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Hematologic neoplasms represent 6.5% of all cancers worldwide. They are 
characterized by the uncontrolled growth of hematopoietic and lymphoid cells 
and a decreased immune system efficacy. Pathological conditions in hematologic 
cancer could disrupt the balance of the gut microbiota, potentially promoting the 
proliferation of opportunistic pathogens. In this review, we highlight studies that 
analyzed and described the role of gut microbiota in different types of hematologic 
diseases. For instance, myeloma is often associated with Pseudomonas 
aeruginosa and Clostridium leptum, while in leukemias, Streptococcus is the most 
common genus, and Lachnospiraceae and Ruminococcaceae are less prevalent. 
Lymphoma exhibits a moderate reduction in microbiota diversity. Moreover, 
certain factors such as delivery mode, diet, and other environmental factors can 
alter the diversity of the microbiota, leading to dysbiosis. This dysbiosis may inhibit 
the immune response and increase susceptibility to cancer. A comprehensive 
analysis of microbiota-cancer interactions may be useful for disease management 
and provide valuable information on host-microbiota dynamics, as well as the 
possible use of microbiota as a distinguishable marker for cancer progression.
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Introduction

Hematologic malignancies are characterized by the uncontrolled growth of hematopoietic 
and lymphoid cells, resulting in decreased immune system efficacy (Méndez-Ferrer et al., 2020). 
Hematologic neoplasms account for 6.5% of all cancers worldwide (De Moraes Hungria et al., 
2019; Kocarnik et al., 2022). The World Health Organization (WHO) classifies hematologic 
malignancies based on morphology, immunophenotype, genetics, and clinical features (Khoury 
et  al., 2022). The most common subtypes include leukemia, Hodgkin’s lymphoma (HL), 
non-Hodgkin’s lymphoma (NHL), and multiple myeloma (MM) (Keykhaei et  al., 2021). 
Hematologic diseases have been associated with genetic factors and alterations of the immune 
system. However, several studies also suggest a potential correlation between hematologic 
cancers and alteration in the microbiota. For instance, research shown that the growth of gastric 
mucosa-associated lymphoid tissue (MALT) lymphoma tumors can be stimulated by signaling 
antigens released by the bacterium Helicobacter pylori (H. pylori), highlighting a possible link 
between bacteria and MALT lymphoma (Ferreri et al., 2013; Kuo and Cheng, 2013; Portlock 
et al., 2015).

The human gut microbiota (GM) is a population of microorganisms, including bacteria, 
archaea, fungi, protozoa, and viruses, that coexist within the intestinal tract (D’Angelo et al., 
2021). Furthermore, these microorganisms produce metabolites such as short-chain fatty acids 
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(SCFAs), which could have anti-carcinogenic properties. The most 
predominant SCFAs, acetate, propionate, and butyrate, play crucial 
roles in ion absorption and intestinal motility (Jasiński et al., 2021). 
In particular, butyrate has been studied for its anti-inflammatory 
properties (Ubeda et al., 2010; Canani et al., 2011; Zimmerman et al., 
2012; Bin et al., 2021). However, conflicting findings suggest that the 
effects of butyrate on cell proliferation vary, depending on factors 
such as time, cell type, and concentration; it could either promote or 
prevent cell proliferation. Nonetheless, it has been proposed that 
excessive butyrate production following dysbiosis and inflammation 
may promote tumor proliferation, potentially outweighing its 
beneficial properties (Donohoe et al., 2012).

Metagenomics and metabolomics analyses have provided valuable 
insights into the role of intestinal microbiota in malignant neoplasms 
(Frankel et  al., 2017). These studies suggest that pathological 
conditions in hematologic cancer (HC) can lead to dysbiosis, which is 
an imbalance of the microbiota (Ahmed et al., 2020; Dutta and Lim, 
2020; Tsvetikova and Koshel, 2020; Zheng et al., 2020; Abdelazeem 
et al., 2021). Imbalances in the microbiota can inhibit the colonization 
of beneficial probiotic bacteria, promote harmful enteropathogens 
proliferation, and alter cytokine signaling, thus affecting the immune 
system (Alexander et al., 2017). In this review, we highlight studies 
that analyzed the role of GM in different types of hematologic diseases, 
especially leukemias, lymphomas, and myelomas. Additionally, 
we describe the factors that can alter the human gut microbiota and 
its correlation with hematologic cancer predisposition and progression.

Gut microbiota and hematologic 
diseases

Hematologic diseases have been associated with dysbiosis, leading 
to a limited capacity of the microbiota’s metabolites to modulate 
inflammatory processes, and disrupting intestinal homeostasis. 
Understanding the relationship between the host and gut microbiota 
is crucial. Germ-free mice experiments have shown that certain 
bacteria, such as Bacteroides and Escherichia spp., could have an 
immunogenic effect by stimulating the production of immunoglobulin 
A (IgA) plasmacytes (Moreau et al., 1978; Strauch et al., 2005). The 
microbiota interacts with the immune system via the intestinal 
epithelium, which comprises enterocytes, goblet cells, neuroendocrine 
cells, tuft cells, Paneth cells, and Microfold cells (M cells), plays an 
essential role in innate immunity and host defense (Allaire et al., 2018).

Peyer’s patches are clusters of lymphoid tissue that line the walls of 
the small intestine. They contain immune cells such as innate lymphoid 
cells (ILCs), natural killer (NK) cells, T and B lymphocytes, and M cells 
(Elemam et al., 2017). Pattern recognition receptors (PRRs), including 
Toll-like receptors (TLRs) and Nod-like receptors (NLRs), are 
expressed by both epithelial and immune cells. These receptors can 
recognize pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) (Rankin et al., 2013). 
Remarkably, a study in mice suggests that gut microbiota manipulation 
can modulate cancer immunotherapy by increasing T cells within the 
tumor microenvironment (Sivan et al., 2015). GM has been linked to 
immunological response because microorganisms can facilitate the 
transport of macromolecules and antigens through the gut epithelium.

Moreover, flagellin is the primary component of the bacterial 
flagellum; it mediates the interaction between the intestinal epithelium 

and host immunity. Flagellin can be recognized by TLR5, found in 
B-cells and CD4+ T-cells. Differentiated B-cells produce IgA that 
neutralizes the pathogen and prevents subsequent infection (Eaves-
Pyles et al., 2011; Haiko and Westerlund-Wikström, 2013). Generally, 
TLRs activation by antigens from the normal gut microbiota signals 
the inhibition of inflammatory reactions, which is necessary to 
maintain intestinal homeostasis. NLRs recognize specific microbial 
molecules and initiate the formation of inflammasomes, which act as 
sensors for damage-associated patterns (Lavelle et al., 2010; Parlato 
and Yeretssian, 2014). Thus, immune dysregulation in hematologic 
diseases could alter the interaction with the microbiota, inhibiting the 
role of its metabolites and leading to an increased vulnerability to 
infections and a rise in the severity of hematological cancer.

Factors associated with gut 
microbiota composition and 
hematologic cancer

The interactions between the microbiome and hematologic cancer 
are influenced by intrinsic and extrinsic factors. Intrinsic factors, such 
as genetics, immune status, and overall health, can shape both the 
composition and functionality of the gut microbiota. Genetic variations 
in host genes can influence the expression of microbial receptors, 
impacting the colonization and survival of specific microbial species. 
Immune dysregulation can lead to microbial imbalances contributing 
to carcinogenesis (Rahman et  al., 2022). Extrinsic factors, such as 
nutrition, lifestyle, drugs, anticancer therapy, and environmental 
exposures, also influence the gut microbiota. Physical exercise, stress, 
diet, type of delivery, pollution, and chemicals indirectly impact the gut 
microbiota through their effects on human physiology and metabolism 
(Bajinka et al., 2020). Altogether, these variables alter the gut microbial 
ecosystem, increasing the host’s susceptibility to hematopoietic 
malignancies (Figure 1; Uribe-Herranz et al., 2021).

Method of delivery

The type of delivery can influence the diversity of the neonate’s gut 
microbiota. During vaginal delivery, the neonate is exposed to vaginal, 
perineal, and fecal flora, with the most abundant bacteria being 
Lactobacillus, Prevotella, Sneathia (Stiemsma and Michels, 2018), and 
Gardnerella vaginalis (Chen et al., 2021). Conversely, neonates born 
by cesarean delivery have distinct intestinal microbiota colonized by 
skin bacteria, such as Staphylococcus, Corynebacterium, and 
Propionibacterium (Greenbaum et  al., 2018; Sędzikowska and 
Szablewski, 2021). Research has correlated the type of delivery with a 
predisposition to the development of hematologic diseases such as 
leukemia and HL, concluding that cesarean deliveries had higher rates 
of HC development compared to vaginal delivery (Momen et al., 2014; 
Greenbaum et al., 2018; Marcoux et al., 2022).

Method of feeding

Breastfeeding colonizes the infant’s gut microbiome through 
contact with the nipple-areola and breast milk microbes. The 
microbiota of breastfed infants is dominated by Bifidobacterium, 
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Ruminococcus, and Lactobacillus spp. In contrast, bottle-fed infants 
exhibit a higher prevalence of Proteobacteria, Streptococcus, 
Bacteroides, Clostridium, Bifidobacterium, and Atopobium in their 
microbiota. According to numerous studies, breastfeeding is 
important in lowering the risk of infant leukemia (Ajrouche et al., 
2015; Amitay et al., 2016), while formula feeding has been associated 
with an increased risk of various diseases (Stiemsma and Michels, 
2018; Sędzikowska and Szablewski, 2021; Su et al., 2021).

Dietary factors

Recent studies have suggested that dietary factors can shape gut 
microbiota (Alexander et al., 2017; Uribe-Herranz et al., 2021). There 
are different diet types, depending on the country and the area (rural 
or urban). Certain diets are characterized by high fat and carbohydrate 
intake but low fiber, while others are rich in both protein and fiber. 

The metabolism of these foods can result in the enrichment or 
elimination of different bacterial populations and lead to the formation 
of specific metabolites (Koh et al., 2016; Li et al., 2021). Investigations 
found that fiber (Liu et al., 2015), oligosaccharides (Hosomi et al., 
2009), glutamine (Han et al., 2016), and lactoferrin are potentially 
beneficial molecules during leukemia treatment because they increase 
the proportions of beneficial commensals (Iyama et al., 2014; Masetti 
et al., 2021).

Other factors

The composition of the microbiota is influenced by various 
factors, including cancer treatments and therapies. One critical factor 
are medications, such as antibiotics, which can disrupt the balance of 
the gut microbiota, leading to dysbiosis that may affect cancer 
treatment outcomes. For example, although antibiotics are commonly 

FIGURE 1

Factors influencing the gut microbiota and its relationship to hematologic malignancies. These factors are intrinsic and extrinsic. Intrinsic factors 
include genetics, immune status, and overall health, whereas extrinsic factors include nutrition, lifestyle, medications, anticancer therapy, and 
environmental exposures that affect the gut microbiota. HSCT, Hematopoietic stem cell transplantation.
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administered in hematologic cancer treatment to prevent infections, 
they can affect bacteria such as Faecalibacterium, Anaerostipes, and 
Blautia, potentially disrupting the overall gut microbial ecosystem 
(Dunn et al., 2022; Sochacka-ćwikła et al., 2022).

Furthermore, various anticancer treatments, such as chemotherapy, 
radiotherapy, and immunotherapy, have a profound impact on the gut 
microbiota of hematologic cancer patients. Specific chemotherapeutic 
drugs (cladribine, vidarabine, cisplatin, and gemcitabine) may become 
less effective against certain bacteria, and could decrease the abundance 
of beneficial bacteria like Bifidobacterium, Lactobacillus, and 
Faecalibacterium prausnitzii (F. prausnitzii) while promoting potentially 
harmful bacteria, such as Escherichia and Enterococcus faecium 
(Zwielehner et al., 2011; Pflug et al., 2016; Dunn et al., 2022).

Additionally, hematopoietic stem cell transplantation (HSCT) can 
lead to changes in the microbiota and give rise to complications such 
as graft-versus-host disease (GVHD). Severe GVHD has been 
associated with an increased abundance of Enterobacteriaceae, while 
Clostridia have been linked to anti-inflammatory responses (Hong 
et al., 2021). Studies have demonstrated shifts in the microbiota during 
the conditioning stage, with chemotherapeutic agents damaging 
intestinal epithelial cells and increasing the susceptibility to bacteremia 
(Shono and van den Brink, 2018; Hong et al., 2021; Ingham et al., 
2021; Margolis et al., 2023). The conditioning regimen used before 
HSCT significantly alters the gut microbiome, surpassing even the 
effects of the transplant itself (Jørgensen et al., 2022).

In summary, the relationship between microbiota and hematologic 
cancer is complex and influenced by various factors. Understanding 
these factors and their impact on the gut microbiota is crucial for 
developing personalized therapeutic strategies.

Alteration of gut microbiota in 
hematologic cancer

Several investigations have evaluated the variations in gut 
microbiota composition in mouse models and hematologic patients 
(Figure  2). Moreover, the microbiota composition could change 
depending on the specific type of hematologic cancer 
(Supplementary Table S1; Riley et al., 2013; Allegra et al., 2019).

Acute lymphoblastic leukemia

The role of the gut microbiota in acute lymphoblastic leukemia 
(ALL) the development remains unclear and is currently under 
investigation. Reports have identified variations in the GM 
composition profile in ALL patients compared to a healthy population. 
Other studies have shown a reduction in the relative abundance of 
Edwardsiella tarda and Prevotella maculosa in ALL patients, which 
was positively correlated with interleukin-10 levels (Kostic et al., 2013; 
Schirmer et al., 2016; Li et al., 2019; Liu et al., 2020).

Another study reported that Faecalibacterium abundance was 
reduced among ALL patients and negatively correlated with 
interleukin-6 (IL-6) and C-reactive protein (CRP) (Chua et al., 2017). 
Similarly, Megamonas was abundant in the gut microbiota of ALL 
children and correlated with the systemic inflammatory cytokines 
IL-6 (Sakon et al., 2008; Cozen et al., 2013; Bai et al., 2017; Li et al., 
2018; Neisi et al., 2019; Ansari et al., 2021).

Furthermore, NGS analyses have revealed changes in microbiota 
diversity in ALL individuals, with an increase in Bacteroidetes and a 
decrease in Firmicutes. These alterations may be  detrimental to 
leukemia patients. The Firmicutes phylum is the principal producer of 
butyrate (Venegas et al., 2019), which has been shown to have anti-
cancer activities (Geng et al., 2021). For instance, researchers reported 
a significant reduction in butyrate production by the GM. Additionally, 
they found intestinal barrier damage in leukemia patients, which 
accelerated lipopolysaccharide (LPS) leakage into the bloodstream 
(Wang et al., 2022). LPS has been associated with leukemia progression 
both in vivo and in vitro. Butyrate is produced by certain bacteria such 
as Eubacterium, Streptococcus, Clostridium, Bacteroides, Roseburia, 
Coprococcus, Ruminocococcus, and Butyrivibrio (Ramsay et al., 2006; 
Anshory et al., 2023; Singh et al., 2023). Butyrate can repair the damage 
in the intestinal barrier, inhibiting LPS leakage and potentially playing 
a protective role against leukemia progression (Wang et al., 2022).

Chronic lymphocytic leukemia

A common feature of chronic lymphocytic leukemia (CLL) is 
chronic systemic inflammation, with reports suggesting that dysbiosis 
may contribute to inflammation (Kawari et al., 2019). In the immune 
microenvironment of the intestine, T helper 17 cells (Th17) play an 
important role. Several studies demonstrate that increased levels of 
Th17 are an unfavorable prognostic factor in CLL. Huang et al. (2020) 
propose that Prevotella induces Th17 cell production in the mouse 
colon, highlighting its potential role in intestinal immune system 
formation (Huang et al., 2020).

Another study found that in patients with CLL, the most abundant 
bacteria were Bacteroides, Parabacteroides, Prevotella, and 
Acinetobacter, while there was a depletion of Lachnospiraceae and 
Ruminococcaceae (Faitová et al., 2022). In contrast, one study reported 
an increase in the abundance of Firmicutes and a decrease in 
Bacteroidetes compared to healthy individuals (Kawari et al., 2019).

The decrease in Lachnospiraceae and Ruminococcaceae may have 
several consequences for leukemia development (Vacca et al., 2020; 
Masetti et  al., 2021). Lachnospiraceae has been associated with 
resistance to high radiation doses, hematopoiesis restoration, and 
butyrate-mediated repair of the gastrointestinal system in the host 
(Ma et  al., 2021). Furthermore, studies have reported that the 
abundance of Lachnospiraceae is correlated with reduced side effects 
in patients with graft versus host disease (GVHD) (Ma et al., 2021).

Ruminococcus is another bacterium that produces several SCFAs 
(Mirzaei et al., 2021), and its deficit is associated with disruptions in 
several signaling pathways (Mirzaei et al., 2021). While the mechanisms 
of Ruminococcaceae in improving patient outcomes in leukemia are 
still unknown, there is evidence of increased Ruminococcaceae 
abundance in patients who achieved complete remission after PD-1 
immunotherapy and CAR T-cell therapy (Ma et al., 2021; Zhou et al., 
2022). Hence, Ruminococcaceae and its metabolites could improve the 
diagnosis and treatment of several cancer types.

Acute myelogenous leukemia

Researchers have studied the role of gut microbiota in acute 
myelogenous leukemia (AML) by examining the differences in 
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microbiota with and without treatment. One study published by Wang 
et al. (2022) reported a decrease in the gut microbiota diversity of 
AML patients. Moreover, the study found that intestinal damage was 
correlated with an increase in lipopolysaccharide levels and AML 
progression. Regarding bacterial species, the authors found that the 
reduction of Faecalibacterium could be involved in the proliferation 
and invasion of tumor cells and suppression of apoptosis (Ma et al., 
2020; Wang et al., 2022).

Research suggests that most Faecalibacterium strains are 
associated with energy production for intestinal epithelial cells and the 
synthesis of metabolites, such as butyric acid, bioactive peptides, and 
anti-inflammatory substances, which contribute to intestinal health 
(Zou et  al., 2021). Butyric acid modulates signaling pathways by 
interacting with the proinflammatory nuclear transcription factor 
NF-kB and inhibiting histone deacetylase (Knudsen et al., 2018). The 

regulation of metabolites, such as butyrate, could be an alternative for 
AML therapy development.

Chronic myelogenous leukemia

According to research, chronic myelogenous leukemia (CML) 
patients have a higher abundance of Actinobacteria, Acidobacteria, 
and Chloroflexi, as well as a decreased abundance of Tenericutes. 
Furthermore, studies have described an increase in the levels of the 
Streptococcus genus in patients with CML compared to control 
patients (Yu et  al., 2021). Several studies suggest an association 
between Streptococcus bacteria and an increase in the proinflammatory 
cytokine interferon γ (Bagheri et al., 2022). Streptococcus is essential 
in the sugar fermentation process, producing lactic acid as the main 

FIGURE 2

Gut microbiota composition in hematologic cancer. Leukemias have alterations of the intestinal microbiome at the phylum level, including Firmicutes, 
Bacteroidetes, and Actinobacteria. At the genus level, there is an alteration in Prevotella, Megamonas, Faecalibacterium, and Streptococcus. 
Lymphomas present a modest reduction of the intestinal microbiota, mainly an increase in Escherichia coli and Clostridium butyricum. Myeloma 
presents an alteration of Pseudomonas aeruginosa and Clostridium leptum species. Up arrows indicate an increase. Down arrows indicate a decrease. 
ALL, Acute lymphoblastic leukemia; CLL, Chronic lymphoblastic leukemia; AML, Acute myelogenous leukemia; CML, Chronic myelogenous leukemia; 
HL, Hodgkin lymphoma; NHL, non-Hodgkin lymphoma.
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compound, which could have implications for CML progression (van 
den Bogert et  al., 2013). Therefore, an imbalance of microbiota 
components could lead to proinflammatory responses, potentially 
triggering carcinogenesis (Liu et al., 2021).

An increased Streptococcus abundance may have a deleterious 
effect on leukemias, whereas the Actinobacteria abundance may help 
to decrease the adverse effects. Research has shown that the 
Actinobacteria phylum may benefit acute leukemia patients, as it is 
positively associated with Allo-HSCT immunotherapy (Ma et  al., 
2021) and exhibits antioxidant activities (Almuhayawi et al., 2021). 
Several Actinobacteria metabolites, such as indolocarbazoles, 
isoprenoids, non-ribosomal peptides, anthracyclines, macrolides, and 
enediynes, exhibit antioxidant and antitumoral properties. These 
metabolites have shown cytotoxic activity against cancer cell lines by 
reducing cyclooxygenase and lipoxygenase activity (Zhou et al., 2017; 
Almuhayawi et al., 2021). Cyclooxygenase is involved in prostaglandin 
synthesis, which promotes the proliferation of leukemia cells and the 
production of reactive oxygen species, while lipoxygenase catalyzes 
the production of hydroxyl eicosatetraenoic acids and leukotrienes, 
contributing to apoptosis suppression and the stimulation of tumor 
cell proliferation (Almuhayawi et al., 2021).

Lymphomas

Understanding the correlation between gut microbiota, adaptive 
and innate immunity, and diseases like Hodgkin’s lymphoma is 
essential. Yuan et al. (2021) characterized the gut microbiota of 25 
untreated individuals with diffuse large B cell lymphoma. Compared 
to the control group, the authors observed a higher abundance of 
Proteobacteria at the phylum level, as well as Escherichia coli (E. coli) 
and Clostridium butyricum (C. butyricum) species.

Various analyses have suggested that an increased prevalence of 
the bacterial phylum Proteobacteria could serve as a potential marker 
for an unstable microbial community (Shin et al., 2015; Tang et al., 
2019) and be associated with B-cell differentiation (Yuan et al., 2021). 
Unlike most microbes, which are strict anaerobes, Proteobacteria are 
frequently facultatively or obligate anaerobic, enabling them to 
tolerate a wide range of toxic conditions.

On the other hand, E. coli produces colibactin and cytolethal-
distending toxins, which have been associated with DNA breaks in 
epithelial cells, promoting genetic mutations and contributing to 
tumor formation. E. coli plays a crucial role in lymphoproliferative 
processes and infections by primarily colonizing the mucosal layer of 
the gastrointestinal tract, where it can contribute to chronic 
inflammation. Inflammation can persist due to these bacteria’ immune 
evasion strategies, including blocking TLR-4 signaling, NF-κB activity, 
and proinflammatory cytokines production in cells (Olson et al., 2014; 
Conway and  Cohen, 2015; Rolhion and Chassaing, 2016).

Moreover, C. butyricum, a bacterium that produces butyrate and 
acetate, has been studied for its potential therapeutic use in dysbiosis-
related diseases (Li et al., 2022). C. butyricum can also slow tumor 
growth by modulating Wnt/β-catenin signaling, which leads to 
decreased proliferation, and increased apoptosis (Tomita et al., 2022).

MALT lymphoma has been associated with a Helicobacter pylori 
infection, which could be  involved in tumorigenesis and a chronic 
inflammatory response (Wotherspoon et al., 1991; O’Rourke, 2008; Saito 
et al., 2012; Moleiro et al., 2016). A retrospective study by Moleiro et al. 

(2016) showed that H. pylori eradication therapy could be effective for 
complete remission in patients (Moleiro et al., 2016).

Multiple myeloma

Recent findings have shown an association between gut 
microbiota and MM (Lax et  al., 2014; Alkharabsheh et  al., 2020; 
Shapiro et al., 2021). Zhang et al. (2019) found that Pseudomonas 
aeruginosa and Clostridium leptum (C. leptum) were more abundant 
in MM patients. Moreover, higher levels of C. leptum were observed 
in MM patients with advanced stages of the disease. Pseudomonas 
aeruginosa can cause bacterial infections, while C. leptum is involved 
in the intestinal glucose metabolism pathway. Therefore, further 
research on these bacteria is critical for a better understanding of their 
roles (Zhang et al., 2019).

Clostridium leptum regulates glucose concentration in the 
intestinal microenvironment by producing butyrate through the 
pyruvate and acetyl-coenzyme A pathway. Butyrate plays a role in 
increasing regulatory T cells and suppressing interleukin 17 (IL-17) 
(Linares and Hermouet, 2022). For instance, Calcinotto et al. (2018) 
showed that a lack of IL-17 in MM mice, or treatment with antibiotics 
or antibodies that block IL-17/IL-17R interactions, leads toa delay in 
MM progression. The study identified Prevotella heparinolytica as the 
causal bacteria for IL-17 proliferation (Calcinotto et  al., 2018). 
Therefore, the presence of butyrate-producing bacteria in the intestinal 
microbiota of MM patients is positively correlated with higher rates 
of minimal residual disease (MRD) negativity (Brevi et al., 2022).

Furthermore, Pianko et  al. (2019) analyzed the microbiota 
composition of MRD in MM patients and found that MRD-negative 
treatment response was associated with a higher abundance of 
Eubacterium hallii and F. prausnitzii. Eubacterium hallii produces 
propionate, while F. prausnitzii produces butyrate. Both metabolites 
modulate immunity through autoinflammatory functions (Pianko 
et al., 2019).

Discussion

The evidence presented in this mini-review underscores the role 
of specific microorganisms in the progression of hematologic diseases, 
given that microbiota imbalances have been found in all types of 
HC. Each type of HC —myeloma, lymphoma, and leukemia— exhibits 
distinct microbiota characteristics. Myeloma is characterized by an 
increased abundance of Pseudomonas aeruginosa and Clostridium 
leptum; lymphoma is associated with a higher proportion of E. coli and 
C. butyricum, while leukemia is marked by a decrease in 
Lachnospiraceae and Ruminococcaceae. These bacteria interact with 
immune cells in the epithelial tissue through their antigens or by 
secreting metabolites, potentially influencing the tumor environment. 
While these findings offer valuable insights, it is crucial to acknowledge 
that other factors and mechanisms may also contribute to cancer 
progression, warranting further investigation of the role and 
interactions of the gut microbiota with the tumor environment (Arthur 
et al., 2017). Notably, gut microbiota modulation may play a significant 
role in immune and treatment outcomes (Matson et al., 2018).

Microbiota modulation can be  influenced by various factors, 
which may increase the risk of cancer development (De Agüero et al., 
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2016). Early interactions between the newborn, the mother, and the 
environment, such as the delivery and feeding methods, play a pivotal 
role in shaping the microbial microenvironment and long-term cancer 
susceptibility. Additionally, diet represents a critical factor that can 
be modified to prevent an imbalance of beneficial bacteria. Microbial 
food fermentation produces primary metabolites that can have either 
beneficial or detrimental effects on the host. Ongoing large-scale 
clinical trials are actively evaluating the efficacy of microbiota 
modulation, including dietary interventions and intratumoral 
injection of engineered bacteria (Sepich-Poore et  al., 2021), as 
potential therapies for hematologic malignancies.

A comprehensive analysis of the microbiota concerning cancer 
may support disease management and deepen our understanding of 
host-microbial evolution. It also holds promise in exploring the 
microbiota as a distinguishable marker for cancer progression (Kalia 
et al., 2022). Fecal microbiome transplantation (FMT) is an alternative 
for restoring healthy microbiota in patients with hematologic diseases 
(Zheng et  al., 2020). However, the characteristics of a healthy 
microbiome remain undefined, which leads to ongoing evaluation of 
FMT’s effectiveness in treating hematologic cancer, along with 
challenges like optimizing fecal processing and ensuring patient safety.

One of the main limitations of this research is that it relies on 
cross-sectional studies, limiting the capacity to establish a cause-effect 
relationship between microbiota and HC. Therefore, conducting 
longitudinal studies that measure the microbiota at different time 
points is essential for gain a comprehensive understanding of this 
interaction (Vogtmann and Goedert, 2016; Hou et al., 2022). There are 
other limitations, such as small sample sizes, ethnic bias, and the 
absence of control groups or disease staging in some studies. 
Moreover, technical limitations are also present as different techniques 
were used to identify microorganisms, resulting in the inability to 
capture the full complexity of the intestinal microbiota, potentially 
missing rare or less abundant species.

Furthermore, variations in the microbiome across different 
geographical regions should be  considered. Characterizing 
microbiotas from diverse areas is essential to identify their primary 
composition. Moreover, it is crucial to carefully account for 
confounding factors such as diet, medication use, and the 
environment, as they could significantly impact the composition of 
the microbiota and its association with cancer progression (Fontana 
et al., 2019; Dwiyanto et al., 2021).

In conclusion, this mini review emphasizes the crucial role of 
specific microorganisms in hematologic cancer progression and 
highlights the significance of modulating the microbiota in immune 
responses and treatment outcomes. However, further research is 

essential to explore and comprehend the complexities of interactions 
between the gut microbiota and the tumor environment. Such studies 
are crucial for the development of targeted and effective microbiota-
focused anticancer strategies, holding great promise for the future of 
hematologic cancer treatments.
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