the pathogeneses of T2D. Our findings also 
supported their results that increasing of Streptococcus abundance is a 
mark of progression to diabetes. Wang et  al. (2020) observed the 
antiobesity effects of the natural polyphenol resveratrol (RSV) and 
found that RSV treatment significantly changed the composition of gut 
microbiome in mice, which showed an enrichment of six genera 
including Lachnoclostridium. Next, a high-fat diet treated mice were 
transplanted of the six RSV-microbiota, then the mice weight gain 
decreased, insulin sensitivity increased, and intestinal barrier function 
improved. Tettamanzi et al. (2021) conducted a 3-week randomized 
controlled crossover feeding trial to investigate the intervention 
mechanism of two types of dietaries including different components 
but isocaloric on 20 obese women with insulin-resistance. The study 
revealed that the genus Lachnoclostridium might be negatively impact 
to glucose metabolism, and thus, T2D. Lachnoclostridium, as a member 
of Lachnospiraceae, are also implied in BAs transformation (Thomas 
et al., 2008). Dysregulation of BAs homeostasis might associate with 
the progress of T2D (Chávez-Talavera et  al., 2017; McGlone and 
Bloom, 2019). Our finding consistent with the result of Tettamanzi’s 

FIGURE 2

The underlying mechanisms of significant genera on type 2 diabetes.

TABLE 3 Significant genera effect on T2D.

Bacterial taxa Effect Potential 
contributes

Lachnoclostridium Anti-protective effect Pro-inflammation

Oscillospira Protective effect Anti-inflammation, 

maintain the gut barrier

Roseburia Anti-protective effect Pro-inflammation

Ruminococcaceae 

UCG003

Protective effect Anti-inflammation, 

maintain the gut barrier

Ruminococcaceae 

UCG010

Protective effect Anti-inflammation, 

maintain the gut barrier

Streptococcus Anti-protective effect Pro-inflammation
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FIGURE 4

Leave-one-out analysis of each genus associated with type 2 diabetes. (A) Lachnoclostridium. (B) Oscillospira. (C) Roseburia. (D) Ruminococcaceae 
UCG003. (E) Ruminococcaceae UCG010. (F) Streptococcus. Red lines represent estimations from the IVW test.

FIGURE 3

Scatter plots of each genus associated with the risk of type 2 diabetes. (A) Lachnoclostridium. (B) Oscillospira. (C) Roseburia. (D) Ruminococcaceae 
UCG003. (E) Ruminococcaceae UCG010. (F) Streptococcus.
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study, which suggested Lachnoclostridium was found to be positively 
correlated with T2D (Tettamanzi et al., 2021). Differ from our findings, 
Wang’s study showed that Lachnoclostridium had a positive effect on 
increasing insulin sensitivity (Wang et al., 2020).

Our study found a causal relationship between six genera of gut 
microbiota and T2D. Nevertheless, T2D is a multi-factorial disease 
that can be influenced by environment, gender, lifestyle, diet, aging, 
epigenetics, and genetics (Scott et al., 2007; Ling and Groop, 2009; 
NCD Risk Factor Collaboration, 2016). Previous studies have shown 
that the role of genera Roseburia, Rumnococcaceae UCG010, and 
Lachnoclostridium in T2D are controversial, and different studies 
have yielded different results. Our findings provide reference for 
dispute resolution. A change in an individual bacterium cannot 
account for the incidence of T2D, specific genus may have a different 
type of effect in specific biological context. Two large-scale 
metagenome analyses explored the structural features of gut 
microbiota in China and Europe healthy people and T2D patients, 

which illustrated that large differences still exist in metagenomic 
clusters of cohorts in both area (Qin et al., 2012; Karlsson et al., 2013). 
It shows that the susceptibility for T2D would not be affected by 
single bacteria. This situation maybe an explanation for the 
inconsistency of our results with some other findings.

Our study has several limitations. First, participants in the two 
GWASs were primarily of European descent, therefore the 
applicability of our results need further investigation. Second, 
current research methods of microbiota GWASs limit the scope of 
our study for further specialized level. The specificity and accuracy 
of current results can be increased by using advanced analyzing 
method, then the generalizability of our results and the accuracy of 
our study might be improved. Related work needs to be done to 
identify associations between T2D and gut microbiome by 
combining the evidence from cohort studies, clinical trials, and 
functional studies, such an investigation is conducive for exploring 
the pathogenesis of diabetes.

TABLE 4 Reverse causal association between T2D and gut microbiota.

Bacterial taxa (outcome) MR method No. SNP OR 95% Cl p

Lachnoclostridium IVW 108 1.022 0.990–1.054 0.186

Weighted median 1.008 0.956–1.064 0.770

MR-Egger 1.008 0.938–1.083 0.832

Simple mode 1.042 0.933–1.164 0.497

Weighted mode 1.026 0.964–1.091 0.436

Oscillospira IVW 108 0.995 0.955–1.038 0.827

Weighted median 1.059 0.989–1.135 0.120

MR-Egger 1.083 0.986–1.191 0.100

Simple mode 1.058 0.897–1.248 0.504

Weighted mode 1.066 0.971–1.171 0.133

Roseburia IVW 108 1.024 0.992–1.057 0.139

Weighted median 1.043 0.988–1.100 0.124

MR-Egger 1.025 0.954–1.101 0.496

Simple mode 0.944 0.849–1.051 0.327

Weighted mode 1.027 0.965–1.093 0.407

Ruminococcaceae UCG003 IVW 108 1.034 0.992–1.077 0.107

Weighted median 1.037 0.969–1.111 0.304

MR-Egger 1.074 0.980–1.178 0.131

Simple mode 1.077 0.954–1.215 0.246

Weighted mode 1.040 0.966–1.119 0.240

Ruminococcaceae UCG010 IVW 108 1.005 0.967–1.045 0.754

Weighted median 0.993 0.920–1.072 0.853

MR-Egger 1.016 0.929–1.110 0.699

Simple mode 1.022 0.889–1.175 0.848

Weighted mode 1.001 0.929–1.078 0.924

Streptococcus IVW 108 0.984 0.952–1.017 0.332

Weighted median 0.969 0.916–1.025 0.280

MR-Egger 0.947 0.879–1.021 0.159

Simple mode 1.078 0.945–1.228 0.236

Weighted mode 0.964 0.903–1.029 0.321
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Conclusion

Our study found that there could be causal implications for T2D 
from the presence of six genera in the gut microbiome. Oscillospira, 
Ruminococcaceae UCG003, and Ruminococcaceae UCG010 were 
identified to be  negatively associated with the risk of 
T2D. Lachnoclostridium, Roseburia, and Streptococcus might have anti-
protective effect on T2D.
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