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The ongoing SARS-CoV-2 pandemic and the influenza epidemics have revived the

interest in understanding how these highly contagious enveloped viruses respond

to alterations in the physicochemical properties of their microenvironment. By

understanding the mechanisms and conditions by which viruses exploit the

pH environment of the host cell during endocytosis, we can gain a better

understanding of how they respond to pH-regulated anti-viral therapies but

also pH-induced changes in extracellular environments. This review provides

a detailed explanation of the pH-dependent viral structural changes preceding

and initiating viral disassembly during endocytosis for influenza A (IAV) and SARS

coronaviruses. Drawing upon extensive literature from the last few decades and

latest research, I analyze and compare the circumstances in which IAV and

SARS-coronavirus can undertake endocytotic pathways that are pH-dependent.

While there are similarities in the pH-regulated patterns leading to fusion, the

mechanisms and pH activation differ. In terms of fusion activity, the measured

activation pH values for IAV, across all subtypes and species, vary between

approximately 5.0 to 6.0, while SARS-coronavirus necessitates a lower pH of 6.0

or less. The main difference between the pH-dependent endocytic pathways

is that the SARS-coronavirus, unlike IAV, require the presence of specific pH-

sensitive enzymes (cathepsin L) during endosomal transport. Conversely, the

conformational changes in the IAV virus under acidic conditions in endosomes

occur due to the specific envelope glycoprotein residues and envelope protein

ion channels (viroporins) getting protonated by H+ ions. Despite extensive

research over several decades, comprehending the pH-triggered conformational

alterations of viruses still poses a significant challenge. The precise mechanisms

of protonation mechanisms of certain during endosomal transport for both

viruses remain incompletely understood. In absence of evidence, further research

is needed.
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1. Introduction

During the first two decades of the 21st century, humanity has faced significant
difficulties due to the emergence of highly pathogenic and contagious respiratory viruses,
including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East
respiratory syndrome coronavirus (MERS-CoV), IAV virus subtype H1N1, and the current
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severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
The substantial levels of illness (Shi et al., 2017; James et al.,
2018; Lopez-Leon et al., 2021), increased mortality (Zucs et al.,
2005; Iuliano et al., 2018; Hansen et al., 2022; Msemburi et al.,
2023), and significant socioeconomic consequences (Fendrick et al.,
2003; Cutler and Summers, 2020) caused by these respiratory
viruses have emphasized the need for effective measures to contain
their spread. To mitigate the transmission of these viruses, both
occupational and public health measures have been implemented,
such as physical distancing, mask-wearing, disinfection, and
the development of antiviral drugs, antibody-based therapies,
and vaccines. In addition, since the recognition of airborne
transmission as the main route of spread, engineering strategies
have recommended the enhancement of indoor air quality through
improved ventilation, air purifiers, and/or filtration of recirculated
air (Sachs et al., 2022). Other approaches have also sought to take
advantage of the sensitivity of enveloped viruses to environmental
conditions, including temperature (Dabisch et al., 2020; Biryukov
et al., 2021), UV levels (Dabisch et al., 2020; Biasin et al.,
2021), and relative humidity (Dabisch et al., 2020). However, one
environmental factor that has received limited attention during the
pandemic is the potential impact of the pH value of the virus aerosol
microenvironment (Luo et al., 2023).

Compared to the limited knowledge on the pH impact on
viral survival in extracellular environments including aerosols
and surfaces, inquiry into the impact of pH on respiratory
viruses in intracellular environments began decades ago (Maeda
et al., 1981). Both influenza and coronaviruses are known to
be sensitive to changes in pH during the endocytosis process,
which is a critical step in the infection cycle by which viruses
enter host cells from the extracellular environment. For example,
it is well-accepted that low pH induces viral disassembly and
promotes the release of genetic material within the host cell
(Stegmann et al., 1987). When the pH within the host cell becomes
acidic (i.e., the concentration of hydrogen ions increases), the
protein residues of the lipid membrane may become protonated,
which eventually induces conformational changes in the envelope
glycoproteins to a large extent, and to a lesser extent, in the
viroporins (Caffrey and Lavie, 2021). This can cause the envelope
to become more permeable, which may allow ions and other
molecules to enter the virus and disrupt its structure. Additionally,
changes in pH can also affect the electrostatic interactions between
the viral proteins and the envelope, further destabilizing the
virus (Shtykova et al., 2017). The COVID-19 pandemic has
reignited interest in this topic, and recent studies have tried to
elucidate the mechanisms involving pH-induced changes in the
envelope disassembly of SARS-CoV-2 (Kreutzberger et al., 2022;
Luo et al., 2023). In addition, the technological advancements
in microscope technologies have enabled scientists to gain new
insights into the mechanisms by which viruses are affected by
changes in pH during endocytosis (Assaiya et al., 2021; Guaita et al.,
2022).

In this review, I discuss developments in our understanding
of the pH-induced endocytosis mechanisms in IAV and SARS-
coronavirus. Drawing upon extensive literature from the last few
decades and latest research, this mini-review provides a detailed
explanation of the pH-dependent structural changes necessary
for viral disassembly and fusion during endocytosis. Using this

summary, I recognize the significant differences that result in pH-
induced structural changes preceding the viral disassembly and
initiating fusion with the host cell. The main aim of this review is
to provide a better understanding of how the structural changes of
two the highly contagious enveloped respiratory viruses differ in
response to intracellular acidic environments.

2. Influenza A

Influenza is a negative-strand RNA virus with eight
ribonucleoprotein particles (RNPs) contained within a lipid
envelope derived from the host plasma membrane. The IAV
viral envelope contains two major glycoproteins proteins,
hemagglutinin (HA) and neuraminidase (NA), that project
from the lipid membrane as spikes (Sriwilaijaroen and Suzuki,
2012). A third envelope protein is a homotetrameric protein
2 (AM2) consisting of an extracellular N-terminal segment,
a transmembrane segment, and an intracellular C-terminal
segment (Pielak and Chou, 2011). The lipid membrane envelope
encapsulates the M1 protein, consisting of the N-terminal domain,
middle domain, and C-terminal domain, which forms a rigid
matrix layer under the lipid envelope and interacts with both the
viral RNP particles and lipid envelope with the cytoplasmic tails of
HA and NA (Lamb and Choppin, 1983; Bouvier and Palese, 2008;
Dou et al., 2018).

2.1. IAV pH-regulated endocytic
pathways: clathrin-mediated endocytosis

There are several types of viral entries to the cell, also
known as endocytic pathways that can be utilized by influenza
viruses, including predominantly clathrin-mediated and caveolin-
mediated endocytosis (Lakadamyali et al., 2004; Brandenburg and
Zhuang, 2007; de Vries et al., 2011). The pathways differ in the
manner by which the virus particle attaches to the surface of the
host cell. Caveolin-mediated endocytosis does not require sialic
acid receptors for internalization of the virus, unlike clathrin-
mediated endocytosis (Lakadamyali et al., 2004). The trafficking
of clathrin-mediated endosomes relies on acidic pH, while the
transport of caveolae containing vesicles to the destination is
a neutral pH selection (Kiss and Botos, 2009). Therefore, pH-
independent caveolin-mediated endocytosis is not considered in
this paper. Before attaching to sialic acid, the HA glycoprotein in
the viral membrane initially exists as a single polypeptide known
as HA0, which must be cleaved by the host’s trypsin and serine-
like proteases (TMPRSS2) to form a complex consisting of three
HA1 (positively charged) and three HA2 (negatively charged)
polypeptide chains linked by two disulfide bonds (Chen et al.,
1998). HA1, which is located distal to the virus membrane, is
responsible for receptor binding. On the other hand, HA2, which
is located proximal to the membrane, anchors HA in the envelope
and contains the fusion peptide (Benton et al., 2020a). As shown
on Figure 1, once the HA cleavage occurs, the receptor binding
pocket at the top of the positively charged HA1 subunit becomes
available for binding with negatively charged sialic-acid receptors
(Mair et al., 2014a). After viral internalization, the incoming virus
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FIGURE 1

Pre-viral entry of Influenza virus and binding to sialic acid receptors during clathrin-mediated endocytosis at neutral pH (1–3). Viral entry and
transport through endosomes during clathrin-mediated endocytosis: low pH-induced conformational changes (4–6).

is transported through early endosomes (pH range ∼5.6–6.5)
(Padilla-Parra et al., 2012), late endosomes (pH range ∼5.0–5.5)
(Wallabregue et al., 2016), and lysosomes (pH range between 4.6
and 5.0) (Luzio et al., 2007).

Eventually, the cleaved pre-fusion neutral pH HA (Staschke
et al., 1998) is attached to the cell surface via sialic acid receptors.
According to experimental observations (Carr et al., 1997), the
cleaved extracellular HA protein is trapped in a metastable state at
neutral pH before viral entry. At neutral pH, molecular modeling
studies have demonstrated that there is a strong electrostatic
attraction between the positively charged HA1 and negatively
charged HA2 monomers, while there is a repulsive electrostatic
force between three subunits of either HA1 or HA2 (Huang et al.,
2002). Consequently, electrostatic repulsion between the three HA1
monomers and three HA2 monomers is offset by electrostatic

attraction between the HA1 and HA2 domains, thereby preserving
a metastable trimeric association of the monomers. The binding of
HA1 to sialic residues on membrane cells triggers the initiation of
clathrin-coated pit formation beneath the virions bound to the cell
surface (Rust et al., 2004). These pits then bud from the membrane
to form small intracellular clathrin-coated vesicles containing the
virions and their bound receptors (Matlin et al., 1981; Lakadamyali
et al., 2004). When the vesicle is fully intracellular it loses its
clathrin coat and ultimately fuses with early endosomes where
it is exposed to an acidic environment (pH range ∼5.6–6.5)
(Padilla-Parra et al., 2012). The high concentration of hydrogen
ions (H+) in the endosome causes protonation of specific to
envelope glycoprotein residues, leading to eventual conformational
changes within the virus critical for later fusion with the host
cell.
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2.1.1. pH-induced hemagglutinin conformational
changes

The pH dependence of the early stages of HA conformational
change is regulated by the histidine residue HR184 of the HA1 and
HA2 monomers (Mair et al., 2014b; Trost et al., 2019). The side
chain of histidine is uncharged at physiological pH (∼7.4) because
it has a pKa of approximately 6. As the environmental pH decreases,
the HA histidine residue with a pKa value greater than the
environmental pH becomes protonated (Mair et al., 2014b; Trost
et al., 2019). Protonation leads to a significant increase in positive
net charge, inducing the repulsion of HA1 monomers (Huang
et al., 2002) and the partial dissociation of HA1 globular domains
(Zhou et al., 2014). Thus, protonation triggers the enlarging of the
cleavage between HA1 and HA2 monomers. As a consequence,
water can enter the central cavity, which in turn induces the
structural transitions of the HA2 monomer/sequences (Kemble
et al., 1992) which have originally been shielded from contact with
water (Böttcher et al., 1999; Huang et al., 2002). Interaction with
water induces extrusion of the HA-2 fusion peptide from its buried
position in the HA trimer to the distal tip of the HA spike (Ruigrok
et al., 1989), eventually triggering the disintegration of the viral
membrane by forming a pore through which the genomic segments
of the virus are released (Cross et al., 2009; Rice et al., 2022). An HA
that is too acid stable may not be sufficiently sensitive to trigger
fusion pH-dependent uncoating, meaning that acid stability could
restrict a virus’ ability to replicate in intracellular environments.
Measured HA activation pH values across all subtypes and species
range from∼5.0 to 6.0, trending higher in highly pathogenic H5N1
(Zaraket et al., 2013) and H7N9 strains (pH 5.6–6.0) (Chang et al.,
2020) whereas seasonal human strains are more acid-stable (pH of
fusion 5.0 to 5.6) (Galloway et al., 2013).

2.1.2. pH-induced AM2 conformational changes
The AM2 protein forms a pH-activated proton-selective

channel (Sakaguchi et al., 1996; Cady et al., 2009) essential
for the acidification of the virus interior, thereby facilitating
the dissociation of the matrix protein M1 from the viral
nucleoproteins−a step that precedes fusion-pore formation
(Zebedee and Lamb, 1988; Ivanovic et al., 2012). As the pH of the
endosome encapsulating the virus is lowered, the AM2 channel
becomes activated, allowing a unidirectional proton across the
membrane to equilibrate the pH of the virus interior with that of
the acidic endosome (Kelly et al., 2003). Once activated, the M2
channel conducts 10 to 10,000 protons per second (Mould et al.,
2000a; Lin and Schroeder, 2001). This pH-activated protonation is
mediated by an interplay between four proton-selective histidine
residues His-37 and the proton conductive four tryptophan 41
(Trp 41) residues, both located in a narrow aqueous pore of the
transmembrane domain (TMD) (Wang et al., 1995; Venkataraman
et al., 2005; Hu et al., 2006; Schnell and Chou, 2008). Two proton
conduction mechanisms have been proposed: the “water wire
model” and the “proton relay model” mechanism. According to
the “water-wire model,” the pore is essentially closed at neutral
pH (pH = 7.5) as the Val 27 residue at the N terminal and the
Trp 41 gate block water from freely entering into the pore, thus
preventing proton diffusion across the membrane (Schnell and
Chou, 2008). Lowering the pH protonates the imidazole rings of
His-37, resulting in several imidazolium per channel, which repel
each other and destabilize the transmembrane-helices packing.

This conformational rearrangement breaks interactions between
Trp 41 and Asp 44 residue and widens the pore, followed by
a formation of a continuous hydrogen-bonded water network
over which protons hop utilizing the Grotthuss mechanism (Chen
et al., 2007). Carr–Purcell–Meiboom–Gill (CPMG) experiments
have found that lowering the pH from 7.5 to 6.0, increases the
frequency of Trp 41 gate opening by more than fourfold, while no
significant frequency is changed when lowered to pH = 7.0 (Schnell
and Chou, 2008). Under ideal conditions of the “water-wire model,”
the constricted N-terminal only allows protons to penetrate the
aqueous pore through a hydrogen-bonded water network. This
assumption is confirmed by many electrophysiological studies that
show that the highly selective M2 channel is virtually impermeable
to Na+, K+, or Cl− ions regardless of external pH conditions
(Chizhmakov et al., 1996, 2003; Mould et al., 2000b; Lin and
Schroeder, 2001; Intharathep et al., 2008). Accordingly, the M2
protein only transports protons, and this permeation increases
tenfold as the pH drops from below 8.5 until it reaches a saturation
level close to pH = 4 (Chizhmakov et al., 1996). The selectivity,
however, may not be absolute as the permeation of other ions
through this channel has been suggested from earlier experiments
(Pinto et al., 1992). It has been suggested that experimental
artifacts from earlier studies are responsible for these differences
(Chizhmakov et al., 1996).

On the other hand, the “proton-relay model” mechanism
requires at least one non-protonated histidine at the gating region,
with its two nitrogen atoms facing the extracellular side (Pinto et al.,
1997; Chen et al., 2007). This model hypothesizes that one His-37
imidazole nitrogen atom is protonated by the entering hydronium
ion before the other imidazole nitrogen releases its proton to the
interior of the virus. Finally, the process is completed by flipping
of imidazole rings, or tautomerization, to establish the original
configuration to prepare for the next proton relay. The reliability
of the model is uncertain as it appears that for a His residue to act
as a proton relay two nitrogens from the same histidine residue
must be exposed to water within the channel pore (Pinto et al.,
1997). However, simulation studies have not revealed this specific
conformation of His-37 (Phongphanphanee et al., 2010).

2.1.3. pH-induced neuraminidase conformational
changes

Neuraminidase (NA)’s primary role is in the later stages of
infection, where it aids in the detachment and spread of the virus to
new cells by removing sialic acids from cellular receptors and newly
synthesized HA and NA on nascent virions (Palese et al., 1974;
Basak et al., 1985). This process prevents the virus from binding
back to the dying host cell and enables the efficient release of RNA
genomes (Palese et al., 1974). NA is most effective at a pH range
of 5.5–6.0 (Mountford et al., 1982; Lentz et al., 1987; McKimm-
Breschkin, 2000), although certain viruses have been found to
maintain stable NA activity at a lower pH range of 4.0–5.0, resulting
in enhanced replication kinetics (Takahashi and Suzuki, 2015).

2.1.4. pH-induced M1 conformational changes
The M1 protein binds both to the RNP complex and the lipid

membrane. The M1–lipid binding is mediated through electrostatic
interactions between the positively charged N-terminal domain
residues (Arg76 and Arg78) and negatively charged cytoplasmic
tails of HA and NA (Höfer et al., 2019), while the matrix
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protein interacts with the viral RNP complex inside the virus
via the C-terminal domain (Shtykova et al., 2017) but also the
middle domain (Noton et al., 2007). It is hypothesized that the
acidification in the endosome causes the M1 protein to undergo
a conformational change which ultimately allows the disassembly
of the RNP-M1-lipid membrane complex and RNP detachment
from the membrane (Calder et al., 2010; Fontana et al., 2012).
Research by cryo-electron tomography (ET) further showed that
the intermolecular interactions in the M1 layer are affected when
the virions were incubated at pH 5.0, and the matrix layer was no
longer seen in the virions (Lee, 2010). Specifically, other cryo-ET
studies have indicated that acidification affects the oligomerization
state of the M1 protein; it has been demonstrated that intact M1
display multiple-ordered forms of oligomers at neutral pH 7.4
which are dissociated at pH 5.0 (Zhang et al., 2012). Not until
recently has the first full structure of full-length M1 been observed;
subtomogram observations showed it contains a five histidine
residues cluster that may serve as the pH-sensitive disassembly
switch (Peukes et al., 2020). Despite these findings, the precise
mechanism of protonation of the M1 protein during endosomal
transport remains poorly understood, and further research is
needed (Selzer et al., 2020).

3. SARS-coronavirus

The positive-stranded RNA genome of SARS-coronavirus
encodes three membrane proteins: the spike (S) glycoprotein,
responsible for binding the cell-surface receptor to induce virus-
host cell fusion (Huang et al., 2020); and the viral envelope proteins
consisting of the membrane (M) glycoprotein and the envelope
(E) protein. The S protein anchored in the viral membrane is
a trimer with each protomer composed of S1 and S2 subunits
non-covalently bound in the pre-fusion state (Örd et al., 2020).

3.1. pH-dependent infection routes:
S protein conformational changes
activated by cathepsin L during
clathrin-mediated endocytosis

SARS-coronavirus entry into target cells starts with protease-
induced preactivation of the S1/S2 cleavage (Peacock et al., 2021).
The protease-activated cleavage is followed by S1 binding to the
host cellular receptor angiotensin-converting enzyme 2 (ACE2)
(Li et al., 2003). Successive ACE2 binding further weakens the
protease-induced preactivation of the S1/S2 cleavage, followed by
cleavage of the S2 unit to generate S2′ (Benton et al., 2020b). The S2′

fusion peptide is then liberated and eventually penetrated the host
target cell, ultimately leading to the fusion of the viral and host cell
membranes after which viral RNA is released into the cytoplasm,
where it replicates (Walls et al., 2017; Benton et al., 2020b). The
conformational changes in the S2 unit can be triggered by either
the transmembrane serine protease TMPRSS2 (Tortorici et al.,
2019) or lysosomal cysteine protease cathepsin L in the endosomal
compartment following ACE2-mediated endocytosis (Hoffmann
et al., 2020; Zhao et al., 2021). However, the timing and dynamics
of these proteolytic cleavages differ for different coronavirus

types. After protease-preactivation of the S1/S2 cleavage, SARS-
CoV-2 can use mutually exclusive routes to penetrate cells: one
fast TMPRSS2-mediated plasma membrane entry (10 min) and
one slower (40–50 min) clathrin-mediated endocytosis where S2′

cleavage is performed by cathepsin L (Koch et al., 2021; Jackson
et al., 2022). TMPRSS2 is active at the cell surface regardless of pH
conditions (Koch et al., 2021; Jackson et al., 2022), unlike cathepsin
L, which requires a low-pH environment typical of endolysosomes
(Mohamed and Sloane, 2006; Koch et al., 2021; Jackson et al., 2022).

Thus, SARS-CoV-2 fusion is essentially independent of pH
value as endosomal acid-dependent penetration through cathepsin
L occurs only in cells devoid of TMPRSS2 (Koch et al., 2021) as
shown in Figure 2. Although several studies support the view that
TMPRSS2-dependent early entry route is more efficient and results
in a more productive infection than the cathepsin L-activated
mechanisms for some CoV strains (Shirato et al., 2017, 2018),
other studies indicate that more recent Omicron SARS-CoV-2
variants favor the low-pH endosomal entry route (Meng et al.,
2022). For fusion activity in SARS-CoV, cathepsin Ls have been
shown to require reduced pH of at least 6.0 or lower, found in the
endolysosomal compartment (Luzio et al., 2007; Padilla-Parra et al.,
2012; Wallabregue et al., 2016). Human cathepsin L is very unstable
(kinact = 0.15 s−1) at close to neutral conditions (pH = 7.4;
37◦C) and the inactivation rates increase for at least one order of
magnitude between pH 7.0 and 8.0 at 37◦C [L109]. Interestingly,
the cathepsin L activity is very temperature dependent: at pH = 7.4,
a temperature rise from 5 to 37◦C results in a thousand-fold
increase in the inactivation rate (Turk et al., 1993). Bound to
negatively charged surfaces, the cathepsin L activity also depends
on the ionic composition of the exposed milieu (Dehrmann et al.,
1995). Studies focusing on the composition of buffers have shown
that different ionic solutions and ionic strengths have unique
impacts on cathepsin L activity (Dehrmann et al., 1995, 1996).
While in phosphate solutions the enzymatic activity occurs at a
slightly acidic condition range of pH = 5.5–6.0 (Mason and Massey,
1992), the cathepsin L activity peaks at pH = 6.5 in acetate-MES2-
Tris (AMT) buffers (Dehrmann et al., 1996) at constant molarity.
In most enzyme-catalyzed reactions carried out in the laboratory
the ionic strength is usually fairly high due largely to the high
buffer concentrations needed to ensure constant pH. The higher
the ionic strength, the greater the electrostatic interactions between
ions in the solution, which can affect various chemical and physical
properties of the solution (Kennedy, 1990). For instance, when
increasing the ionic strength of a weak acid its optimum pH shifts
to lower pH values at constant molarity, and the opposite trend
is true for weak bases (Dennison, 2003). It has been observed
that cathepsin L activity time is reduced with an increase in the
ionic strength of phosphate buffer–a weak acid (Kennedy, 1990),
implying increasing the ionic strength in weak acids may increase
the optimum pH activity range for cathepsin L and vice versa. The
effects of ionic strength on the activities of cathepsin Ls may be of
key significance in establishing their true potential for extracellular
activity processes such as anti-viral drug development (Turk et al.,
1993; Dehrmann et al., 1995). While cathepsin L activity generally
favors slightly acid conditions, in sodium citrate buffers cathepsin
L is irreversibly inactivated at pH values lower than 4.0 (Turk et al.,
1993), an acidic environment that can occur in intact cells where
matured lysosomes may reach a pH as low as 3.8 (Berg et al., 1995;
Van Dyke, 1995).
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FIGURE 2

Pre-viral entry of SARS-coronavirus and binding to ACE-2 receptors during clathrin-mediated endocytosis in absence of TMPRSS2 (1–3). Viral entry
and transport through endosomes during clathrin-mediated endocytosis: low pH-induced conformational changes induced by cathepsin L
activation in acidified endosomes (4–6).

3.1.1. pH-induced M protein conformational
changes

The M protein is the most abundant structural protein and
contains three transmembrane helices, with a short amino-terminal
ectodomain and a large carboxy-terminal endodomain (Kuo et al.,
2007). The M protein defines the envelope shape and is directly
involved in virus assembly, replication, and membrane budding
(Hu et al., 2003; Neuman et al., 2011). Although the structure of M
protein forms a dimer that is structurally related to the SARS-CoV-
2 ion channel ORF3a (Ouzounis, 2020; Dolan et al., 2022), reported
cryo-electron microscopy structures revealed that is unlikely that
the so far known forms of M protein function as an ion channel
because its transmembrane region is highly hydrophobic and has
no apparent ion permeation pathway (Zhang et al., 2022). These

findings do not rule out the possibility that the two currently
recognized forms of the M protein, an elongated and a compact
one (Neuman et al., 2011; Dolan et al., 2022), represent closed
conformations, and that a different, unknown form is responsible
for ion conduction. Although the function of coronavirus M
appears to be analogous to that of the virus M1 protein of influenza
A (Neuman et al., 2011), no similar pH-sensitive behavior has yet
been observed.

3.1.2. pH-induced E protein conformational
changes

The smallest of the major structural proteins, the
multifunctional E protein acts on several aspects of the virus’
life cycle, including virus assembly, budding and pathogenesis
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(Schoeman and Fielding, 2019). The E protein is composed of a
short hydrophilic N-terminal, followed by a large hydrophobic
TMD, and ends with a long hydrophilic C-terminal domain,
which compromises the majority of the protein Structurally, the
TM domain of E forms a pH-sensitive pentameric ion channel
(viroporin) on the ER/Golgi membrane, which is generally
permeable to Ca2+, Na+, Mg2+ and K+ ions (Verdiá-Báguena
et al., 2012; Nieto-Torres et al., 2015; Cabrera-Garcia et al., 2021;
Xia et al., 2021), but also to H+ ions according to in silico studies
and pH imaging (Cabrera-Garcia et al., 2021; Xia et al., 2021).
In mammalian cells, the SARS-CoV-2 viroporin is activated at
pH = 6.0 and 7.4, whereas at alkaline pH values of 8 and above
the viroporin activity is reduced (Cabrera-Garcia et al., 2021; Xia
et al., 2021). However, some inconsistencies between studies and
tests have been noted. The varying ion channel characteristics of E
proteins across different coronaviruses and even within different
experimental settings have led to concerns that certain outcomes
could be erroneous.

4. Discussion

In this review, I analyze and compare the conditions and
mechanisms of pH-dependent endocytic pathways for IAV and
SARS-coronavirus. While there are similarities in the pattern,
there are notable differences in the mechanisms and incidence of
pH-dependent endocytosis. Influenza viral entry primarily takes
place via clathrin-mediated and caveolin-mediated endocytosis, but
only the former is regulated by pH. After viral clathrin-mediated
internalization, the incoming virion is transported through an
acidic environment in early endosomes, late endosomes, and
lysosomes. As the pH of the endosome encapsulating the virus
is lowered, the virus structure undergoes several conformational
changes. The lowered pH value induces the extrusion of the HA-
2 fusion peptide from its buried position which forms a pore
through which the genomic segments of the virus are released.
In addition, the AM2 proton channel becomes activated, allowing
a unidirectional proton across the membrane to equilibrate the
pH of the virus interior with that of the acidic endosome.
Lowered pH also induces conformational changes to the influenza
NA and M1 protein, however, unlike HA and AM2 the precise
mechanisms remain poorly understood, and further research
is needed. Measured influenza activation pH values across all
subtypes and species range from ∼5.0 to 6.0, trending higher
in highly pathogenic H5N1 and H7N9 strains whereas seasonal
human strains are more acid-stable (pH of fusion 5.0 to 5.6).
Similar to IAV, SARS-CoV-2 can use mutually exclusive routes
to penetrate cells: one fast pH-independent TMPRSS2-mediated
plasma route, and one pH-dependent slow clathrin-mediated
endocytosis via cathepsin L. The clathrin-mediated endocytosis
through cathepsin L occurs only in cells devoid of TMPRSS2.
Unlike TMPRSS2, which is active at the cell surface regardless of
pH conditions, cathepsin L requires a low-pH environment typical
of endolysosomes. Although several studies support the view that
TMPRSS2-dependent early entry route is more efficient and results
in a more productive infection than the cathepsin L-activated
mechanisms for some SARS-coronavirus strains, recent studies
indicate that Omicron SARS-CoV-2 variants favor the low-pH

endosomal entry route. For fusion activity in SARS-coronavirus,
cathepsin Ls have been shown to require reduced pH of at least
6.0 or lower. Although research has verified that the envelope
E-protein serves as an ion channel when pH levels decrease, there
have been certain inconsistencies observed between various studies
and tests. Furthermore, unlike the influenza M1 protein, there
has been no evidence of similar pH-sensitive behavior in the
SARS-coronavirus M1 protein. However, studies also suggest that
cathepsin L is irreversibly inactivated at pH values lower than 4.0,
an acidic environment that may occur in matured lysosomes. The
pH sensitivity of influenza A and SARS-CoV-2 viral glycoproteins is
a potential target for therapeutic interventions and anti-viral drug
treatments. So far, there is evidence suggesting that chloroquine,
a weak base, inhibits the replication of those influenza A strains
whose hemagglutinins require a low pH for their fusion activation
(Di Trani et al., 2007). Chloroquine has shown potential in blocking
the SARS-CoV-2 infection cycle by releasing basic side chains
that raise the endosomal pH and inactivate cathepsin-L (Lan
et al., 2022). However, the use of chloroquine for the treatment
of COVID-19 triggered significant debate, especially since the
drug is associated with side effects and exhibits only marginal
efficacy (Chen et al., 2021; Kashour et al., 2021). With regard
to alternative approaches for achieving endosomal deacidification,
endosomal acidification inhibitors bafilomycin A1 and NH4Cl were
shown to exert antiviral effects against SARS-CoV-2 in vitro cell
models and in vivo in hACE2 transgenic mice, and thus should be
evaluated as potential COVID-19 treatments (Shang et al., 2021).
In summary: while both influenza and coronavirus may pursue
pH-regulated endocytic pathways, the influenza virus does not
require the presence of specific pH-sensitive enzymes (cathepsin L)
during endosomal transport to activate fusion with the host cell.
The review also notes that the precise mechanism of protonation
mechanisms of certain envelope glycoproteins during endosomal
transport for both viruses remains incompletely understood, and
further research is needed.
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