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Introduction: Arecae semen, which is derived from the dried ripe seed of Areca 
catechu L., has been commonly used as one of the major traditional Chinese 
medicines (TCMs). Three types of crude herbal preparations, namely, raw Arecae 
semen (AS), Arecae semen tostum (SAS), and Arecae semen carbonisata (FAS), 
are available for different clinical applications in TCMs. Although aflatoxin 
contamination in Arecae semen has been reported preliminarily, only a few 
studies have been conducted on fungal contamination.

Methods: In this study, the presence of fungi on the surface of three Arecae 
semen (AS, SAS, and FAS) that collected from four provinces were investigated 
using high-throughput sequencing and internal transcribed spacer 2.

Results: Results showed that the phyla Ascomycota (75.45%) and Basidiomycota 
(14.29%) and the genera Wallemia (7.56%), Botryosphaeria (6.91%), Davidiella (5.14%), 
and Symbiotaphrina (4.87%) were the dominant fungi, and they presented significant 
differences in four areas and three processed products (p < 0.05). The α-diversity and 
network complexity exhibited significant differences in the four sampling locations 
(p  < 0.05), with higher in Yunnan (Chao 1, 213.45; Shannon, 4.61; average degree, 
19.96) and Hainan (Chao 1, 198.27; Shannon, 4.21; average degree, 22.46) provinces. 
Significant differences were noted in the three processed samples; and SAS group had 
highest α-diversity (Chao 1, 167.80; Shannon, 4.54) and network complexity (average 
degree, 18.32).

Conclusions: In conclusion, the diversity and composition of microbiome on 
the surface of Arecae semen were shaped by sampling location and processing 
methods. This work provides details on the surface microbiome of Arecae semen 
samples and highlights the importance of roles of origin and processing methods 
in microbiomes, ensuring drug efficacy and food safety.
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1. Introduction

Areca catechu L., a traditional Chinese medicine, is widely distributed 
in tropical and subtropical provinces in southern China and other 
countries in South Asia and Southeast Asia (Mehrtash et al., 2017). At 
present, Arecae semen is commonly used as one of the major traditional 
Chinese medicines (TCMs) in more than 100 prescriptions (Chavan and 
Singhal, 2013). It has been used to treat parasites, dyspepsia, abdominal 
distension, abdominal pain, diarrhea, edema, and jaundice caused by a 
variety of chemical compounds, such as alkaloids, tannins, fats, flavonoids, 
carbohydrates, and crude fibers (Sun et al., 2017). The varying processing 
methods have led to the highly different product efficacy of Arecae semen. 
Three types of crude herbal preparations are available for different clinical 
applications in TCMs, namely, raw Arecae semen (AS), Arecae semen 
tostum (SAS), and Arecae semen carbonisata (FAS) (Chinese 
Pharmacopeia, 2020). The peel and seeds of A. catechu L. are not only 
be used as medicines, but its fruit is also widely eaten to welcome guests. 
Betel-quid and areca-nut chewing is widely prevalent in Chinese Taipei 
and Southeast Asia, and it has been the fourth most common habit after 
tobacco, alcohol, and caffeine-containing beverages (Lin et al., 2020). 
Nevertheless, the International Agency for Research on Cancer (IARC) 
show that this habit is carcinogenic to humans and can cause cancers of 
the oral cavity, pharynx, esophagus, liver, biliary tracts, and uterus 
(IARC, 2004).

Mycotoxins are classified as human carcinogens by the World 
Health Organization (WHO) Cancer Research Agency, and their 
toxicity is considerably higher than those of cyanide, iodide, and 
organic pesticides. Mycotoxins are among the most carcinogenic 
substances known in the world (Han et al., 2012). They are commonly 
found in peanuts, milk, and herbal medicines (Chen et  al., 2017; 
Lindahl et al., 2018). The presence of mycotoxins poses a considerable 
immediate threat to consumer safety, because investigations have 
shown that even very small amounts of mycotoxins can cause a 
number of illnesses, including nausea, vomiting, and hepatotoxicity 
(Adegbeye et al., 2020; Claeys et al., 2020). Given the high temperature 
and humidity conditions under which Arecae semen grows, it is 
susceptible to the toxigenic fungi growth and mycotoxin production 
if improperly harvested, processed, and stored. The ultrafast liquid 
chromatography combined with electrospray ionization tandem mass 
spectrometry (UFLC-ESI-MS/MS) method was applied to detect 11 
mycotoxins in 24 Arecae semen samples, and only 2 samples were 
positive for aflatoxin B2 and zearalenone (Liu et  al., 2016). High-
precision liquid chromatography combined with tandem mass 
spectrometry (HPLC-MS/MS) showed that the linear relationships 
between the peak area and mass concentration values of the four 
aflatoxins in edible areca nut were within the same range of 
0.1–10.0 μg/L (Liang et al., 2018). At present, the regulation has set the 
maximum limits of AFB1 (5 μg/kg) and the sum of AFs (10 μg/kg, 
including AFB1, AFB2, AFG1, and AFG2) in Arecae semen in Chinese 
Pharmacopeia (2020).

The occurrence of fungi in herbal medicines exhibits the potential 
to produce mycotoxins, and it has become an interesting topic over 
the past decades. Aflatoxins and ochratoxin A were produced by the 
fungi Aspergillus and Penicillium (Niessen, 2007). One study reported 
that 27 of the 30 medicinal plant samples from Pakistan were 
contaminated with molds (Ahmad et  al., 2014). The detection of 
toxigenic fungi in herbal medicines is important to provide early 
warning for mycotoxin contamination. High-throughput sequencing 

(HTS) is an accurate and rapid method that can provide mass data of 
the surface microbial composition of herbs with low abundance, such 
as Ziziphi Spinosae semen and Cassiae semen (Guo et al., 2018, 2020). 
However, only a few studies have been conducted to analyze the 
diversity and composition of surface fungi in Arecae semen via HTS.

In the current work, we investigated the occurrence of fungi and 
compared the difference of fungal diversity on the surface of samples 
collected from four provinces by targeting the internal transcribed 
spacer 2 (ITS2) through HTS. To our knowledge, this is the first paper 
to study the fungal microbiome on the surface of edible and medicinal 
Arecae semen through HTS. This study can effectively detect potential 
toxigenic fungi and evaluate the safety of edible and medicinal herbs. 
It can provide an early warning for subsequent potential 
mycotoxin biosynthesis.

2. Materials and methods

2.1. Sampling

A total of 36 Arecae semen samples were obtained from four 
provinces in China (Supplementary Table S1). These samples were 
divided into three groups, namely, Arecae semen (AS), Arecae semen 
tostum (SAS), and Arecae semen carbonisata (FAS), in accordance 
with different processed products. The samples were also divided into 
four groups, namely, Guangxi Province (GX), Hainan Province (HN), 
Guangdong Province (GD), and Yunnan Province (YN), on the basis 
of different sampling locations.

2.2. DNA extraction

Microorganisms on the surface of herbs were collected and DNA 
of microorganism was extracted according to previous report (Guo 
et al., 2018). Briefly, 5 g of samples and 10 mL of sterile water were 
transferred into a 15 mL sterile centrifuge tube and shaken for 20 min. 
The mixture was then filtered with sterile gauze and centrifuged at 
7,830 rpm for 15 min to collect microorganisms. Total DNA was 
extracted using EZNA® soil DNA kit (Omega Bio-tek., Inc., 
United States) in accordance with the manufacturer’s instructions.

2.3. Polymerase chain reaction 
amplification and HTS

The ITS2 sequence was amplified with the primer pairs ITS1FI2 
(5’-GTGARTCATCGAATCTTTG-3′)/ITS2 
(5’-TCCTCCGCTTATTGATATGC-3′) (Karlsson et al., 2014). PCR 
amplification was conducted under the following conditions: initial 
denaturation at 98°C for 30 s, 35 cycles of denaturation at 98°C for 
10 s, annealing at 54°C for 30 s, elongation at 72°C for 45 s, and a final 
extension at 72°C for 10 min. The PCR products were analyzed with 
2% agarose gel and purified with a DNA gel extraction kit (Axygen, 
United  States). Purified ITS2 amplicons were sequenced with the 
Illumina MiSeq PE250 platform (Illumina, United States). The raw 
sequences were uploaded to the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (SRA) database 
(accession numbers PRJNA934825).
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2.4. Sequence analysis

Raw FASTQ files were demultiplexed and screened for their quality 
with Quantitative Insights into Microbial Ecology (QIIME, version 1.8) 
software (Caporaso et al., 2010). Paired reads were truncated at any site to 
receive an average Phred quality score ≥ Q20, equivalent to a 0.01% error 
rate (Marasco et al., 2018). The primers were exactly matched, and two 
nucleotide mismatches and the reads that contained ambiguous bases 
were removed. A total of 2,706,500 high-quality reads (200–500 bp) were 
obtained from 36 samples. The obtained amplified sequence variants 
(ASVs) were used to analyze the diversity and taxonomic composition of 
Arecae semen (Izawa et al., 2020). The representative sequences of the 
ASVs were classified at the kingdom, phylum, class, order, family, genus, 
and species levels in accordance with the UNITE and INSDC databases 
(Kõljalg et al., 2013; Nilsson et al., 2019b).

To estimate alpha diversity, Chao 1 and Shannon indices were 
estimated. Beta diversity was measured using the Bray–Curtis distance 
matrix and then visualized via principal coordinate analysis (PCoA) and 
nonmetric multidimensional scaling (NMDS). Statistical differences 
among different groups were measured via analysis of similarities 
(ANOSIM). Fungal guilds were predicted using FUNGuild (Nguyen 
et al., 2016; Li et al., 2022a,b). Only probable and highly probable terms 
were used to summary the relative abundances of different guilds in each 
sample. Linear discriminant analysis effect size (LEfSe) with a linear 
discriminant analysis (LDA) score > 3.0 and p < 0.05 was used to discover 
potential discriminant microbes (Segata et al., 2011). The Circos graph 
was constructed with Circos software (Krzywinski et  al., 2009). 
Co-occurrence analysis between fungal communities was conducted by 
Cytoscape (Faust et  al., 2012). Only highly (Spearman’s |r| > 0.8) and 
statistically significant (p < 0.05) correlations were retained. The network 
was visualized with Gephi (Bastian et al., 2009).

3. Results

3.1. Diversity of Arecae semen surface 
microbiome was influenced by sampling 
locations and processing methods

The α-diversity of fungi on the surface of Arecae semen was strongly 
influenced by sampling locations (Figure 1A and Supplementary Table S2). 
The Chao 1 index was significantly highest in YN group (213.45 ± 41.84) 
and HN group (198.27 ± 44.91) than in GX group (166.11 ± 18.94) and 
GD group (79.08 ± 14.05) (Kruskal–Wallis, p < 0.05). The Shannon index 
was higher in HN group (4.61 ± 0.0.61) and YN group (4.21 ± 0.30) than 
in GX group (3.64 ± 0.48) and GD group (3.57 ± 0.34). The variation of 
β-diversity among samples was visualized via PCoA and NMDS 
(Figure 1C). The results showed that the fungal community clustered in 
accordance with different sampling locations (PCoA, p = 0.001; NMDS, 
stress = 20). Significant differences were found among four sampling 
locations (ANOSIM, R = 782).

The α-diversity was slightly affected by processing methods, but 
the difference was not significant (Kruskal–Wallis, p > 0.05; Figure 1B 
and Supplementary Table S3). The Chao 1 index was slightly higher in 
AS group (166.11 ± 18.65) and SAS group (167.80 ± 36.85) than in FAS 
group (160.23 ± 31.12). The Shannon index was highest in SAS group 
(4.54 ± 0.47) and then it incrementally decreased from FAS group 
(3.80 ± 0.26) to AS group (3.64 ± 0.48). In addition, the similarities of 

fungal communities among the three processing products were 
compared, and the results of PCoA and NMDS showed that the 
samples were clustered on the basis of processing methods (PCoA, 
p = 0.002; NMDS, stress = 0.20) and exhibited a significant difference 
(ANOSIM, R = 0.531; Figure 1D).

3.2. Composition of Arecae semen surface 
microbiome was influenced by sampling 
locations and processing methods

In accordance with the Venn profiles, 106 shared ASVs were 
present in four groups on the basis of sampling locations. The unique 
ASVs numbers in each group were as follows: 485 (GX), 156 (GD), 
762 (YN), and 729 (HN) (Supplementary Figure S1A). At the phylum 
level, Ascomycota (75.45%), Basidiomycota (14.29%), Fungi-
unclassified (10.08%), Zygomycota (0.15%), and Chytridiomycota 
(0.02%) were the top five phyla and presented significant differences 
in the four areas (p < 0.05; Figures 2A, 3A and Supplementary Table S4). 
Here, Ascomycota had the highest abundance in GX group 
(93.33% ± 6.59%), followed by GD group (82.32% ± 7.13%) and YN 
group (73.84% ± 25.86%), and the lowest abundance in HN group 
(52.32% ± 23.44%). Meanwhile, Basidiomycota had the highest 
proportion in YN group (25.45% ± 16.02%) and the lowest in HN 
group (15.40% ± 16.02%). At the genus level, Fungi_unclassified 
(10.08%), Wallemia (7.56%), Saccharomycetales_Incertae_sedis_
unclassified (7.43%), Botryosphaeria (6.91%), Davidiella (5.14%), 
Symbiotaphrina (4.87%), and Ceratocystis (3.87%) were the dominant 
genera and presented significant region-specific (p < 0.05; Figures 2B, 
3B and Supplementary Table S4). Wallemia were most abundant in 
YN group (19.18% ± 16.57%), followed by GD group (6.67% ± 4.90%) 
and HN group (2.74% ± 2.34%), and the lowest in GX group 
(1.64% ± 1.05%). Meanwhile, Botryosphaeria had the highest 
abundance in GD group (22.02% ± 13.28%) and YN group 
(4.56% ± 3.53%). In addition, Davidiella had highest abundance in GD 
group (9.86% ± 4.61%) and HN group (8.03% ± 2.29%).

For different processing groups, 789, 485, and 893 ASVs were 
particularly unique for SAS group, AS group, and FAS group, while the 
remaining 181 ASVs were shared by three groups 
(Supplementary Figure S1B). At the phylum level, Ascomycota, 
Basidiomycota, Fungi-unclassified, Zygomycota, and Chytridiomycota 
were the top five phyla (Figures 2C, 3C and Supplementary Table S5). The 
abundance of Ascomycota and Basidiomycota among various processing 
groups presented significant differences (p < 0.05). Ascomycota had 
higher abundance in the AS group (93.33% ± 6.59%) than in the FAS 
group (77.42% ± 20.75%) and SAS group (59.58% ± 23.95%). Meanwhile, 
Basidiomycota had a higher proportion in the FAS group (19.19% ± 5.51%) 
and SAS group (14.85% ± 9.60%) than in the AS group (5.35% ± 2.99%). 
The genera Wallemia, Botryosphaeria, Davidiella, Symbiotaphrina, and 
Ceratocystis were the dominant genera and exhibited significant 
differences among three processing groups (p < 0.05; Figures 2D, 3D and 
Supplementary Table S5). Wallemia, Botryosphaeria, and Ceratocystis had 
higher abundance in the FAS group (14.26% ± 5.50, 15.96% ± 5.03, and 
9.18% ± 3.15%, respectively) than in the AS group (1.64% ± 0.68, 
0.38% ± 0.11, and 0.20% ± 0.10%, respectively) and SAS group 
(3.63% ± 0.85, 0.51% ± 0.27, and 0.00% ± 0.00%, respectively). Meanwhile, 
Symbiotaphrina had higher abundance in the AS group (19.39% ± 11.03%) 
than in the FAS (0.02% ± 0.01%) and SAS (0.06% ± 0.02%) groups.
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FUNGuild were conducted to predict the fungal guilds in our 
samples. The fungal functions could be classified into 24 categories 
(Supplementary Table S6), of which others accounted for the largest 

proportion (average 47.44%), followed by Undefined Saprotroph 
(26.44%), Plant Saprotroph (9.49%), Endophyte (5.29%), Wood 
Saprotroph (4.79%), Animal Pathogen (2.16%), Dung Saprotroph 

FIGURE 1

Diversity of fungal community on the surface of Arecae semen. (A) Chao 1 and Shannon indices based on sampling locations. (B) Chao 1 and Shannon 
indices based on processing methods. (C) PCoA and NMDS analysis of Bray–Curtis distance matrices based on sampling locations. (D) PCoA and 
NMDS analysis of Bray–Curtis distance matrix matrices based on processing methods.
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(1.59%), and Soil Saprotroph (1.11%). The abundances of various 
guilds varied in our Arecae semen samples samples.

3.3. Microbial biomarkers of Arecae semen 
surface microbiome were shaped by 
sampling locations and processing 
methods

LEfSe revealed differences in community composition among 
the four sampling locations (Figure  4). Of the 162 bacterial 
biomarkers (LDA > 3), 19, 34, 60, and 49 were enriched in GD group, 
GX group, HN group, and AH group, respectively (Figure 4A and 
Supplementary Figure S2A). The orders Botryosphaeriales and 
Capnodiales, the class Dothideomycetes, the families 
Botryosphaeriacetes and Mycosphaerellaceae, the genera 
Botryosphaeria, Petromyces, and Davidiella, and the species 

Lasiodiplodia parva were enriched in GD group. Meanwhile, the 
phylum Ascomycota, the orders Saccharomycetales and 
Symbiotaphrinales, the classes Saccharomycetes and Xylonomycetes, 
the family Symbiotaphrinaceae, the genera Symbiotaphina and 
Candida, and the species Saccharomycetales incertae sedis, Candida 
tropicalis, and Symbiotaphrina kochii were enriched in GX group. The 
orders Pleosporales and Tremellales, the classes Tremellomycetes 
and Microbotryomycetes, the families Pleosporaceae and 
Tremellaceae, the genera Alternaria and Cryptococcus, and the 
species Alternaria alternata and Aureobasidium pullulans were 
enriched in HN group. The class Sordariomycetes, the orders 
Microascales, Hypocreales, and Sordariales, the families 
Ceratocystidaceae and Microascaceae, the genera Ceratocystis and 
Microascus, and the species Ceratocystis paradoxa and Microascus 
trigonosporus were enriched in YH group.

LEfSe was also used to reveal potential biomarkers among the 
three processing groups from phylum to species (Figure 4B and 

FIGURE 2

Composition of fungal community in Arecae semen samples. (A,B) Fungal composition at the phylum and genus level based on sampling locations. 
(C,D) Fungal composition at the phylum and genus level based on processing methods.
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Supplementary Figure S2B). Among the 160 biomarkers 
(LDA > 3.0), 36, 38, and 86 were enriched in the AS, FAS, and SAS 
groups, respectively. The phylum Ascomycota, the orders 
Saccharomycetales, Symbiotaphrinales and Saccharomycetales 
incertae sedis, the class Xylonomycetes, the families 
Symbiotaphrinaceae and Monascaceae, the genera Symbiotaphrina, 
Xeromyces and Guehomyces, and the species Symbiotaphrina kochii, 
Xeromyces bisporus and Candida tropicalis were enriched in the AS 
group. Meanwhile, the phylum Basidiomycota, the orders 
Botryosphaeriales and Microascales, the classes Sordariomycetes 
and Saccharomycetales, the families Botryosphaeriaceae and 
Ceratocystidaceae, the genera Botryosphaeria, Ceratocystis and 
Aspergillus, and the species Lasiodiplodia parva, Wallemia 
ichthyophaga and Ceratocystis paradoxa were enriched in the FAS 
group. The orders Pleosporales, Tremellales and Capnodiales, the 
classes Dothideomycetes and Tremellomycetes, the families 
Pleosporaceae, Tremellaceae and Mycosphaerellaceae, the genera 

Alternaria, Davidiella and Cryptococcus, and the species Alternaria 
alternata and Monascus kaoliang were enriched in the FAS group.

3.4. Network of Arecae semen surface 
microbiome was shaped by sampling 
locations and processing methods

The co-occurrence patterns of the fungi communities from the 
four origins exhibited varying network complexity (as indicated 
by average degree) and connectivity (Figure  5A and 
Supplementary Table S7). The average degree was higher in the 
HN and YH groups (22.46 and 19.96, respectively) than that in the 
GD and GX groups (6.96 and 8.97, respectively). The values of 
topological properties (i.e., number of nodes, number of edges, 
positive edges, number of communities, average degree, average 
clustering coefficient, average weighted degree, density, and total 

FIGURE 3

Circos plot fungal community in Arecae semen samples. (A,B) Circos plot of predominant taxa at the phylum and genus level based on sampling 
locations. (C,D) Circos plot of predominant taxa at the phylum and genus level based on processing methods.
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triangles) were highest in the HN group (300, 3,369, 3,327, 38, 
22.46, 0.88, 38.68, 0.08, and 31,706, respectively). Meanwhile, the 
values of topological properties (i.e., modularity, network 
diameter, average path length, and modularity with resolution) 
were highest in the AH group (0.90, 10, 3.56, and 0.90, 
respectively).

Network complexity (as indicated by average degree) and 
connectivity were shaped by the processing methods (Figure 5B 
and Supplementary Table S8). The values of topological properties 
(i.e., number of nodes, number of edges, positive edges, number 
of communities, average degree, average clustering coefficient, 
average weighted degree, density, and total triangles) were highest 
in the SAS group (308, 2,821, 2,818, 75, 18.32, 0.93, 33.99, 0.06, 
and 26,726, respectively). The values of topological properties 
(i.e., negative edges, and modularity and modularity with 
resolution) were highest in the AS group (40, 0.89, and 0.89, 
respectively).

4. Discussion

The presence of fungi in medicinal herbs has been widely reported, 
eliciting considerable public concern (Han et al., 2012; Su et al., 2018). 
For example, the fungal and mycotoxin contamination of 48 medicinal 
herb samples were investigated and 83.3% of the samples were found to 
be contaminated with fungi (Chen et al., 2020). The combination of HTS 
with ITS2 can compensate for the limitations of the culture-based 
approach and quickly and conveniently analyze the microbial community 
structure; this technique is frequently used in fungal community analysis 
to discover unknown and essential microorganisms (Lv et al., 2015; 
Nilsson et al., 2019a). In previous studies, seed and fructus herbs (i.e., 
Ziziphi Spinosae semen, Platycladi semen, and Myristicae semen) were 
found to be more susceptible to fungal contamination as a result of their 
abundant nutrients (such as carbohydrate nutrients) (Guo et al., 2018; 
Jiang et al., 2020; Yu et al., 2020). In the current study, HTS and ITS2 
were first performed to investigate fungal contamination on the surface 

FIGURE 4

Linear discriminant effect size (LEfSe) of fungal community with a linear discriminant analysis (LDA) score higher than 3.0 and p-values less than 0.05 in 
Arecae semen samples. (A) LEfSe based on sampling locations. (B) LEfSe based on based on processing methods.
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of Arecae semen samples. Meanwhile, we compared the differences of 
the fungal communities in the four groups based on collection origins 
and the three groups based on processing methods.

Our results showed that Ascomycota and Basidiomycota were the 
dominant phyla, and Wallemia, Botryosphaeria, Davidiella, 
Symbiotaphrina and Ceratocystis were the dominant genera in the 
Arecae semen samples. The presence of these predominant taxa in 
other herbs has also been reported. For example, Guo et al. investigated 
fungal contamination in 14 Ziziphi Spinosae semen samples and found 
that one phylum (Ascomycota) and three genera (Aspergillus, Candida, 
and Wallemia) were the most predominant fungi. Those findings are 
consistent with the results of our study (Guo et  al., 2018). Fungal 
contamination in Lycii Fructus was investigated via ITS2, and the 
results showed that Ascomycota, Dothideomycetes, Pleosporales, and 
Pleosporaceae predominated at various levels ranging from family to 
phylum (Yu et al., 2022a). In the Cassiae semen samples, Ascomycota 
was the prevailing fungus at the phylum level, and Aspergillus, 
Cladosporium and Penicillium were the most dominant genera (Guo 
et al., 2020). Some of the taxa are found to be the dominant genus in 
herbal medicines for the first time, and the differences between the 
findings of the present study and previous work may contribute to the 
distinct nutrient composition of different medicinal substances. 
Aspergillus, Penicillium, Fusarium, and Alternaria are the most 

common contaminants, and they contain various mycotoxin producers 
(Ahmad et al., 2014). The existence of potential mycotoxin-producing 
fungi is an essential condition for mycotoxin contamination. Therefore, 
the early detection of mycotoxin-producing fungi in medicinal 
materials is of high significance to prevent further mycotoxin 
contamination. In our previous study, 323 fungal strains were isolated 
from herbal medicines, and analysis of potential mycotoxin-producing 
fungi showed that Aspergillus flavus can produce aflatoxins, and 
Aspergillus ochraceus and Aspergillus niger can produce ochratoxin A 
(Wei et al., 2023). Previous reports showed that Arecae semen samples 
were detected and were positive for aflatoxins and zearalenone (Liu 
et al., 2016; Liang et al., 2018). So, the fungi should be isolated from 
the surface of Arecae semen samples in the future, and their ability to 
produce mycotoxins should be investigated.

The results showed that the diversity, structure, and network of 
the Arecae semen samples were variable in the four sampling 
origins in our study. Fungal alpha diversities (Chao 1 and Shannon) 
across 11 medicinal herb Platycladus orientalis samples collected 
from three provinces (Shandong Province, Anhui Province, and 
Hebei Province) were compared and presented significant 
differences (Yu et al., 2020). Fritillariae Cirrhosae Bulbus samples 
were divided into five groups on the basis of collection areas, and 
their alpha diversities (Chao 1 and Shannon) exhibited significant 

FIGURE 5

Co-occurrence network analysis of fungal microbial communities in Arecae semen samples (Spearman’s |r|  >  0.8 and p <  0.05). (A) Network based on 
sampling locations. (B) Network based on processing methods. Red and green represent positive and negative correlations, respectively.
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difference (Yu et al., 2022b). Similarly, the composition of surface 
microbiome in our Arecae semen samples collected from four 
provinces also demonstrated significant differences. Ascomycota 
had the highest abundance in Guangxi Province, Basidiomycota 
and Wallemia highest in Yunnan Province, while Botryosphaeria 
and Davidiella highest in Guangdong Province. Compared with 
those in the Platycladus orientalis samples from Hebei and 
Shandong provinces, greater unidentified phyla diversity was 
observed in the samples from Anhui Province, as well as lower 
Ascomycota diversity (Yu et al., 2020). Differences in the fungal 
community of the Fritillariae Cirrhosae Bulbus samples were also 
observed in the five provinces at various taxonomic levels (Yu et al., 
2022b). The distribution of these taxa may be related to the local 
storage conditions in distinct provinces, which may be  more 
suitable for the growth of some taxa than the other sample locations. 
Different factors (i.e., temperature, humidity, substrate, pH, nutrient 
availability) in distinct environments may affect the growth of 
specific fungi (Darko et al., 2018). Such as, Alternaria are tolerant 
to low temperature and usually grow during low temperature 
transport and storage (EFSA Panel, 2011). High humidity can cause 
fungi Fusarium growth and induces severe mycotoxin 
contamination (Liao et  al., 2020). At low water availability, 
Xeromyces could favor the growth of species in Aspergillus and 
Eurotium (Stevenson et al., 2017). In addition, network analyses 
were performed to explore the interaction patterns of 
microorganisms in our Arecae semen samples collected from four 
provinces. We  found that positive links among genera were 
predominant in our network, and network complexity and 
connectivity were higher in Hainan and Yunnan provinces. These 
results suggest the potential for extensive cooperative interactions 
among most taxa in their micro-environments (Qian et al., 2019).

Furthermore, we analyzed the composition of fungal microbiomes 
on the surface of Arecae semen samples on the basis of processing 
methods, and differences in fungal communities were observed. The 
Shannon index was higher in SAS and FAS groups than in AS group. 
The Chao 1 index in raw Arecae semen was significantly higher than 
that in the processed samples; this finding is inconsistent with the 
results of a previous study (Guo et al., 2020). Moreover, Basidiomycota, 
Wallemia, Botryosphaeria, and Ceratocystis had higher proportion in 
the FAS and SAS groups than in the AS group. This finding suggests 
that this fungal microbiome is significantly increased after processing. 
Moreover, the complexity and connectivity of the network were higher 
in the processed Arecae semen samples than in the raw samples. This 
result suggests that the processed Arecae semen samples have a more 
stable co-occurrence pattern than the raw samples. The reason may 
be as follows: processing can change the substrate composition of herbs, 
contribute to the attraction of abundant microorganisms and influence 
the composition of fungal community, which makes the co-occurrence 
network of the processed samples more stable (Zheng et al., 2017).

5. Conclusion

In this study, the fungal diversity, composition, and network of 
Arecae semen samples were surveyed using HTS. Here, the diversity 
and composition of Arecae semen surface microbiome were shaped 
by sampling location and processing methods. Two phyla (Ascomycota 

and Basidiomycota), and four genera (Wallemia, Botryosphaeria, 
Davidiella, and Symbiotaphrina) were the dominant fungus, and they 
presented significant differences in the four areas and the three 
processed products. The α-diversity and network complexity exhibited 
differences in the four sampling locations and three processed samples. 
This study highlights the importance of the roles of sampling locations 
and processing methods in Arecae semen surface microbiome.
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