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Immunogenic cell death (ICD) serves a critical role in regulating cell death 
adequate to activate an adaptive immune response, and it is associated with 
various inflammation-related diseases. However, the specific role of ICD-related 
genes in COVID-19 remains unclear. We acquired COVID-19-related information 
from the GEO database and a total of 14 ICD-related differentially expressed genes 
(DEGs) were identified. These ICD-related DEGs were closely associated with 
inflammation and immune activity. Afterward, CASP1, CD4, and EIF2AK3 among 
the 14 DEGs were selected as feature genes based on LASSO, Random Forest, and 
SVM-RFE algorithms, which had reliable diagnostic abilities. Moreover, functional 
enrichment analysis indicated that these feature genes may have a potential 
role in COVID-19 by being involved in the regulation of immune response and 
metabolism. Further CIBERSORT analysis demonstrated that the variations in 
the immune microenvironment of COVID-19 patients may be  correlated with 
CASP1, CD4, and EIF2AK3. Additionally, 33 drugs targeting 3 feature genes had 
been identified, and the ceRNA network demonstrated a complicated regulative 
association based on these feature genes. Our work identified that CASP1, CD4, 
and EIF2AK3 were diagnostic genes of COVID-19 and correlated with immune 
activity. This study presents a reliable diagnostic signature and offers an overview 
to investigate the mechanism of COVID-19.
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Introduction

Coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), is a public crisis worldwide since 2019 (Zhong et al., 
2020; Kai-Wang To et al., 2021). Due to the mutable nature of SARS-CoV-2, numerous countries 
are suffering multi-dominant viral infections (Araf et al., 2022; Hadj, 2022). To control its spread, 
it is crucial to diagnose COVID-19 at an early stage. Accurate molecular diagnostic tests are 
necessary and valuable to confirm the rapid diagnosis of COVID-19, thus providing valid 
information for decision-making by the patient, healthcare facilities, and public health 
organizations (Islam and Iqbal, 2020; Safiabadi Tali et al., 2021; Yuce et al., 2021). Notably, large-
scale genome-wide association studies have demonstrated specific disease-related elements in 
the population (Badua et al., 2021; Robishaw et al., 2021), and there are numerous reports on 
genes and the prevalence of COVID-19, improving the early diagnosis and clinical management 
of COVID-19.
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Typical pathophysiological mechanisms of COVID-19 include 
cell death, immune response, oxidative stress, and metabolic activity 
(Tay et al., 2020; Gattinoni et al., 2021; van Eijk et al., 2021). Cell 
death and immune infiltration serve a critical role in the formation 
and progression of COVID-19 (Lee et al., 2020), and immunogenic 
cell death (ICD) is regarded as a regulative process that could affect 
cell death and immune infiltration simultaneously (Kroemer et al., 
2022). ICD facilitates the activation and recruitment of antigen-
presenting cells, thus activating innate and adaptive immune 
responses (Galluzzi et  al., 2020; Minute et  al., 2020). Initiating 
adaptive immunity in ICD is not only enhancing antitumor benefits 
but is essential for the optimal elimination of infectious etiologies 
(Galluzzi et al., 2017; Li et al., 2021). Therefore, ICD regulators may 
have potential diagnostic and therapeutic applications for COVID-
19. However, earlier reports focused on only some immune cells and 
immunological molecules in COVID-19, lacking a perspective on the 
ICD in COVID-19.

To date, there is growing evidence that multiple cell death 
modalities, such as ferroptosis, NETosis, and necroptosis, play an 
important role in the development of COVID-19 (Kang and Wang, 
2022; Nishiga et al., 2022; Zhang et al., 2023). Likewise, ICD may also 
regulate the progression of COVID-19. However, no similar studies 
have previously explored this specific process, and this study is the first 
exploration to analyze the relationship between ICD and COVID-19.

In this work, we aimed to determine the vital ICD regulators in 
the development of COVID-19, thus identifying valuable biomarkers 
for COVID-19 diagnosis. Subsequently, the correlation between ICD 
regulators and the infiltrating immune landscape was investigated. 
Based on the diagnosis biomarkers, the ceRNA network was 
established, and targeted small molecular agents for COVID-19 were 
explored. Finally, we validated the identified diagnosis biomarkers 
with the external dataset. This work offers an in-depth understanding 
of the developmental mechanisms of COVID-19 at the molecular level 
and identifies valuable biomarkers.

Materials and methods

Data acquisition

The gene expression profiles for COVID-19 and control samples 
were downloaded from the GEO databases (Barrett et al., 2013). The 
GSE157103 dataset comprised 100 COVID-19 samples and 26 control 
samples (Overmyer et al., 2021), and this dataset was deemed to be the 
training cohort for the principal analysis of this research. The 
GSE171110 dataset comprising 44 COVID-19 samples and 10 control 
samples was applied to validate the expression of the feature genes 
(Levy et al., 2021). Also, the 34 ICD-related genes included in this 
research were acquired from the previous report (Wang et al., 2021).

Differential expression analysis

The expression profiles of ICD-related genes in the samples were 
extracted from the GSE157103 dataset. Next, the limma package was 
utilized to identify the ICD-related differentially expressed genes 
(DEGs) between different types of samples (Ritchie et al., 2015). Genes 
with value of p < 0.05 were deemed significant.

Enrichment of functionality

The expression data were analyzed with functional enrichment to 
evaluate the potential functionality of promising targets. Gene 
ontology (GO) is a common approach for identifying the functions of 
genes, including molecular functions, biological pathways, and 
cellular components (The Gene Ontology C, 2019; Warwick Vesztrocy 
and Dessimoz, 2020). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment was performed to investigate the 
genomic information of the DEGs (Kanehisa et al., 2017). Reactome 
enrichment analysis is also applied to explore gene functions, similar 
to GO and KEGG analysis (Good et al., 2021). These enrichment 
approaches were performed with the cluster profiler package (Yu et al., 
2012). Additionally, disease ontology was utilized to annotate genes 
from a disease perspective (Schriml et al., 2022).

Identification of feature genes

The ICD-related DEGs were further utilized to identify significant 
feature genes, thus diagnosing COVID-19. The feature identification 
approach is a procedure of limiting the number of factors, specifically 
vital for establishing a predictive model (Lee et  al., 2021). LASSO 
regression, Random Forest (RF) algorithm, and SVM-RFE were included 
in this study to explore feature genes. The “glmnet” package was applied 
to conduct minimum LASSO regression, thus choosing the linear model 
and keeping the reliable variables (Engebretsen and Bohlin, 2019). 
Binomial distribution variables were further presented in the LASSO 
categorization, with a standard error value as the minimum parameter. 
Next, according to various dependent decision trees from a training pool, 
the RF algorithm promotes the precision of the model by randomly 
limiting the overfitting of individual decision trees (Yang et al., 2020). 
SVM-RFE can identify the optimal parameters by removing the 
SVM-derived eigenvectors (Sanz et al., 2018). An SVM module based on 
the “e1071” package was created to further evaluate the diagnostic value 
of the selected biomarker in COVID-19 (Jiang et  al., 2020). The 
intersected genes, as the most significant feature genes from these three 
algorithms, were identified for subsequent analysis. Meanwhile, the 
predictive reliability of feature genes was evaluated by the receiver 
operating characteristic (ROC) curve, and the area under the curve 
(AUC) was further obtained (Park et al., 2004). A logistic regression 
signature with these feature genes was also established to assess 
diagnostic ability, and ROC curve was utilized to present this result.

Pathway correlation analysis

To further investigate the potential pathways of the feature genes, 
single-gene gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA) were performed with the GSEA package 
and GSVA package, respectively (Subramanian et  al., 2005; 
Hanzelmann et  al., 2013). GSEA was applied to evaluate the 
distribution landscape of the feature genes of a predetermined 
collection to explore their attribution to the phenotype. For GSVA, 
we also applied the KEGG pathway set to conduct enrichment analysis 
for each feature gene. Next, the limma package was utilized to discuss 
the difference in the GSVA score of the feature gene’s up- and down-
regulated groups (Ritchie et al., 2015).
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Immune cell infiltration analysis

The CIBERSORT algorithm was applied to analyze the normalized 
gene expression data in the GSE157103 dataset, and the fraction of 
immune cells was identified (Chen et al., 2018; Overmyer et al., 2021). 
Violin plots were displayed to present the expressional difference of 
the immune infiltrating cells. And Spearman correlation analysis was 
executed to investigate the association between diverse immune 
infiltrating cells (Fujita et  al., 2009). Meanwhile, the correlation 
between feature genes and immune cells was also explored with a 
similar method. These results were visualized with the “ggplot2” 
package (Ito and Murphy, 2013). p-value < 0.05 demonstrated 
statistical significance.

Drug prediction

Drug Gene Interaction Database (DGIdb1) integrates existing 
literature on drug-gene interactions to provide clinical guidance for 
personalized treatment of disease. In this report, DGIdb was applied 
to identify gene-targeted drugs, and DrugBank database was further 
applied to identify drugs’ structural elements (Wagner et al., 2016; 
Wishart et al., 2018).

Establishment of a ceRNA network

Three databases (miRanda, miRDB, TargetScan) were utilized to 
predict miRNAs (Enright et al., 2003; Agarwal et al., 2015; Chen and 
Wang, 2020), and the intersections of the predicted miRNAs were 
identified as the target miRNAs. Afterward, spongeScan was applied 
to identify the corresponding lncRNAs for miRNAs (Furio-Tari et al., 

1 https://dgidb.org/

2016). A ceRNA network using Cytoscape was established predicated 
on the cross-talk between mRNAs, miRNAs, and lncRNAs (Shannon 
et al., 2003; Wu et al., 2020).

Results

Identification of ICD-related DEGs

Based on the GSE157103 dataset, 14 ICD-related differentially 
expressed genes (DEGs) were identified between COVID-19 and 
control samples. Detailed information on these DEGs were presented 
in Table 1. Among them, the expression levels of ENTPD1, HMGB1, 
HSP90AA1, ATG5, CASP8, EIF2AK3, PIK3CA, CASP1, MYD88, and 
TLR4 were up-regulated, whereas BAX, TNF, CD4, and FOXP3 were 
down-regulated in COVID-19 samples than that in non-COVID-19 
controls (Figure 1A). Next, the correlation between these genes was 
displayed in Figures 1B,C, and the significant interaction of most 
genes was observed. Furthermore, Figure  1D also indicated the 
pattern of the CNV alterations in ICD-related DEGs on their 
respective chromosomes.

Enrichment analyses for the ICD-related 
DEGs

We conducted GO, KEGG, Reactome, and DO enrichment 
analysis on ICD-related DEGs, thus discovering the potential molecular 
biological characteristics of COVID-19. The GO enrichment analyses 
indicated that these genes were largely involved in the regulation of 
cytokines (Figure  2A). KEGG pathway analyses showed that the 
positive regulation of cytokine production, response to 
lipopolysaccharide, response to molecules of bacterial origin, and T cell 
activation were enriched (Figure 2B). Moreover, Reactome terms were 
enriched in signaling by interleukins, programmed cell death, and 
regulated necrosis (Figure 2C). Interestingly, the ICD-related DEGs 
were also markedly enriched in inflammation and tumor-related 
signatures (Figure 2D). These findings demonstrated that ICD-related 
DEGs may serve a critical role in the etiology of COVID-19 by 
engaging in the regulation of cytokines and diverse cell death processes.

Identification of ICD-related diagnostic 
genes for COVID-19

For exploring the potential pathogenesis of COVID-19, we further 
evaluated the diagnostic values of ICD-related DEGs. Machine learning 
algorithms (LASSO, RF, and SVM-RFE) were selected and executed to 
identify the significant ICD-related DEGs, thus distinguishing 
COVID-19 from control samples. LASSO regression analysis was 
performed to select nine feature genes with statistically significant 
univariate parameters (Figures  3A,B). RF incorporating feature 
selection was utilized to investigate the relationship between error rate, 
number of classification trees, and 14 genes with relative importance 
(Figure 3C). Meanwhile, the respective importance of these genes was 
also presented in Figure 3D. Next, SVM-RFE analysis indicated that 
the SVM model based on five feature genes had an optimum 
generalization performance (Figures 3E,F). The feature genes from the 

TABLE 1 ICD-related DEGs between COVID-19 samples and control 
samples.

Gene p-value Type

ATG5 0.002 Up

BAX 0.003 Down

CASP1 <0.001 Up

CASP8 0.046 Up

CD4 0.011 Down

EIF2AK3 <0.001 Up

ENTPD1 0.028 Up

FOXP3 0.001 Down

HMGB1 <0.001 Up

HSP90AA1 0.004 Up

MYD88 <0.001 Up

PIK3CA 0.023 Up

TLR4 0.038 Up

TNF 0.021 Down
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abovementioned algorithms were intersected, and three feature genes 
(CASP1, CD4, and EIF2AK3) were determined for subsequent analysis 
(Figure  3G). To reveal the diagnostic accuracy of feature genes in 
distinguishing COVID-19 from non-COVID-19 controls, ROC curves 
were plotted for the three feature genes. As depicted in Figure 3H, the 
AUCs for the three feature genes were higher than 0.6, indicating that 
these genes have good diagnostic performance. Furthermore, 
we established a logistic regression model based on the three feature 
genes, and the ROC curves suggested that the logistic regression model 
differentiated COVID-19 and control samples with AUC = 0.899 
(Figure 3I). This evidence demonstrated that the three feature genes 
can be considered valuable diagnostic genes for COVID-19, and the 
diagnostic model incorporating the three feature genes may have 
greater accuracy than individual feature genes.

GSEA and GSVA analysis

To further determine the underlying role of feature genes to 
identify characteristic differences between COVID-19 samples and 
control samples, a single-gene GSEA-KEGG pathway analysis was 

performed. The top six pathways enriched for individual feature genes 
were presented in Figures  4A–C. After a systematic analysis, 
we observed that CASP1 and CD4 were activated in immune response 
(such as antigen processing and presentation) and RIG-I-like receptor 
signaling pathway. Meanwhile, EIF2AK3 was closely associated with 
the metabolism-related activity. Afterward, we found the differentially 
enriched GSVA pathways between the high- and low-expression 
groups of each feature gene (Figure 5). The findings indicated that the 
high expression of CASP1 in COVID-19 may induce this disease by 
“tyrosine metabolism,” “base excision repair,” and “glyoxylate and 
dicarboxylate metabolism,” while down-regulation of CASP1 
promoted “DORSO_VENTRAL_AXIS_FORMATION,” “O_
GLYCAN_BIOSYNTHESIS,” and “VALINE_LEUCINE_AND_
ISOLEEUCINE_BIOSYNTHESIS.” CD4, whose expression was 
limited in COVID-19 samples, was significantly correlated with the 
immune response (“AUTOIMMUNE THYROID DISEASE,” “GRAFT 
VERSUS HOST DISEASE,” and “ALLOGRAFT REJECTION”). 
Moreover, the high expression of CD4 activated the pathways such as 
“GLYCINE SERINE AND THREONINE METABOLISM,” and 
“PANTOTHENATE AND COA BIOSYNTHESIS.” Similarly, in the 
EIF2AK3 over-expression group, “GLYCOSAMINOGLYCAN 

FIGURE 1

The expression landscape of 14 ICD-related DEGs. (A) Heatmap of DEGs between the COVID-19 samples and control samples. (B,C) The correlation 
diagram of DEGs. (D) Chromosomal positions of DEGs.
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DEGRADATION,” and metabolism-related pathways (“TAURINE 
AND HYPOTAURINE METABOLISM,” “PHENYLALANINE 
METABOLISM,” “TYROSINE METABOLISM”) were enriched. The 
low-expressed EIF2AK3 served a critical function in the protein 
export, and biosynthesis process (such as N-GLYCAN biosynthesis 
and AMINOACYL TRNA biosynthesis).

Immunological infiltration analysis

Based on the CIBERSORT algorithm, the infiltration levels of 22 
types of immune cells between COVID-19 and control samples were 
evaluated. As presented in Figure  6A, compared with the control 
samples, naïve B cells, follicular helper T cells, Tregs, activated NK 
cells, monocytes, and activated mast cells were less enriched, while 
plasma cells, CD4 naïve T cells, activated CD4 memory T cells, γδ T 
cells, resting dendritic cells, and activated dendritic cells were more 
enriched in COVID-19 sample. Subsequently, after performing a 
correlation analysis of infiltrating immune cells, we identified diverse 
pairs of interacting immune cells (Figure  6B). Similarly, the 
proportions of different immune cells between the COVID-19 and 
control samples had a significant difference (Figure 6C). Furthermore, 
we also explored the relevance of three diagnostic genes to immune 
cells. As shown in Figure 6D, Pearson correlation analysis suggested 

that activated dendritic cells, neutrophils, activated NK cells, activated 
CD4 memory T cells and γδ T cells were all associated with three 
feature genes (CASP1, CD4, and EIF2AK3). These results suggested 
that alterations in the immune microenvironment of COVID-19 
samples correlated with these three genes.

Prediction of feature gene-targeted drugs

DGIdb was utilized to identify the underlying drug or molecular 
compounds that could regulate the expression of feature genes in the 
setting of COVID-19. As demonstrated in the drug-gene interaction 
network (Figure  7), 33 drugs or molecular compounds targeting 
feature genes were identified, including 23 for CASP1, 9 for CD4, and 
1 for EIF2AK3. The results suggest that CASP1 is more likely to be a 
valuable target for drug development against COVID-19. Interestingly, 
the drugs that interacted with different genes were not observed.

A ceRNA network based on diagnostic 
genes

Recently, the ceRNA network is emerging as a hot topic and serves 
a pivotal role in controlling gene activity. The ceRNA network was 

FIGURE 2

Functional enrichment analysis of ICD-related DEGs. (A) GO, (B) KEGG, (C) Reactome, (D) DO enrichment analysis for DEGs.
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established with miRNA as a bridge to determine the relationship 
between target gene, mRNA and lncRNA by interacting miRNA 
response factors. Referring to epigenetic regulators, miRNAs are 
considered valuable therapeutic options for diverse diseases. The 

miRNAs associated with 3 feature genes were explored from three 
online databases, and the interaction demonstrated by these databases 
were also identified. A total of 63 miRNAs and 3 mRNAs formed 67 
interaction pairs. Additionally, we  investigated the lncRNAs that 

FIGURE 3

Identification of diagnostic genes for COVID-19. (A,B) Establishment of the LASSO model. (C,D) Screening biomarkers based on random forest (RF) 
algorithm. (E,F) Results of screening biomarkers based on SVM-RFE algorithm. (G) Venn diagram showing the intersected genes. (H) ROC curves for 
the feature genes. (I) Logistic regression model to identify the AUC of disease samples.

FIGURE 4

Single-gene GSEA-KEGG pathway analysis in CASP1 (A), CD4 (B), and EIF2AK3 (C).
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corresponded to regulator miRNAs based on the spongeScan database 
and further established a ceRNA network of lncRNA-miRNA-
mRNA. Finally, this network was comprised of 145 nodes (3 genes, 63 
miRNAs, and 75 lncRNAs) and 151 edges (Figure 8).

Expression of diagnostic genes in the 
validation cohort

Additionally, the expression of three diagnostic genes (CASP1, 
CD4, and EIF2AK3) was also explored in the GSE171110 dataset. 
We observed that the expression levels of these diagnostic genes were 
consistent with the GSE157103 dataset (Figure 9). Among them, the 
expression of CD4 (p < 0.001) in COVID-19 samples was lower than 
that of control samples, while CASP1 (p = 0.018) and EIF2AK3 
(p = 0.012) were higher in COVID-19 samples.

Discussion

COVID-19 has been ravaging the world for years, and its specific 
cause remains unclear. The mutational and variable nature of 
COVID-19 renders it impossible to explain it with changes in a single 

gene. Hence, the management of COVID-19 patients cannot 
be  implemented by a method, instead diverse methods, including 
multi-targeted agents and multi-modalities treatment (Fahmi et al., 
2021; Rantam et  al., 2021). It is essential to explore novel and 
promising biomarkers for the early diagnosis and management of 
COVID-19 (Zhong et al., 2020; Gattinoni et al., 2021). Notably, virous 
cell death forms have been observed to be significantly correlated with 
the progression of COVID-19, but the association between COVID-19 
and ICD has not yet been clarified. Herein, we attempted to identify 
diagnostic biomarkers pertaining to COVID-19 and delve into the 
role exerted by ICD within COVID-19.

In this work, we  identified 14 ICD-related DEGs between 
COVID-19 and normal samples, including 10 up-regulated and 4 
down-regulated genes. Afterward, functional enrichment analysis of 
these DEGs was executed, and these genes presented close 
associations to the regulation of cytokines and cell death signals (such 
as regulation of cysteine-type endopeptidase activity involved in the 
apoptotic process, programmed cell death, and regulated necrosis). 
According to these findings, COVID-19 displayed immunological 
processes and cell death involvement, thus inducing inflammation 
and infection.

We applied three different machine learning algorithms (LASSO, 
RF, and SVM-RFE), each with its advantages. LASSO regression 

FIGURE 5

High- and low-expression groups based on the expression levels of each feature gene combined with GSVA in CASP1 (A), CD4 (B), and EIF2AK3 (C).
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FIGURE 6

Immune landscape analysis. (A) The differences in immune cells from the immune microenvironment between COVID-19 patients and normal 
samples. (B) The correlation diagram of immune cells. (C) The bar plot presenting the proportion of infiltrated immune cells calculated by the 
CIBERSORT algorithm. (D) The correlation between feature genes and immune cells.

FIGURE 7

Prediction of feature gene-targeted drugs based on DGIdb database.
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identifies parameters by finding the variable with the lowest incidence 
of categorical error (Tibshirani, 1997). RF algorithm is an integrative 
algorithm consisting of decision trees, which is applied to train and 
predict samples (Simsekler et  al., 2021). SVM-RFE has acquired 
extensive attention in ranking traits and selecting important traits for 
categorization (Sanz et al., 2018). Finally, CASP1, CD4, and EIF2AK3 

were identified and were valuable for further explorations, which 
demonstrated that our prediction displayed reliability with the 
integrated approaches.

CASP1, a member of the caspase family, serves a critical role in 
the execution process of cell apoptosis (Kapplusch et al., 2019). The 
expression of CASP1 was regulated, and the inflammasome 

FIGURE 8

A ceRNA network based on three feature genes.

FIGURE 9

Expression difference of the feature genes (A, CASP1; B, CD4; C, EIF2AK3) between COVID-19 and normal samples in the validation cohort (GSE171110 
dataset).
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activated by CASP1-NLRP3 dependent pathway can subsequently 
secrete IL-1β and IL-18, thus leading to dysfunctional autophagy 
(Wang et  al., 2017). Upregulation of CASP1  in COVID-19 was 
reported in a prior report, consistent with our findings (Yang et al., 
2022). CD4 encodes the CD4 membrane glycoprotein of T 
lymphocytes, and CD4+ T cell plays a critical role in anti-viral 
immunity (Matthias et al., 2002; Sharma et al., 2005). CD4 mediates 
various biological processes of immune cells. Meanwhile, immune 
cells, primarily comprising T cells, B cells, and macrophages, 
crucially affect the pathogenesis of COVID-19 (Tay et al., 2020). 
EIF2AK3, as a metabolic stress-sensing protein kinase, inhibits 
protein translation and regulated pro-survival autophagy (You 
et al., 2021). These genes displayed significantly different expressions 
between COVID-19 and normal samples, and this result was also 
observed in the validation cohort. Furthermore, GSEA and GSVA 
for three feature genes were performed, and we observed that these 
genes were significantly associated with immune response and 
metabolism-related activities. Based on the abovementioned 
findings, CASP1, CD4, and EIF2AK3 have the potential to influence 
the progression of COVID-19 and serve as diagnostic biomarkers, 
whereas this finding remains to be  confirmed by further 
clinical trials.

To more comprehensively investigate the effects played by the 
abundance of immune cells in COVID-19, this research conducted 
CIBERSORT for evaluating the infiltrating immune status within 
COVID-19. The abundance of naïve B cells, follicular helper T cells, 
Tregs, activated NK cells, monocytes, and activated mast cells 
decreased, while the abundance of plasma cells, CD4 naïve T cells, 
activated CD4 memory T cells, γδ T cells, resting dendritic cells, and 
activated dendritic cells increased, potentially demonstrating the 
relevance of COVID-19 initiation and development. It is common 
knowledge that these cells are an essential part of human adaptive 
immunity, and these cells may be potential factors for COVID-19 
pathogenesis (Sette and Crotty, 2021). Meanwhile, three feature genes 
presented a significant correlation with diverse immune cells, which 
also confirmed the autoimmunogenicity of these genes. Although this 
is widely recognized, the molecular mechanisms and functions of 
immune cell infiltration in COVID-19 need to be  further 
investigated urgently.

Finally, the feature gene for gene-targeted drugs and the ceRNA 
network were explored. A diagram of 33 drugs with promising 
therapeutic efficacy against COVID-19 was displayed. The 
performance of the selected drugs was validated for diverse diseases; 
however, the mechanisms of many drugs were unclear. Further 
molecular experiments and clinical investigations are necessary to 
identify the drugs that are valuable for COVID-19 treatment. The 
target miRNAs and the target lncRNAs were predicted for CASP1, 
CD4, and EIF2AK3, and a ceRNA network was established with 
Cytoscape. This network proposes a potential mechanism for selected 
genes to be regulated at the transcriptome level.

Inevitably, these are some restrictions of this study. Firstly, this 
study was performed on public databases, and additional laboratory 
experiments are necessary. Secondly, the association between these 
results in this study and clinical variables was worthy of future analysis 
and validation. However, this study could still reflect convincing 
evidence to further investigate the significance of ICD-related genes 
in the treatment and diagnosis of COVID-19.

Conclusion

Taken together, we  presented that differentially expressed 
genes: CASP1, CD4, and EIF2AK3 might be considered as the 
diagnostic biomarker for COVID-19 and characteristic 
immunological infiltration could influence the systemic immune 
microenvironment in the pathogenesis of COVID-19. This work 
may reveal potential biomarkers related to immune regulation 
that ultimately led to COVID-19 infection. Additional leading-
edge approaches, such as single-cell sequencing method, will 
further offer promising perspectives into COVID-19 development 
and drug targets.
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