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Background: Some observational studies have shown that immune

thrombocytopenia (ITP) is highly associated with the alteration-composition

of gut microbiota. However, the causality of gut microbiota on ITP has not yet

been determined.

Methods: Based on accessible summary statistics of the genome-wide union,

the latent connection between ITP and gut microbiota was estimated using

bi-directional Mendelian randomization (MR) and multivariable MR (MVMR)

analyses. Inverse variance weighted (IVW), weighted median analyses, and MR-

Egger regression methods were performed to examine the causal correlation

between ITP and the gut microbiota. Several sensitivity analyses verified the MR

results. The strength of causal relationships was evaluated using the MR-Steiger

test. MVMR analysis was undertaken to test the independent causal effect. MR

analyses of reverse direction were made to exclude the potential of reverse

correlations. Finally, GO enrichment analyses were carried out to explore the

biological functions.

Results: After FDR adjustment, two microbial taxa were identified to be causally

associated with ITP (PFDR < 0.10), namely Alcaligenaceae (PFDR = 7.31 × 10−2)

and Methanobacteriaceae (PFDR = 7.31 × 10−2). In addition, eight microbial

taxa were considered as potentially causal features under the nominal

significance (P < 0.05): Actinobacteria, Lachnospiraceae, Methanobacteria,

Bacillales, Methanobacteriales, Coprococcus2, Gordonibacter, and Veillonella.

According to the reverse-direction MR study findings, the gut microbiota

was not significantly affected by ITP. There was no discernible horizontal

pleiotropy or instrument heterogeneity. Finally, GO enrichment analyses showed

how the identified microbial taxa participate in ITP through their underlying

biological mechanisms.
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Conclusion: Several microbial taxa were discovered to be causally linked to

ITP in this MR investigation. The findings improve our understanding of the gut

microbiome in the risk of ITP.

KEYWORDS

immune thrombocytopenia, ITP, gut microbiota, Mendelian randomization study, the
causal relationship

Background

Immune thrombocytopenia (ITP) is defined as an acquired
autoimmune disorder resulting in bleeding symptoms caused by
the destruction of megakaryocytes and the decrease of peripheral
blood platelets (counts of platelet < 100 × 109/L) (Anat, 2023;
Liu et al., 2023). The annual incidence of ITP was about 2–
4/100,000 adults (Lambert and Gernsheimer, 2017). Disregarding
common hemorrhage events, patients with ITP often feel fatigued
in their daily activities and anxious about the burden of monitoring
or treatment (Efficace et al., 2016). The pathogenesis of ITP is
intricate. A variety of triggering mechanisms have been identified,
such as predisposing factors (Audia et al., 2017), viral infection
factors (Provan and Semple, 2022), drug-induced factors (Marini
et al., 2022), and vaccine-induced factors (Arepally and Ortel,
2021), as well as those without a clear underlying cause (Swinkels
et al., 2018).

The human gut microbiome is considered the biggest and
most complicated symbiotic ecosystem, with the host playing a
pivotal role in maintaining gut homeostasis (Shi et al., 2017). An
imbalanced composition in the gut microbiome has been shown to
play a role in autoimmune diseases (Clemente et al., 2018; Beam
et al., 2021; Tong et al., 2021; Pianko and Golob, 2022). Several
studies have found a connection between gut microbiota and ITP.
Borody et al. (2011) reported that the first immune-mediated ITP
was successfully reversed using fecal microbiota transplantation
(FMT) in 2011. Further studies on probiotics may promote
the prevention and treatment of ITP. However, results from
previously published studies have been inconsistent. For example,
Liu C. et al. (2020) discovered that the compositional change
of intestinal microbiota occurred in ITP, with a more significant
percentage of Proteobacteria and Bacteroidetes and a lower ratio
of Firmicutes/Bacteroidetes compared with healthy controls. Yu
et al. (2022) obtained results showing that Actinobacteria and the
Firmicutes/Bacteroidetes ratio decreased, while Zhang et al. (2020)
reported the opposite results about the Firmicutes/Bacteroidetes
ratio. Most of the previous studies about ITP were conducted
as case-control studies, in which it was difficult to confirm the
causal correlation between the exposure and outcome. Moreover,
for observational studies, the relationship between ITP and gut
microbiome is vulnerable to confounders such as environment, age,
sex, dietary habits, and lifestyle (Wang et al., 2021). Furthermore, it
is not easy to prevent these confounding factors from affecting the
results of observational studies. The above circumstances restrict
us from investigating the causality between ITP and the gut
microbiome.

Studies using Mendelian randomization (MR) have widely
examined the causal relationship between the gut microbiome and
disorders such as autoimmune disorders (Xiang et al., 2021; Xu
et al., 2022), metabolic disorders (Sanna et al., 2019; Xu et al., 2021),
and psychiatric disorders (Ni et al., 2022). Using MR in studies takes
advantage of genetic variants serving as the instrumental variable
(IV) to determine the assumption that exposure causally affects the
outcome. Confounders cannot affect the link between outcome and
genetic variants because genotype variation is randomized among
children by their parents. Therefore, we can get a reasonable causal
inference from studies using MR (Birney, 2022). This study uses
the summary statistics from the genome-wide association study
(GWAS) and then assesses the causal relationship between ITP and
gut microbiota via a two-sample MR design.

Materials and method

Study design

As shown in Figure 1, this study aims to reveal the causal effect
of gut microbiota and ITP based on two-sample MR approach
(Bowden and Holmes, 2019).

Data sources

GWAS comprises 18,340 persons from 24 cohorts, of various
ethnicities, a large amount of whom are of European descent, which
produced the most extensively published GWAS summary data for
gut microbiota (Davey Smith and Hemani, 2014; Kurilshikov et al.,
2021). As Kurilshikov et al. (2021) described, after post-sequencing
quality control, standardized 16S rRNA processing pipelines were
implemented for all participating cohorts, and the taxonomic
resolution was truncated to the genus level. In quantitative
microbiome signature loci (mbQTL) mapping, adequate sample
sizes of at least 3,000 samples and the presence in no less than three
studies were used as study-wide cutoffs, while taxa with less than
10% of representatives present in each participating cohort were
also discarded.

To ensure no overlap between the sample and the exposure,
we sourced the ITP-GWAS summary statistics from the FinnGen
consortium’s R8 release (Hartwig et al., 2017). The FinnGen project
aims to generate genomic data linked to the national health registry
data of 500,000 Finnish individuals enriched for disease endpoints.
Demographic information, such as age and gender, of participants
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FIGURE 1

The design of this MR study of the association between gut
microbiota and immune thrombocytopenia disease (GWAS,
genome-wide association study; IVs, instrumental variables; SNPs,
single nucleotide polymorphisms).

in the FinnGen study was provided. We set the first 10 main
components during analysis: gender, age, and genotyping batch.
For our analysis, ITP-GWAS included 703 ITP cases and 337,408
controls. Table 1 shows the ITP and GWAS summary of ITP and
GWAS data.

Instrument selection

Our criteria for selecting each feature’s IVs is as follows:
(1) candidate single nucleotide polymorphisms (SNPs) with
P < 1.0 × 10−5 statistical significance were selected as being
connected with each feature (Hartwig et al., 2017); (2) the linkage
disequilibrium (LD) threshold between the SNPs was fixed as
r2 < 0.001 (clumping window size = 10,000 kb) based on
the reference panel data from 1,000 Genomes Project European
samples (phase 3), to retain the independent SNPs with the lowest
P-values (Bowden et al., 2015); (3) SNPs with ambiguous alleles
(for example, A/C vs. A/G) between the exposure and outcome
GWAS were excluded; (4) a sensitivity analysis was conducted to
prevent distortion from allele coding or strand orientation, where
palindromic SNPs (for example., with G/C or A/T alleles) were
taken forward to ruled out.

Weak instrument bias could lead to misleading estimates
of causal effects. Thus, the F-statistic was obtained to evaluate
the intensity of IVs via the formula F =

(
N–K−1

K

) (
R2

1−R2

)
,

where the ratio of variance in the phenotype shown by the

number of instruments (K), sample size (N), and genetic variants
(R2) was needed (Bowden et al., 2016). If the corresponding
F-statistic was larger than 10, this indicated sufficient strength to
ensure the validity of IVs. R2 was worked out via the formula
“R2 = 2 × MAF × (1–MAF) × beta2,” where “beta” denotes the
genetically estimated impact on the exposure, and means denotes
the frequency of the minor allele (Verbanck et al., 2018).

Statistical analysis

We conducted several analyses based on the two-sample MR
framework to investigate the potential causal correlation between
ITP and gut microbiome, including inverse variance weighted
(IVW), weighted median analysis, and MR-Egger regression
method. The IVW approach was used as the primary analysis,
assuming that all SNPs were valid but vulnerable to horizontal
pleiotropy (Abecasis et al., 2010). A weighted median analysis
can allow consistent evaluations if up to 50% of the instrumental
variables are invalid (Lin et al., 2022). The MR-Egger regression
model is similar to the IVW model, except for its additional
intercept term for estimating the presence of pleiotropy (Burgess
et al., 2013). Additionally, Mendelian Randomization Pleiotropy
Residual Sum and Outlier (MR-PRESSO) were taken to identify and
adjust for the influence of outliers in the data (Bowden et al., 2015).
We also performed a leave-one-out analysis, where each SNP was
taken off one at a time while calculating Cochran’s Q-statistic to
determine the heterogeneity of IVs to confirm all results were not
skewed by a single SNP (Bowden et al., 2016).

If the results of all MR analyses were significant at a statistics
level (P < 0.05), we speculated that the gut microbiome may
be linked to the risk of ITP. The directional causality of the
gut microbiome on ITP was evaluated using the MR-Steiger test
(Hemani et al., 2017), and MR analysis in the reverse direction was
performed. The procedures and settings used were in accordance
with those of the forward MR study. If the subsequent four
conditions were satisfied, we held the belief that a substantial
causal link between gut microbiome and ITP risk existed: (1) a
substantial disparity was evident using the IVW method (P < 0.05);
(2) the outcome estimations of the IVW, weighted median,
and MR-Egger methodologies demonstrated congruence; (3) both
the MR-Egger intercept test and the MR-PRESSO global test
yielded non-significant results (P > 0.05); and (4) the MR-Steiger
directionality tests indicated TRUE (P < 0.05). Multivariable MR
(MVMR) analysis was performed to estimate the independent
causal relationship between gut microbiota and ITP conditioning
on the effects of other exposures. IVW was also the primary
analysis method. Moreover, we conducted GO enrichment analysis

TABLE 1 Information of ITP and GWAS summary data.

GWAS
summary data

Resource Sample size Population
ancestry

Reference Data download

ITP FinnGen consortium Number of cases: 703
Number of controls:
337,408

European FinnGen-tutkimushanke vie
suomalaiset löytöretkelle
genomitietoon (internet). In:
FinnGen.

https://risteys.finregistry.
fi/endpoints/D3_ITP

Gut microbiota MiBioGen
consortium

18,340 individuals Predominantly European Kurilshikov et al., 2021 www.mibiogen.org
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based on lead SNPs for all identified gut microbial taxa to further
study the biological function of gut microbial taxa on the risk of
ITP.

Two Sample MR software (version 0.5.6) was used for all
analyses. MR-PRESSO (version 1.0) R package was done by the
R version 4.2.1 software package. GO enrichment analysis was
carried out by the “FUMA” website tool (Watanabe et al., 2017).
In order to exclude any potential false positive signal, the false
discovery rate (FDR) method was used to adjust for the number
of exposures tested under each attribute. PFDR < 0.1 was set as the
significant threshold. Microbial taxa and ITP were considered to
have a potential association when P < 0.05 but PFDR ≥ 0.1.

Results

MR results

A total of 2,248 SNPs were employed as IVs for 211 bacterial
taxa in accordance with the selection criteria for IVs. The bias of
weak IVs was eliminated by the F-statistics of the IVs, which ranged
from 12.91 to 187.70. Supplementary Table 1 provides additional
information regarding the chosen instrumental factors.

Based on IVW methods, a total of 10 microbial taxa
were identified to be associated with ITP, where one
belongs to phyla, three belong to families, one belongs to
classes, two belong to orders, and three belong to genera
(Figures 2, 3 and Supplementary Table 2). After FDR
correction (Supplementary Table 13), two significant taxa
were identified. Alcaligenaceae (OR = 2.40; 95% CI, 1.28–
4.50; P = 6.56 × 10−3, PFDR = 7.31 × 10−2) had a risk
effect on ITP, and Methanobacteriaceae (OR = 0.63; 95%
CI, 0.45–0.88; P = 6.85 × 10−3, PFDR = 7.31 × 10−2)
is negatively associated with ITP risk. In addition, eight
microbial taxa were considered as potentially causal features
under the nominal significance (P < 0.05). Specifically,
Gordonibacter (OR = 1.35; 95% CI, 1.01–1.81; P = 4.38 × 10−2,
PFDR = 9.07 × 10−1) and Veillonella (OR = 2.04; 95% CI, 1.03–4.05;
P = 4.04 × 10−2, PFDR = 9.07 × 10−1) had a risk effect on ITP, and
Methanobacteria (OR = 0.63; 95% CI, 0.45–0.88; P = 6.85 × 10−3,
PFDR = 1.10 × 10−1), Methanobacteriales (OR = 0.63; 95%
CI, 0.45–088; P = 6.85 × 10−3, PFDR = 1.02 × 10−1),
Lachnospiraceae (OR = 0.54; 95% CI, 0.31–0.97; P = 3.80 × 10−2,
PFDR = 3.40 × 10−1), Coprococcus2 (OR = 0.52; 95%
CI, 0.28–0.96; P = 3.74 × 10−2, PFDR = 9.07 × 10−1),
Bacillales (OR = 0.66; 95% CI, 0.48–0.91; P = 1.01 × 10−2,
PFDR = 1.02 × 10−1), and Actinobacteria (OR = 0.52; 95% CI,
0.28–0.97; P = 3.89 × 10−2, PFDR = 3.50 × 10−1) had a protective
effect on ITP.

Cochran’s IVW Q test results showed no evidence of
significant heterogeneity in these IVs (Supplementary Table 3).
The results of the intercept analysis of the MR-Egger regression
likewise suggested that there was no substantial horizontal
pleiotropy in either direction (Supplementary Table 4). Further
testing of the MR-Egger regression’s accuracy using MR-PRESSO
revealed no horizontal pleiotropy (Supplementary Table 5).
Also, the leave-one-out results offered additional proof of the
data’s reliability (Figure 4). The IVW results were accurate

when pleiotropy and heterogeneity were absent. The results of
the MR-Steiger directionality tests were TRUE (Supplementary
Table 11). Thereby, these bacteria were causally related to
ITP.

To eliminate the error in estimating causal effects caused by the
potential correlations between exposures, MVMR was performed
based on the findings from the univariate analysis at genus,
family, and order levels. At the genus level, three independent
causal associations were found, including family Coprococcus2
(OR = 0.55; 95% CI, 0.34–0.89; PIVW = 1.40 × 10−2), Gordonibacter
(OR = 1.36; 95% CI, 1.10–1.67; PIVW = 4.0 × 10−3), and Veillonella
(OR = 1.71; 95% CI, 1.05–2.78; PIVW = 3.0 × 10−2). At the family
level, we found the independent causal effect in Alcaligenaceae
(OR = 2.37; 95% CI, 1.20–4.67; PIVW = 1.3 × 10−2). However, the
results for suggestive microbial taxa turned out to be insignificant
after adjustment, including Lachnospiraceae (OR = 0.59; 95%
CI, 0.32–1.12; PIVW = 1.06 × 10−1) and Methanobacteriaceae
(OR = 0.73; 95% CI, 0.53–1.02; PIVW = 6.7 × 10−2). At the
order level, the MVMR confirmed the results for Bacillales
(OR = 0.65; 95% CI, 0.48–0.89; PIVW = 8.0 × 10−3), while
the results for Methanobacteriales (OR = 0.69; 95% CI, 0.48–
1.00; PIVW = 5.1 × 10−2) were not significant. All the results
above indicated a potential pleiotropy for gut microbial taxa with
ITP at the family and order levels, respectively (Supplementary
Table 14).

Reverse-direction MR analyses

ITP had no significant causal relationship with the other gut
microbes (Supplementary Tables 6, 7). Cochran’s IVW Q test
revealed no substantial heterogeneity in ITP IVs (Supplementary
Table 8). There was no discernible horizontal pleiotropy in the
MR-Egger regression intercepted item analysis (Supplementary
Table 9) or the MR-PRESSO analysis (Supplementary Table 10).

FUMA analysis and GO enrichment
analysis

We conducted a functional mapping and annotation (FUMA)
analysis to functionally map and annotate the genetic associations
to understand better the underlying molecular mechanism between
the 10 bacterial genera and ITP risk (Lozupone et al., 2012). Lead
SNPs for which P < 5 × 10−6 and r2 < 0.1 were identified from the
10 GWAS results (Supplementary Table 12). After SNP-to-genes
mapping and annotating the mapped genes in biological contexts,
three GO biological processes (“sodium-independent organic anion
transport,” “defense response to bacteria,” and “bile acid and bile salt
transport”) were observed that could affect ITP (Figure 5).

Discussion

To the best of our knowledge, this is the first investigation
of the causal link between gut microbiome and ITP using
publicly accessible genetic datasets. In our study, we utilized the
summary statistics of the gut microbiome from the MiBioGen
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FIGURE 2

Forest plots for the causal association between gut microbiota and ITP on the IVW method (IVW, inverse variance-weighted; NSNP, numbers of
single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval).

consortium GWAS meta-analysis and the summary statistics
of ITP from the FinnGen consortium (R8 released data) to
conduct a two-sample MR analysis to find the possible impact
of gut microbiota on the risk of ITP. Our MR analysis
identified 10 gut microbial taxa as having potential effects on
the risk of ITP. The family Alcaligenaceae, genus Gordonibacter,
and genus Veillonella could lead to a higher risk of ITP.
In contrast, the phylum Actinobacteria, order Bacillales, genus
Coprococcus2, family Methanobacteriaceae, class Methanobacteria,
family Lachnospiraceae, and order Methanobacteriales were linked
to a decrease in ITP risk. MVMR indicated a potential pleiotropy at
the family and order levels, respectively.

The human intestinal mucosa houses a diverse microbiota
population, including over 1,000 species that serve vital roles
in maintaining good health (Tremaroli and Bäckhed, 2012;
Yu et al., 2021). The gut microbiota primarily comprises
Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria,
Firmicutes, Fusobacteria, and Verrucomicrobia (Lozupone
et al., 2012; Adak and Khan, 2019). It is worth noting that
an imbalance in gut microbiota can lead to various diseases
related to immunology, psychology, and metabolism (Wang
and Zhao, 2018; Góralczyk-Bińkowska et al., 2022; Miyauchi
et al., 2023). Dysbiosis of the gut microbiome can significantly
affect the development of autoimmune conditions such as type
1 diabetes (T1DM) (Murri et al., 2013), Crohn’s disease (CD)
(Caparrós et al., 2021), multiple sclerosis (MS) (Pröbstel et al.,
2020), inflammatory bowel diseases (IBD) (Parada Venegas et al.,
2019), autoimmune hepatitis disease (AHD) (Cheng et al., 2022),
asthma (Arrieta et al., 2015), allergies (Liu X. et al., 2020), and
psoriasis (Tan et al., 2018). Recent studies have suggested that
Veillonella and Gordonibacter may promote inflammation, while
Lachnospiraceae, Actinobacteria, and Methanobrevibacter may
have protective effects against autoimmune conditions. The

abundance of Veillonella increased in AHD (Cheng et al., 2022)
and CD patients (Caparrós et al., 2021) compared to healthy
controls. Meanwhile, Gordonibacter was found to stimulate the
release of pro-inflammatory cytokines and damage the epithelial
barrier in intestinal epithelium-specific Fut2 deficiency mice
(Tang et al., 2021). Conversely, Lachnospiraceae was noted to
exert anti-inflammatory effects in intestinal epithelial cells and
immune cells by producing short-chain fatty acids (SCFAs) (Parada
Venegas et al., 2019). Actinobacteria, specifically Bifidobacteria
species, can regulate the immune system’s inflammatory and
autoimmune responses by activating regulatory Treg cells
(Binda et al., 2018). Methanobrevibacter, the predominant
anaerobic archaeon enriched among MS gut microbiota, was
found to participate in the immunomodulatory process and
recruit inflammatory cells (Bang et al., 2014; Zoledziewska,
2019). These studies corroborate the findings of our MR
study. However, further research is necessary to understand
the specific mechanisms of gut microbiota in autoimmune disease
development.

In recent years, advancements in macrogenomics and
sequencing technologies have enabled researchers to explore
variations in the gut microbiota between ITP patients and healthy
individuals (Liu C. et al., 2020; Zhang et al., 2020; Yu et al., 2022).
Through our MR study, we found three gut microbiota taxa,
Bacillales, Coprococcus2, and Lachnospiraceae, belonging to the
phylum Firmicutes, consistent with other studies’ findings (Liu
C. et al., 2020; Yu et al., 2022). However, at the phylum level, we
did not find any causal connections between Firmicutes and ITP
risk. Another study explored the differences in gut microbiota
between children with ITP and healthy individuals, and found a
decrease in the proportion of Actinobacteria in the phylum level,
which aligns with our findings (Li et al., 2023). There are several
reasons to explain the different results, including the vulnerability
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FIGURE 3

Scatter plots for the causal association between gut microbiota and ITP (SNP, single nucleotide polymorphism; ITP, immune thrombocytopenia).

of gut microbiota composition to age, dietary habits, geographical
environment, and other factors (Milani et al., 2017). Moreover,
the microbiome contains a large variety of taxa, and multiple taxa

interacting with each other may ultimately override the role of the
phylum. Additionally, although compositional variations of the
gut microbiome in ITP patients were observed in previous studies,
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FIGURE 4

Leave-one-out plots for the causal association between gut microbiota and ITP (SNP, single nucleotide polymorphism).

they could not ensure a causal connection between ITP and gut
microbiota. In contrast, our two-sample MR study eliminated the
reverse causality for the ITP effects on gut microbiota, providing
a more robust understanding of the relationship between the ITP
and gut microbiota.

GO enrichment analysis highlighted three biological processes
that may be linked to the relationship between the gut microbiota

and ITP (“defense response to bacteria,” “bile acid and bile salt
transport,” and “sodium-independent organic anion transport.”).
Gut microbiome dysbiosis has been linked to various immune-
related diseases, but its role in initiating ITP is not yet known.
When an imbalance of intestinal flora occurs due to invasive
infections, it may activate T cells and B cells to secrete multiple
inflammatory factors, which could have a protective or harmful
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FIGURE 5

GO pathways from gut microbiota might participate in the ITP risk.

effect on the human body (Lozupone et al., 2012). For instance,
chronic exposure to certain infections such as Helicobacter pylori,
VZV (Varicella-Zoster virus), CMV (cytomegalovirus), and hepatitis
C increases the risk of secondary ITP (LeVine and Brooks, 2019).
Studies have shown that treating H. pylori infection effectively
increases platelet counts in ITP patients, which supports the
“defense response to bacteria” finding in our GO enrichment study
(Vishnu et al., 2021; Dogan et al., 2022; Takeuchi and Okamoto,
2022). Moreover, the target taxa identified in this study, such as
Actinobacteria, Methanobrevibacter, and Lachnospiraceae, activate
T cells to promote inflammatory responses, further confirming
the “defense response” of gut microbiota in ITP risk (Arrieta
et al., 2015; Binda et al., 2018; Tan et al., 2018; Parada Venegas
et al., 2019; Zoledziewska, 2019; Liu X. et al., 2020; Tang et al.,
2021). Bile acids (BA) produced in the liver and transformed
in the intestine are closely associated with the gut microbiota’s
bioconversion (Thomas et al., 2008; Malhotra et al., 2019; Vishnu
et al., 2021; Dogan et al., 2022). Several studies have shown that BA
signaling through farnesoid X receptor (FXR) and TGR5 binding
can attenuate pro-inflammatory innate immune responses such
as MS (Martín et al., 2010). Additionally, BA-dependent FXR can
induce the transcription of various genes involved in intestinal
mucosal defense against microbes to control bacterial overgrowth
and maintain mucosal integrity in the intestine under physiological
conditions (Rizzetto et al., 2018). These findings suggest that ITP
may involve “bile acid and bile salt transport” of the gut microbiota.
However, the influence of “sodium-independent organic anion
transport” in immune-related disorders, especially ITP, has been
overlooked by researchers.

There are some advantages to this study. The MR design
was used to speculate the causal correlation between ITP and
gut microbiota, excluding the deviation of confounders and the
inference of reverse causality. With the MiBioGen consortium,
the most significant GWAS meta-analysis was applied to gather
genetic variants related to the gut microbiota, assuring the
correctness of the tools. Horizontal pleiotropy was discovered and
eliminated using MR-Egger regression and MR-PRESSO. A two-
sample MR study can effectively avoid bias in comparison to
observational studies.

Despite its benefits, the MR analysis conducted has a few
limitations. Firstly, the analysis only explored the bacterial taxa at

the genus level, preventing us from establishing a causal correlation
between ITP and gut microbiota at the species level. Secondly,
the MR analysis did not allow for subgroup analyses, such as
distinguishing between primary (isolate) ITP and secondary ITP,
as only summary data was used instead of raw data. Lastly, since
the GWAS meta-analysis of gut microbiome data only included
individuals of European origin, our MR investigation was unable
to assess the non-European population.

Conclusion

In brief, this two-sample MR study established a causal link
between gut microbiota components and ITP. Future clinical and
animal studies research is required to fully understand the potential
mechanism between gut microbiota and ITP.
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