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Expanding antiviral treatment options against SARS-CoV-2 remains crucial as the 
virus evolves under selection pressure which already led to the emergence of 
several drug resistant strains. Broad spectrum host-directed antivirals (HDA) are 
promising therapeutic options, however the robust identification of relevant host 
factors by CRISPR/Cas9 or RNA interference screens remains challenging due to 
low consistency in the resulting hits. To address this issue, we employed machine 
learning, based on experimental data from several knockout screens and a drug 
screen. We trained classifiers using genes essential for virus life cycle obtained 
from the knockout screens. The machines based their predictions on features 
describing cellular localization, protein domains, annotated gene sets from Gene 
Ontology, gene and protein sequences, and experimental data from proteomics, 
phospho-proteomics, protein interaction and transcriptomic profiles of SARS-
CoV-2 infected cells. The models reached a remarkable performance suggesting 
patterns of intrinsic data consistency. The predicted HDF were enriched in sets of 
genes particularly encoding development, morphogenesis, and neural processes. 
Focusing on development and morphogenesis-associated gene sets, we found 
β-catenin to be  central and selected PRI-724, a canonical β-catenin/CBP 
disruptor, as a potential HDA. PRI-724 limited infection with SARS-CoV-2 variants, 
SARS-CoV-1, MERS-CoV and IAV in different cell line models. We  detected a 
concentration-dependent reduction in cytopathic effects, viral RNA replication, 
and infectious virus production in SARS-CoV-2 and SARS-CoV-1-infected cells. 
Independent of virus infection, PRI-724 treatment caused cell cycle deregulation 
which substantiates its potential as a broad spectrum antiviral. Our proposed 
machine learning concept supports focusing and accelerating the discovery of 
host dependency factors and identification of potential host-directed antivirals.
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1. Introduction

Genetic plasticity of SARS-CoV-2 and herd immunity-derived 
evolutionary pressure have led to the emergence of variants of concern 
(VOC; Van Egeren et al., 2021; Flores-Vega et al., 2022). Some of the 
variants and recombinant lineages have evaded vaccine-elicited 
antibodies and monoclonal antibody-based treatments (Dejnirattisai 
et al., 2021; Planas et al., 2021; Wang P. et al., 2021; Iketani et al., 2022). 
Although antiviral drugs such as Remdesivir, Molnupiravir, or 
Nirmatrelvir/Ritonavir (Paxlovid) have significantly improved disease 
outcome in patients (Beigel et al., 2020; Hammond et al., 2022; Jayk 
Bernal et al., 2022; Wong et al., 2022), these treatments might select 
for more resistant variants over time (Gandhi et al., 2022; Hogan et al., 
2023). Consequently, our current virus-directed countermeasures 
have limitations and there is an urgent need for developing host-
directed antivirals (HDA) that can target host-dependency factors 
(HDF) required for the life cycle of the virus. HDA might provide 
variant-independent treatment opportunities to reduce disease 
severity and complement virus-directed antiviral therapies (Edinger 
TO et al., 2014; Mahajan et al., 2021; Wagoner et al., 2022). In addition, 
drug repurposing can offer an expedited timeline to bring HDA 
therapies into clinical settings in a cost-effective and timely manner. 
Still, a common challenge is the robust identification of relevant host 
factors among varying in vitro conditions, although recent advances 
in functional genomics have simplified the use of high-throughput 
technology platforms based on CRISPR/Cas9 and siRNAs (Daniloski 
et al., 2021; Wang R. et al., 2021; Wei et al., 2021; Zhu et al., 2021). 
However, when comparing the results of these experimental screens 
for SARS-CoV-2 host dependency factors, there is only a marginal 
overlap of hits. This may be due to different viral strains, host cells 
and/or different multiplicity of infection (MOI) or further different 
experimental settings such as the selection of knockout library 
constructs used. Interestingly, when grouping the identified HDF into 
gene sets of common function or cellular processes, the consistency 
increases suggesting that these lists of HDF in their specific contexts 
contain consistent patterns on a more complex level.

Machine learning methods can identify such common patterns in 
experimental data, as, e.g., the identification of common regulators 
explaining large scale transcription profiles (Alipanahi et al., 2015; 
Hörhold et al., 2020) and allow for integration of a broad variety of 
omics and genomics data. In this study, we  followed a machine 
learning approach to identify HDF of SARS-CoV-2. From the 
knockout screens (Daniloski et al., 2021; Wang R. et al., 2021; Wei 

et al., 2021; Zhu et al., 2021), we assembled a gold standard of genes 
required for virus replication. With this gold standard, we trained and 
evaluated the classifier. The classifier based its predictions on features 
of the genes describing their encoded proteins´ cellular localization, 
protein domains, annotated cellular processes, and gene/protein 
sequences. Furthermore, we embedded experimental data comprising 
proteomic, PPI, and transcriptomic profiles of SARS-CoV-2 infected 
cells. In addition, another classifier was trained based on a gold 
standard derived from a drug screen (Ellinger et al., 2021), in which 
more than 6,000 drugs were screened to determine whether they had 
a protective effect on cells infected with SARS-CoV-2. Both classifiers 
delivered a list of predicted HDF. For a few, well selected HDF, 
we interrogated drug databases, and identified β-catenin and its small 
molecule inhibitor PRI-724, particularly antagonizing the interaction 
between β-catenin and CBP.

The β-catenin/CBP interaction displays a pivotal part of a switch-
like signaling network within the Wnt/β-catenin pathway that controls 
the well-balanced interplay between cell proliferation and 
differentiation (Akiyama, 2000; Liu et al., 2022). Activation of Wnt 
signaling leads to a sequester of the β-catenin destruction complex 
enabling cytosolic accumulation of β-catenin and, in turn, its nuclear 
translocation where it interacts with CBP or p300 to drive either 
proliferation or differentiation, respectively (Bordonaro and Lazarova, 
2016). In this study, we identified β-catenin as a SARS-CoV-2 host 
factor using machine-learning and sought to analyze the efficacy of 
one of its inhibitors, PRI-724, against different pandemic-related RNA 
viruses in vitro.

2. Materials and methods

2.1. Gene prioritizations

Two sets of machines were set up to predict HDF, one based on 
data from CRISPR/Cas9 based knockout screens, and one on data 
from a drug screen. For defining the gold standard for the first set of 
machines, the experimental results from four genome-wide CRISPR/
Cas9 knockout screens were considered (Daniloski et al., 2021; Wang 
R. et al., 2021; Wei et al., 2021; Zhu et al., 2021; Table 1). The ranking 
of the screened genes was taken from the Supplementary material of 
the respective studies. The rank product was calculated for each gene 
for which information was available. The n = 500 top ranking genes of 
this new list were selected and used as the positive class for the 

TABLE 1 HDF screens serving for a gold standard to train and validate the machines.

Daniloski et al. (2021) Wei et al. (2021) Wang R. et al. (2021) Zhu et al. (2021)

Number of screened 

genes

19,050 21,673 20,915 19,114

Cell line A549-ACE2 Vero-E6 Huh7.5.1 with ACE2 and TMPRSS2 

overexpression

A549-ACE2

SARS-CoV-2 strain USA-WA1/2020 (NR-52281) US-WA1/2020 USA/WA-1/2020 nCoV-SH01 (patient isolate)

MOI 0.01 (low) 0.3 (high) 0.1 0.01 0.3

CRISPR libraries GeCKOv2 with 122,411 sgRNAs 

6 sgRNAs/gene

C. sabaeus with 83,963 sgRNAs 

4/sgRNAs gene

GeCKOv2 lentiCRISPRv2 76,441 sgRNAs
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classifier, labeled as HDF. The bottom 1,000 genes were used as the 
negative class (“Non-HDF“). The rest of the genes in the list were used 
for prediction, i.e., assessing an HDF or non-HDF label. Daniloski 
et al. provided data of two screens with different MOI (0.01 and 0.3). 
To get a combined list of genes, we calculated the rank product for 
each gene listed in their score tables and used this combined ranking 
for our study. In addition, a second gold standard was established 
based on the screening of 5,632 compounds and their capacity to 
inhibit the cytopathic effect (CPE) of SARS-CoV-2 in a Caco-2 cell 
line (Ellinger et al., 2021). In line with the authors of the original study, 
compounds that blocked viral CPE by 75% were considered as hits. 
This led to 273 compounds inhibiting SARS-CoV-2 infection without 
inducing toxicity. Then, their respective targets were identified using 
the information of different drug databases [Drugbank (Wishart et al., 
2018), ChEMBL (Mendez et  al., 2019), TTD (Wang et  al., 2020), 
PharmGKB (Thorn et al., 2013), and BindingDB (Gilson et al., 2016)]. 
By this, 178 gene targets were found and labeled as “HDF.” For the 
remaining drugs with no inhibitory effect, their 1,881 targets were 
labeled as “non-HDF.” Effective drugs with more than 11 targets were 
considered to be “promiscuous,” and their targets were not included 
in the gold standard.

2.2. Feature generation

The procedure for feature generation was similar as published 
earlier for essential gene prediction (Acencio and Lemke, 2009; 
Aromolaran et al., 2020; Beder et al., 2021). Each gene served as 
a sample in the machine learning procedure, either labeled as 
HDF or non-HDF, or was not used for training the classifiers. For 
each gene, we generated a comprehensive set of 60,593 features 
comprising the seven categories of (1) gene sequence,  (2) protein 
sequence, (3) protein domains, (4) gene sets from Gene Ontology, 
(5) conservation, (6) topology in the protein interaction network, 
and  (7) subcellular location of the protein. We  distinguished 
between intrinsic and extrinsic features. Intrinsic features denote 
features, which can be directly derived from gene and protein 
sequences, whereas extrinsic features describe network topology, 
homology, cellular localization of the expressed protein and 
functional (interaction) domains. Employing BioMart (Smedley 
et al., 2009), we downloaded the gene and protein sequences from 
Ensembl (v102). Protein and gene sequence features (categories 
1 and 2) were calculated with several software tools [seqinR 
(Charif et al., 2005), protr (Xiao et al., 2015)], CodonW,1 and 
rDNAse2 spanning a large range of descriptors as explained in the 
following. Using seqinR, we  calculated the number and 
percentage of each of the 20 amino acids in a protein. In addition, 
it was used to calculate other amino acid sequence features 
including the number of residues, the percentage of each of the 
physico-chemical classes and the theoretical isoelectric point. 
Using protr, we calculated the autocorrelation, Conjoint Triad 
Descriptors (CTD), quasi-sequence order and pseudo amino acid 
composition. CodonW was used calculating general gene features 

1 http://codonw.sourceforge.net

2 https://github.com/wind22zhu/rDNAse

like gene length and GC content, and frequencies of optimal 
codons (Hershberg and Petrov, 2009) and the number of codons 
in the coding sequence. rDNAse calculated additional gene 
features, like auto covariance, pseudo nucleotide composition, 
and kmer frequencies (n = 2–7). It also calculated the sequence 
attribute distribution. Amino acids were grouped into three 
classes: (1) polar, (2) neutral, or (3) hydrophobic. The second 
digit in the feature name accounted for the class. More fine 
grained, seven attributes comprising (1) hydrophobicity, (2) 
normalized van-der-Waals volume, (3) polarity, (4) polarizability, 
(5) charge, (6) secondary structure, and  (7) solvent accessibility 
were represented by the first digit in the feature name. The last 
three digits described the location of the attribute in the sequence, 
i.e., either at the beginning of the sequence (000), around the 25% 
quantile of residues (025), 50% (050), 75% (075), or at the end of 
the sequence (100). For example, seq.attribute.distribution 42100 
is the sequence attribute of amino acids being polarizable (4), 
neutral (2) and are located at the end of the sequence (100). The 
domain features (category 3) were calculated using BioMart 
yielding protein family domains (pfam domains), the number of 
coiled coils structures, prediction of membrane helices, post-
translational modifications, β-turns, cofactor binding, acetylation 
and glycosylation sites, signal peptides and transmembrane 
helices, and the number and lengths of UTRs. To calculate the 
gene set features (category 4), gene sets of all terms from Gene 
Ontology (Biological Process, Molecular Function, Cellular 
Localization) were obtained from the gene annotation of Ensembl 
(v102). First, to each gene, its direct neighbors were added using 
the STRING database (Szklarczyk et al., 2019), and with this list 
a gene set enrichment test performed employing Fisher’s exact 
tests. The negative log10 value of the p-value P was used as a 
feature. Highly redundant (overlapping) gene sets were removed 
by the following method. Overlap of genes among each pair of 
gene sets V and W was quantified by Jaccard similarity coefficients,

 
J V W

V W
V W

,( ) = ∩
∪  

(1)

Pairs with J(V,W) above the threshold α = 0.3 were included into 
a model and represented as an undirected graph G(X,E), in which X 
were the n gene sets and pairs above α the edges E. A Mixed Integer 
Linear Programming problem was set up,

 Maximize  i iw XΣ  (2)

Subject to

 
X X i j Ei j+ ≤ { }1 for every , 

 (3)

 X i ni  0 1 1, for{ } ≤ ≤ , 
(4)

in which wi was the weight of a gene set and calculated from 
the significance value (p-value P) of the according Fisher’s 
Exact test,

https://doi.org/10.3389/fmicb.2023.1193320
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://codonw.sourceforge.net
https://github.com/wind22zhu/rDNAse


Kelch et al. 10.3389/fmicb.2023.1193320

Frontiers in Microbiology 04 frontiersin.org

 
w

P
i =

− ( )1

100

10log

 
(5)

The problem was solved using Gurobi™ (version 7.5.13). By this, 
up to one gene set of each pair with high overlap was selected and the 
gene set with the higher enrichment was privileged. Gene conservation 
(category 5) was assessed by sequence alignment of the protein 
sequence of each gene with all proteins listed in RefSeq (Pruitt et al., 
2005) using PSI-Blast (Altschul et al., 1997). The number of obtained 
proteins with E-value cutoffs from 1e − 5 to 1e − 100 served as feature 
values of the respective features. For category 5, typical topology 
features like degree, degree distribution, several centrality descriptors 
and Page rank was obtained using protein interaction data (n = 697,802 
interactions) from the BIOGRID database (Oughtred et al., 2019). In 
addition, we  assembled a second network considering also the 
interactions between SARS-CoV-2 proteins and proteins of the human 
host cell. For this, in total 22,586 interactions between SARS-CoV-2 
and human proteins were obtained from the BioGRID COVID-19 
Coronavirus Curation Project (Oughtred et al., 2019). Viral proteins 
were added to the generic network and an interaction was added to 
the network between a host protein and a viral protein if the link was 
listed in the protein interactions between SARS-CoV-2 and human 
proteins. Using both protein interaction networks, in summary, 24 
topological features were generated using the igraph R package for 
network analysis.4 Subcellular localization (category 7) was derived 
using the prediction software DeepLoc (Almagro Armenteros et al., 
2017), which assigns probability scores to 11 eukaryotic cellular 
compartments (cytoplasm, nucleus, mitochondria, ER, Golgi 
apparatus, lysosome, vacuole and peroxisome, plasma membrane, 
extracellular, chloroplast).

Furthermore, 69 features from experimental data derived from 
gene expression, proteomics and phospho-proteomics profiles of 
Caco-2 cells post infection with SARS-CoV-2 at different time points 
were used. Proteomics data was taken from a previous publication 
(Bojkova et al., 2020) and z-score transformed peptide counts for each 
time point post infection (0, 2, 6, 10, 24 h, MOI = 0.01) vs. time point 
zero taken. In line, own gene expression data from Caco-2 cells 
infected with SARS-CoV-2 (FFM1, Wuhan wildtype; 0, 3, 6, 12 and 
24 hpi, MOI = 0.01). For both datasets, as features, log10 differential 
expression values between each time point post infection and time 
point zero (no infection) was taken. The phosphoproteomics data was 
taken from a previous study (SARS-CoV-2 infected Caco-2 cells, 
24 hpi, MOI = 1) and features calculated similarly as for the proteomics 
data (Klann et al., 2020).

2.3. Machine learning pipeline

Each feature was normalized using z-score transformation. 
We trained and validated two different sets of machines, one based on 
the gold standard of the knockout screens (knockout screens based 
classifier) and one based on the gold standard from the drug screen 
(drugs screen based classifier). The machine learning procedure was 

3 www.gurobi.com

4 https://igraph.org

the same for both. For each, a 5-fold cross-validation (CV) was 
performed in which 4/5 of the data was used to train the model, and 
the remaining 1/5 of the data (validation set) was used to assess the 
performance leaving the test set unseen. In addition, we repeated these 
cross-validations five times and averaged the results over these five 
independent runs. The first step in the training procedure was feature 
selection. For this, Least Absolute Shrinkage and Selection Operator 
(LASSO) regression was performed using the “glmnet” R package (cv.
glmnet function with parameters alpha = 1, type.measure = “auc”). In 
a second feature selection step, highly correlating features with 
Pearson’s correlation coefficients r > 0.70 were removed. On average, 
155 features remained. These features were fed into a Random Forest 
(RF) classifier using the caret package in R (tuneLength = 10, 
metric = “Kappa,” nthread = 20, ntree = 500). All trained models were 
used to predict the complete set of 20,007 genes to find novel HDF 
candidates, and to confirm or reject the HDF annotation of the gold 
standard. We defined the top 10% of the predictions from a voting 
scheme as predicted HDF (predHDF) of the classifiers, i.e., of the 
knockout based classifier and of the drug based classifier, leading to 
2,182 and 1,989 predHDF, respectively. To evaluate the performance 
of the learned models, the area under the receiver operating 
characteristic (ROC-AUC) and area under the precision-recall curve 
(PR-AUC) of the results from the validation data was calculated using 
the PRROC package in R. Average and standard variances of the 
performance estimates were calculated using the results of the 
individual cross validation runs. Most discriminative features of the 
model were obtained using the varImp function from the caret 
package which ranked the features based on their impact on the 
decision trees accuracy.

2.4. Gene set enrichment analyses

The lists of predHDF were investigated for enriched gene sets 
using the R package gprofiler2 (Raudvere et al., 2019). The statistical 
significance threshold for all GO terms was set to a false discovery rate 
p < 0.05. To focus on non-too-general and non-too-specific GO terms, 
only terms with more than 10 and less than 200 genes were considered. 
Redundancy of the terms was removed as described above (section 
2.2) using α = 0.4.

2.5. Drug selection

Aiming for repurposing known drugs including clinically 
approved drugs for the identified targets, a manually assembled 
data repository of drugs was set up based on seven public drug 
databases: Drugbank, ChEMBL, TTD, PharmGKB, BindingDB, 
IUPHAR/BPS, and DrugCentral (Thorn et al., 2013; Gilson et al., 
2016; Ursu et al., 2017; Wishart et al., 2018; Mendez et al., 2019; 
Armstrong et al., 2020; Wang et al., 2020). The databases provide 
information about the mechanisms of actions of the drugs, drug-
target interactions and therapeutic indications. We considered 
only drugs approved by either of the following regulatory 
agencies: Food and Drug Administration (FDA), Health Canada, 
European Medicines Agency (EMA), and Japan Pharmaceutical 
and Medical Devices Agency (PMDA), and drugs currently tested 
in clinical trials.
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2.6. Tissue culture and viruses

Lung adenocarcinoma cell line A549 stably expressing ACE2 and 
TMPRSS2 (A549-AT; Widera et al., 2021a) was cultured in Minimum 
Essential Medium (MEM) supplemented with 10% (v/v) fetal calf 
serum (FCS), 100 U/mL penicillin +100 μg/mL streptomycin (Thermo 
Fisher; Waltham, Massachusetts, United  States) and 2% (v/v) 
L-glutamine. Calu-3 was cultured in Dulbecco’s Modified Eagles 
Medium (DMEM)/Ham’s F12 (Thermo Fisher; Waltham, 
Massachusetts, United  States) supplemented with 10% (v/v) FCS, 
100 U/mL penicillin +100 μg/mL streptomycin. Vero E6 was cultivated 
in DMEM (Thermo Fisher; Waltham, Massachusetts, United States) 
supplemented with 10% (v/v) FCS and 100 U/mL penicillin +100 μg/
mL streptomycin. Antibiotic concentrations were chosen based on the 
manufacturer’s recommendations. Cells were incubated at 37°C, 5% 
CO2. If not otherwise indicated, culture reagents were purchased from 
Sigma (St. Louis, MO, United States).

For all viruses used in this study, the corresponding GenBank 
accession numbers, and references are listed in Table  2. Briefly, 
coronavirus isolates were obtained from nasopharyngeal swabs of 
infected individuals. Swab material was suspended in 1.5 mL 
phosphate-buffered saline (PBS) and propagated on Caco-2 cells. Cell-
free aliquots were stored at −80°C and titers were determined by 
tissue-culture infectious dose (TCID50) assay in A549-AT cells. The 
H5N1 influenza strain Hongkong/213/03 was received from the 
World Health Organization (WHO) Influenza Centre (National 
Institute for Medical Research, London, United  Kingdom). Virus 
stocks were prepared by infecting Vero cells and aliquots were stored 
at −80°C. Titers were determined as described above.

According to the committee for Biological Safety (ZKBS), the 
entirety of infectious work presented in this study was conducted 
under BSL-3 conditions.

2.7. Inhibitors and chemicals

Compounds used in this study comprise Remdesivir (#HY-
104077), ICG-001 (#HY-14428; MedChem Express; Monmouth 

Junction, New Jersey, United  States), C-82 (#S0990) and PRI-724 
(#S8968; Selleck Chemicals; Houston, Texas, United  States). 
Compounds were resuspended in DMSO (Carl Roth; Karlsruhe, 
Germany) and aliquots were stored at −80°C. Recombinant human 
Wnt-3a (rhWnt-3a; #5036-WN, R&D Systems; Minneapolis, 
Minnesota, United  States) was resuspended according to 
manufacturer’s instructions and stored at −80°C.

2.8. Compound treatment and infection 
assay

Inhibitors were diluted serially on confluent A549-AT or Calu-3 
cells in 1% (v/v) serum MEM and were subsequently infected at an 
MOI of 0.1 with viruses for 48 h. Cells were fixed with 3% (v/v) 
paraformaldehyde (PFA) for 20 min and stored at 4°C in PBS until 
analysis. Cytopathic effects were quantified by confluency 
measurement using a Spark® Cyto 400 multimode plate reader (Tecan 
Group Ltd.; Zürich, Switzerland).

2.9. Scratch assay

Scratch assay was implemented to visualize growth hindrance in 
A549-AT cells upon treatment with PRI-724. 6⋅105 cells were seeded 
in a 12-well format 1 day prior to assay. After applying scratches with 
a pipette tip, cells were washed with 1x PBS and treated with 10 μM 
PRI-724 and the respective amount of DMSO in 1% FCS MEM. Cells 
were subjected to live cell imaging 0, 24, 48 and 72 h post treatment 
using a Spark® Cyto 400 multimode plate reader (Tecan Group Ltd.; 
Zürich, Switzerland).

2.10. Live cell imaging

In order to monitor the effectiveness of PRI-724  in terms of 
blocking syncytia formation and cytopathic effects in general, live cell 
imaging was carried out in A549-AT cells in a 96-well format. 3.5⋅104 

TABLE 2 Clinical coronavirus isolates used for infection experiments in this study.

Virus Specification GenBank ID References

SARS-CoV-2 B, FFM5/2020 MT358641 Toptan et al. (2020)

SARS-CoV-2 B.1, FFM7/2020 MT358643 Toptan et al. (2020)

SARS-CoV-2 B.1.1.7, FFM-UK7931/2021 MZ427280 Widera et al. (2021b)

SARS-CoV-2 B.1.351, FFM-ZAF1/2021 MW822592 Widera et al. (2021b)

SARS-CoV-2 B.1.617.2, FFM-IND8424/2021 MZ315141 Wilhelm et al. (2021)

SARS-CoV-2 P.2, FFM-BRA1/2021 MW822593 Widera et al. (2021b)

SARS-CoV-2 B.1.429, FFM-CALsprt/2021 MZ317896.2 Wilhelm et al. (2021)

SARS-CoV-2 B.1.617.1, FFM-IND5881/2021 MZ315140 Wilhelm et al. (2021)

SARS-CoV-2 B.1.1.529 BA.1, FFM-ZAF0396/2021 OL800703 Wilhelm et al. (2022)

SARS-CoV-2 B.1.1.529 BA.2, FFM-BA.2-3833/2022 OM617939 Wilhelm et al. (2022)

SARS-CoV-2 B.1.1.529 BA.5, FFM-BA.5-7501/2022 OQ568810 This study

SARS-CoV-1 Frankfurt 1 AY291315 Drosten et al. (2003)

MERS-CoV EMC/2012 JX869059 Zaki et al. (2012)

Influenza A H5N1/Hongkong/213/03 NCBI:txid432070 This study

https://doi.org/10.3389/fmicb.2023.1193320
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kelch et al. 10.3389/fmicb.2023.1193320

Frontiers in Microbiology 06 frontiersin.org

cells were seeded and 1 day after were treated with 10, 3, 1, and 0.3 μM 
of PRI-724 just prior to infection. DMSO and 3 μM Remdesivir served 
as negative and positive inhibition controls, respectively. Infections 
with SARS-CoV-2 B.1.617.2 and SARS-CoV-1 Frankfurt-1 were 
carried out at an MOI of 0.1. Live cell imaging was performed by using 
a Spark® Cyto 400 multimode plate reader (Tecan Group Ltd.; Zürich, 
Switzerland) with hourly measurements of confluence and surface 
roughness for 48 h.

2.11. Immunofluorescence microscopy

A549-AT cells were infected with SARS-CoV-2 B.1.617.2, SARS-
CoV-1 Frankfurt-1 and IAV H5N1/Hongkong/213/03 at an MOI of 
0.1 for 18 h. Post fixation with 3% PFA, cells were washed and 
permeabilized using ice-cold MeOH. Epitopes were saturated by 
applying blocking solution (20% (v/v) goat serum, 2% (w/v) BSA, 
0.3 M glycine, 0.1% Tween-20, 0.002% thimerosal) for at least 1 h. 
Primary antibodies (Supplementary Table S11) were diluted 1:1000 in 
blocking solution containing only 1% (v/v) goat serum and were then 
incubated on cells O/N at 4°C. Cells were washed three times with 1x 
PBS and were subsequently incubated with secondary anti-IgG-A488 
(1:1000) together with 0.2 μg/mL DAPI and for 1 h. Fluorescence 
imaging was performed with an Operetta CLS™ High Content 
Analysis System (Perkin Elmer; Waltham, Massachusetts, 
United States) using integrated Harmony® software v4.9.

2.12. RNA kinetics and RT-qPCR

For assessing intracellular virus RNA replication upon treatment 
with PRI-724, medium of infected cells was removed 2 hpi and wells 
were washed three times with 1x PBS and were supplied with fresh 1% 
serum MEM. Lysates were collected 2, 4, 6, 8, 10, 12, and 24 hpi in 
A549-AT and 2, 4, 6, 8, 10, 12, 24, 36, and 48 hpi in Calu-3. Samples 
were prepared and RNA was extracted using RNeasy QIAcube HT 
(Qiagen; Hilden, Germany) kit according to manufacturer’s 
instructions. RNA was stored at −20°C until analysis. RT-qPCR was 
carried out using Reliance One-Step Supermix (Bio-Rad; Hercules, 
CA, United  States) to measure total viral N RNA and sg-N RNA 
(Supplementary Table S10, P1–P12) in a multiplex experiment5 
(Veleanu et  al., 2022). Quantifications of cellular genes CDC25A, 
BIRC5, RNase P (Supplementary Table S10, P13–P19; Spandidos et al., 
2008) were carried out using Luna Universal One-Step RT-qPCR Kit 
(New England Biolabs; Frankfurt (Main), Germany) according to 
manufacturer’s protocol. Fold changes were calculated using the 2−ΔΔCt 
method (Livak and Schmittgen, 2001).

2.13. TCID50 and plaque assay

For the quantification of infectious virus, supernatants were 
snap-frozen at −80°C. After thawing, supernatants were diluted 

5 https://www.who.int/docs/default-source/coronaviruse/

whoinhouseassays.pdf

on confluent Vero E6 in 96-well plates. Four days post infection, 
dilutions were analyzed for CPE development. TCID50 was 
calculated according to the Spearman and Kärber algorithm. For 
plaque assays, supernatants were diluted on confluent Vero E6 in 
24-well plates. After 1 h, supernatants were coated with overlay 
medium (1.5% methyl cellulose (w/v; Merck KgaA; Darmstadt, 
Germany), 1× MEM, 1% (v/v) FCS, 100 U/mL penicillin +100 μg/
mL streptomycin). When plaques reached sufficient size, cells 
were washed and fixed with 3% PFA for 20 min. Cells were stained 
with CV staining solution (1% (w/v) crystal violet, 20% 
(v/v) MeOH).

2.14. Luciferase assay

A549-AT cells were seeded in a 96-well format and were 
transfected with 0.1 ng of pRL-SV40 (Addgene; #27163) together with 
either 0.1 μg M50 Super 8x TOPFlash (Addgene; #12456) or M51 
Super 8x FOPFlash (TOPFlash mutant; Addgene; #12457) using 
TransIT®-LT1 Transfection Reagent (Mirus Bio LLC; Madison, 
Wisconsin, United States). After 24 h, cells were treated with either of 
the following substances: 10 mM LiCl (Merck KgaA; Darmstadt, 
Germany), 100 μg/mL rhWnt-3a, 10/3/1/0.3 μM PRI-724. 
Additionally, cells were treated simultaneously with LiCl and PRI-724. 
After 24 h, cells were analyzed for luciferase activity using a Dual 
Luciferase Reporter Assay Kit (Promega; Madison, Wisconsin, 
United States) according to manufacturer’s instructions.

2.15. Western blot

For preparation of protein extracts, cells were lysed using RIPA 
buffer (150 mM NaCl, 50 mM Tris/HCl pH 8.0, 1% (v/v) Triton 
X-100, 0.5% (v/v) sodium deoxycholate, 0.3% (v/v) SDS, 2 mM 
MgCl2). Buffer was supplemented with 5 mM NaF, 1 mM Na3VO4, 
20 mM β-glycerophosphate, 1x cOmplete Mini, EDTA-free protease 
inhibitor cocktail (Merck KgaA; Darmstadt, Germany) and 1 U/mL 
PierceTM Universal Nuclease (Thermo Fisher; Waltham, 
Massachusetts, United States). Lysates were stored at −20°C. Protein 
concentrations were determined using DC Protein Assay Kit (Bio-
Rad; Hercules, CA, United  States). Proteins were separated by 
SDS-PAGE and were blotted onto an Amersham™ Protran® 
nitrocellulose membrane (Merck KgaA; Darmstadt, Germany) for 
1.5 h using const. 120 V. Blots were washed and blocked for at least 
1 h using 5% (w/v) BSA/TBS-t (150 mM NaCl, 20 mM Tris, 0.1% (v/v) 
Tween20). Primary antibody (Supplementary Table S11) incubation 
was performed overnight at 4°C in 5% BSA-TBS-t. After washing, 
secondary antibody was incubated for 1 h in 5% BSA-TBS-t. Blots 
were imaged using CLx imaging device (LI-COR; Lincoln, Nebraska, 
United  States). All full-length western blots are presented in 
Supplementary Figure S5.

2.16. Cytotoxicity measurement by 
fluorescence microscopy

Confluent A549-AT cells were treated with 10, 3, 1, 0.3 μM 
PRI-724 and with the highest corresponding amount of DMSO for 
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48 h in 1% MEM. Cells were fixed with 3% PFA and stained with 
0.5 μg/mL Hoechst 33342. Imaging was performed with Olympus IX 
81 scanning a total of 9 fields/well with a 3 × 3 scatter at a total 
magnification of 10x (pixel size = 0.645 μm). Screening was performed 
using ScanR Acquisition v2.4.0.13 software.

The analysis was performed using KNIME and KNIP (Dietz and 
Berthold, 2016). The images were filtered using a gaussian convolution 
(σ = 2 px). A consecutive image thresholding assigned pixels with 
values greater than the image-mean to the foreground. Cells were 
detected and labeled by connected component analysis. Cell clumps 
were afterwards split into single cells using the Wählby algorithm 
(Wählby et al., 2004). The resulting components were filtered based 
on their size, components too large or too small were rejected as they 
most likely do not depict cells. Cell count was measured for the 
different PRI-724 concentrations (Supplementary Figure S4).

2.17. PI staining and flow cytometry

In a 6-well plate, confluent A549-AT cells were treated with 10 μM 
PRI-724 and the corresponding amount of DMSO for 24 h and were 
infected with SARS-CoV-2 (B.1.617.2 isolate, MOI 0.01) in 1% 
MEM. After that, cells were gently detached and fixed in ice-cold 70% 
ethanol for 1 h. Cells were washed three times with FACS-PBS (2% 
(v/v) FCS, 0.1% NaN3) and were then stained overnight at 4°C by 
applying PI staining buffer (50 μg/mL PI, 2% (v/v) FCS, 200 μg/mL 
Monarch® RNase A (New England Biolabs; Frankfurt (Main), 
Germany), 0.1% Igepal CA-630). Cells were analyzed for PI staining 
using FACSVerse™ Flow Cytometer (BD Biosciences; Mississauga, 
ON, Canada).

2.18. Statistics

The curve fittings presented for dose-responses to Remdesivir and 
PRI-724 presented in Figure 1A and Supplementary Figure S1 were 
performed by applying robust non-linear regression comprising a 
sigmoidal 4-parameter model for a total of three biological replicates 
per concentration:
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The exact IC50 values calculated from these analyses are listed in 
Figure  1A and Supplementary Tables S7, S8. For simple group 
comparisons such as data presented in Figures 1B, 2, 3B, C, 4A, B, 5, 
one-way ANOVA was generally applied to identify significant 
differences between treatments. In all tests, equal variances according 
to the mean were assumed and further analyses were not corrected for 
multiple testing (Fisher’s LSD test). Results were rated significant 
when p < 0.05. For RNA kinetics depicted in Figure  3A, two-way 
ANOVA was applied to identify significant differences in vRNA levels 
according to the timepoint of collection and the sort of treatment. 
Again, equal variances according to the mean were assumed and 
further analyses were not corrected for multiple testing (Fisher’s LSD 
test). Results were rated significant when p < 0.05.

3. Results

3.1. Host dependency factors identified by 
genome scale screens showed marginal 
overlap on the gene level, but improved 
consistency for common cellular processes 
and functions

First, the overlap of the results from published screening studies 
were investigated, in the following denoted as Daniloski et al. (2021), 
Wang R. et al. (2021), Wei et al. (2021), and Zhu et al. (2021). For a 
balanced comparison, we regarded the top 500 genes with the highest 
scores of every screen (Figure 6A). Only ACE2 was common among 
all candidates. The highest overlap (n = 37 genes) was observed 
between the screens of Daniloski et al., and Zhu et al. Besides ACE2, 
only 11 genes were common among Wang et al., and Wei et al. All 
these overlaps were not significantly enriched (using Fisher’s Exact 
Test). Similarly, we found very low correlations while analyzing the 
ranking of all genes of the screens (independent of the cutoff; 
Figure 6B). Next, we investigated how grouping of genes into gene 
sets of common cellular processes and gene functions affect the 
results. For this, gene set enrichment tests were performed with the 
same lists of the 500 highest scoring genes (Figure 6C). Interestingly, 
the overlaps were considerably higher but still not significant. 
Daniloski et al. and Zhu et al. shared 44/51 gene sets, Daniloski et al., 
Wang et  al., and Zhu et  al. shared 5/51 gene sets and 2/51 were 
identical among Daniloski et  al., Wei et  al., and Zhu et  al. The 
overlapping gene sets included vesicle-mediated transport to the 
plasma membrane, endosomal and lysosomal transport, phagosome 
maturation, transforming growth factor-beta production, post-Golgi 
vesicle-mediated transport, transition metal ion transport, negative 
regulation of cell growth, and phosphatidylinositol biosynthetic 
process (Supplementary Table S1). In summary, we observed limited 
overlap among the investigated screens. The overlap was higher when 
regarding gene sets of common cellular processes or molecular 
function. This supported our concept to set up a machine learning 
procedure to identify more common patterns among these 
different datasets.

3.2. Classifiers based on data from the 
knockout screens and a drug based screen 
performed well in predicting HDF from the 
gold standards

We assembled a list of 500 genes commonly high ranking among 
the investigated knockout screens (top 500 genes of the rank products, 
see Methods). This list served as the input for the machine learning 
classifier. Similarly, we  selected negative controls from the lowest 
ranking genes. Furthermore, we  set up a descriptor for gene 
predictions by compiling a comprehensive list of more than 60,000 
features for each gene describing its nucleic acid and protein 
sequences, potential associated cellular processes, its associated 
compartments, functional domains, molecular functions, its 
conservation, and its network topology within a protein interaction 
network. Here, also other omics data of SARS-CoV-2 infected cells, 
like gene transcription profiles, proteomics and interactions between 
viral and host proteins were integrated. Performing a cross-validation, 
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in which training and validation data is strictly separated, we observed 
good performance results with an area under the curve (AUC) of a 
Receiver Operator Characteristics of 0.82 (1σ = 0.03; Figure 7A). In 
addition, the same procedure was performed and a classifier learned 
based on data of a drug screen (in the following drug screen based 

classifier; Ellinger et  al., 2021). Here, we  obtained slightly worse 
performance compared to the knockout-based classifier receiving an 
AUC of the Receiver Operator Characteristics of 0.71 (1σ = 0.11). 
Additional performance parameters are supplemented 
(Supplementary Table S2).

FIGURE 1

Inhibition of SARS-CoV-2, SARS-CoV-1 and IAV H5N1 by PRI-724. (A) Dose–response curves of diverse SARS-CoV-2 mutational variants and SARS-
CoV-1 to PRI-724 and Remdesivir. Cell confluence was analyzed 48 hpi using a Spark® Cyto Imaging System. Dose–response curves were fit to 
normalized % inhibition. Data represent mean ± SD of three biological replicates. The experiment was repeated twice with similar results. IC50 values 
were calculated by applying robust non-linear regression. Mann–Whitney U-test confirmed no significant changes between any dose-responses 
analyzed. (B) Staining of SARS-CoV-2 (B.1.617.2 strain) and SARS-CoV-1 N protein, as well as IAV H5N1 NP 18 hpi. Data points represent mean ± SD of 
three biological replicates. The experiment was repeated twice with similar results. Infected cells were determined by Alexa 488/DAPI co-localization 
using an Operetta® High-Throughput Imaging system. Scale bars = 500 μm.
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3.3. Predicted HDF are prominently 
enriched in gene sets related to 
morphogenesis and development

We selected 2,182 and 1,989 top-scoring genes identified by 
knockout- and drug screen-based classifiers, respectively. To identify 

the most involved cellular mechanisms in the life cycle of the virus, 
we performed gene set enrichment analysis for each list illuminating 
1,098 and 688 gene sets of the respective classifiers 
(Supplementary Tables S3, S4). Interestingly, we  observed a high 
number of common gene sets (n = 313) showing consistency among 
both classifiers (Figure  7B). Regarding these common gene sets, 

FIGURE 2

Growth kinetics of PRI-724 treated A549-AT cells. A549-AT cells treated with high (3 μM) and low (1 μM) dose of PRI-724 were subsequently infected 
with SARS-CoV-2 (B.1.617.2 isolate) and SARS-CoV-1 (FFM1 isolate; MOI = 0.1). Cells were incubated at 37°C and 5% CO2 for 48 h in a Spark® Cyto 
Imaging system. Top: Graphical presentation of % confluence and surface roughness for both SARS-CoV-2 and SARS-CoV-1 are shown for 
measurements hourly performed. Bottom: Respective brightfield microscopy images represent critical time points of CPE formation over the course of 
infection during treatment with PRI-724 and without. Scale bar: 200 μm. See also Supplementary Videos S1−S6. Every condition comprises three 
biological replicates and graphs represent means ± SD; significant differences (***p < 0.001) are indicated by asterisks obtained by performing multiple 
t-tests. The experiment was performed twice yielding similar results.
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we further found a high fraction of these gene sets (69 out of 313 gene 
sets) to be related to morphogenesis and development, followed by 60 
gene sets being related to neural processes (Supplementary Table S5). 
Besides these gene sets, further gene sets were related to signaling, 
gene regulation, and immune and stress response 
(Supplementary Table S5).

During development, a large variety of distinct different cellular 
identities need to be  established and maintained in the embryo. 
Particularly, during developmental lineage reprogramming, a somatic 
cell can be reprogrammed into a distinct cell type by forced expression 
of lineage-determining factors (Vierbuchen and Wernig, 2012). 
Similarly, coronaviruses reprogram their host cell for their specific 
needs, including their replication (Spagnolo and Hogue, 2000; Shi and 
Lai, 2005; Reggiori et al., 2010; Nagy and Pogany, 2011; Pizzato et al., 
2022). We followed this interesting parallelism and selected a gene list 

from the gene sets of development and morphogenesis for further 
prioritization. Aiming to interfere “reprogramming” with a high 
impact, we prioritized genes coding for proteins with high connectivity 
(number of nearest neighbors) and centrality measures in a protein–
protein interaction (PPI) network to enhance the impact of a 
treatment by small molecule inhibitors. This led to a short list of genes 
with highest ranks (employing rank products) based on these 
measures in this PPI network. Table  3 lists the top  10, 
Supplementary Table S6 lists the top ranking genes and their 
connectivity and centrality values when protein interactions to SARS-
CoV-2 proteins are also taken into account. Out of these, β-catenin 
(CTNNB1) was selected for further analysis due to its high gene 
expression in SARS-CoV-2 infected cells. Interrogating publicly 
available compound and drug databases led to the selection of PRI-724 
for experimental follow up described in the next sections.

FIGURE 3

RNA kinetics and quantification of infectious virus upon PRI-724 treatment. A549-AT and Calu-3 cells were treated with 3 μM Remdesivir (Rv, blue) and 
indicated concentrations of PRI-724 [red; A549-AT: 10 μM (circle), 3 μM (square), 1 μM (rhombus); Calu-3: 20 μM (circle), 15 μM (square), 10 μM (rhombus)], 
as well as DMSO (gray) and were subsequently infected with SARS-CoV-2 (B.1.617.2 isolate) and SARS-CoV-1 (FFM1 isolate) at MOI = 0.1. (A) Viral sg-N 
RNA levels in total RNA lysates over time in A549-AT infected with SARS-CoV-2 (left) and SARS-CoV-1 (middle), as well as in Calu-3 infected with SARS-
CoV-2 (right). Data points represent mean and SD of three biological replicates. The experiments were repeated twice with similar results. Significant 
differences between treatments and control determined by two-way ANOVA are indicated through asterisks; *p < 0.05 (Supplementary Table S9). 
(B) Infectious SARS-CoV-2 and SARS-CoV-1 virus titers 24 hpi in A549-AT determined by TCID50 assay (left, middle) and in Calu-3 determined by plaque 
assay (right). Data points represent mean and SD of three biological replicates. The experiments were repeated twice with comparable results. 
Significant differences between treatments and control are indicated through asterisks; *p < 0.05, ***p < 0.001.
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3.4. PRI-724 inhibits SARS-CoV-2 variants, 
SARS-CoV-1, and influenza a virus in 
A549-AT cells

In order to validate in silico findings regarding PRI-724 in the 
context of an infection, various SARS-CoV-2 isolates [Ancestral 
variants: B (FFM5), B.1 (FFM7, D614G); variants of interest (VOI): 
P.2 (Zeta), B.1.429 (Epsilon), B.1.617.1 (Kappa); deescalated variants 
of concern (VOC): B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta); 
VOC: B.1.1.529 BA.1, BA.2, and BA.5 (Omicron)], and SARS-CoV-1 
Frankfurt-1 were tested. A549-AT cells were infected at an MOI of 0.1 
and treated with PRI-724 or Remdesivir for 48 h. CPE-related 
confluency changes were measured using automated label-free 
brightfield microscopy (Figure 1A). For all viruses tested, a mean IC50 
of 1.491 μM (95%CI 1.087–1.896) and IC50 of 0.2916 μM (95%CI 
0.1948–0.3885) was observed for PRI-724 and Remdesivir, 
respectively. No significant differences were detected among SARS-
CoV-2 variants, even though the B.1 and B.1.429 variants showed 
~1.5-fold and ~2-fold higher IC50, respectively, and BA.1, BA.2, and 
BA.5 variants had ~2-fold lower IC50 (Figure  1A; 
Supplementary Table S7). The overall response pattern among 
different variants remained similar for Remdesivir. Treatment with the 
PRI-724 active metabolite C-82 and the analog ICG-001 likewise 

inhibited SARS-CoV-2 (B.1.617.2 isolate) in A549-AT with IC50 values 
of 1.005 and 14.85 μM, respectively (Supplementary Figure S1A). In 
addition to that, dose-responses to PRI-724 for SARS-CoV-2 variants 
B.1, B.1.1.7, B.1.351, P.2, and B.1.617.2 were obtained in Calu-3 cells, 
with overall increased IC50 of 8.448 μM (95%CI 7.431–9.465) for 
PRI-724 and mean IC50 of 0.4962 (95%CI 0.2686–0.7237) for 
Remdesivir (Supplementary Figure S1B; Supplementary Table S8). In 
Calu-3, PRI-724 further demonstrated inhibition of MERS-CoV 
(IC50 = 22.4 μM) and showed significantly decreased SARS-CoV-1 
nucleocapsid (N) expression upon treatment with 10 μM, 30 μM, and 
100 μM PRI-724 (Supplementary Figure S1C). In an attempt to 
validate our results and to test whether PRI-724 can be used against a 
broader spectrum of RNA viruses, we infected A549-AT cells with 
Influenza A virus (IAV), SARS-CoV-2 (B.1.617.2 strain), or SARS-
CoV-1 (Frankfurt-1 strain), and performed immunofluorescence 
staining for IAV nucleoprotein (NP) and the coronavirus N 
(Figure 1B). Significant concentration-dependent reduction of NP 
expression was evident for treatment with 10, 3, and 1 μM PRI-724. 
Treatment with 10 and 3 μM PRI-724 led to ~10-fold and ~4-fold 
reduction of H5N1 NP+ cells, whereas for these treatments no cells 
stained positive for SARS-CoV-1 N. Treatment with 3 μM reduced 
SARS-CoV-2 N+ cells ~15-fold and staining was negative with 10 μM 
PRI-724.

FIGURE 4

PRI-724 shuffles β-catenin/CBP and β-catenin/p300 activity distribution. (A) A549-AT cells were transfected with Super M50 8x TOPFlash and pRL-
SV40. After 24 h, cells were treated with 10 mM LiCl, 100 μg/mL rhWnt-3a (light blue), and 10 μM, 3 μM, 1 μM and 0.3 μM PRI-724 (red). Luciferase activity 
was measured after 24 h. Firefly luciferase (FLuc) was normalized to Renilla luciferase (RLuc) and the non-treated control (gray) for every sample. Data 
represent mean and SD of three biological replicates. Samples treated with PRI-724 were compared to the non-treated control (gray) while samples 
treated with PRI-724 + LiCl were compared to the LiCl-treated control (light blue) using ordinary one-way ANOVA. Significant differences are indicated 
by asterisks; *p < 0.05, ***p < 0.001. The experiments were repeated twice with comparable results. (B) A549-AT cells were treated with indicated 
concentrations of PRI-724 and DMSO. 24 h post treatment, RNA was isolated and RT-qPCR was implemented to analyze CDC25A (left), BIRC5 (right), 
and RNase P expression. Data represent mean and SD of three biological replicates. Significant differences are indicated by asterisks; **p < 0.002, 
***p < 0.001. Experiments were repeated twice with comparable results. (C) Cells were treated as described in (B). Signals were normalized to β-actin 
expression. The asterisk designates the predicted band size of β-catenin. Rv, Remdesivir; C, Control.
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3.5. PRI-724 inhibits syncytium formation 
and CPE onset in A549-AT cells

After confirming PRI-724-mediated inhibition of CPE in 
A549-AT cells at 48 hpi, we examined the timeline of CPE onset and 
development. Label-free live-cell brightfield imaging was implemented 
to address viral growth kinetics upon treatment with PRI-724. Cells 

were treated with 3 μM (high-dose), 1 μM (low-dose) PRI-724, and the 
highest corresponding amount of DMSO and were subsequently 
infected with SARS-CoV-2 (B.1.617.2 isolate) or SARS-CoV-1 
(Frankfurt-1 strain; MOI = 0.1). Imaging, confluence measurements 
and surface roughness measurements were performed over the course 
of 48 h. A549-AT confluence as well as surface roughness were mostly 
comparable among all treatment conditions until 24 hpi for both 

FIGURE 5

Cell cycle analysis in A549-AT upon treatment with PRI-724. (A) A549-AT cells were treated with 10 μM PRI-724 or corresponding amounts of DMSO, 
and were subsequently infected with SARS-CoV-2 (B.1.617.2 isolate, MOI 0.01). After 24 h, cells were stained with propidium iodide (PI) following flow 
cytometric analysis. G1, S and G2/M populations were calculated using the Watson model implemented in FlowJo (v10.8.1). Sub-G1 populations were 
measured manually. Additionally, cell lysates were analyzed by western blot for N prourvivingrvivin, cyclin D1 and CDK4 expression. Expression levels 
were normalized to β-actin expression. (B) Confluent A549-AT cells were scratched prior to treatment with 10 μM PRI-724 or corresponding DMSO 
amounts. Live cell imaging was performed 0, 24, 48, and 72 h post treatment to assess scratch healing properties using a Spark® Cyto imaging system. 
All data represent mean and SD of three biological replicates. Experiments were repeated twice. Significant results obtained by one-way ANOVA are 
indicated by asterisks; *p < 0.05, **p < 0.002, ***p < 0.001.

https://doi.org/10.3389/fmicb.2023.1193320
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kelch et al. 10.3389/fmicb.2023.1193320

Frontiers in Microbiology 13 frontiersin.org

FIGURE 6

Overlap analysis of publicly available host factor identification screens. (A) Intersections of the experimentally obtained HDF (500 genes with the 
highest scores in the screens) among the different knockout screening studies. Only ACE2 (n = 1, center of the figure) was identified as an HDF in all 
screens. (B) Pairwise correlations between the ranking of all commonly screened genes of the four studies (Daniloski et al., Zhu et al., Wang et al., Wei 
et al.). Red represents a positive correlation, white no correlation, Daniloski_MOI1: data of the Daniloski screen with MOI = 0.01, Daniloski_MOI3: data of 
the Daniloski screen with MOI = 0.3. (C) This diagram (upset plot) shows the overlaps of gene sets being enriched of HDF (again considering the 500 
genes with the highest scores in the screens), Dan: Daniloski.

FIGURE 7

Characterization of machine learning performance and overlap of the gene sets derived from the two classifier approaches. (A) Machine learning 
performance results depicted by the Receiver Operator Characteristics of the validation sets. The area under the curve was 0.82 for the knockout 
screens based classifier (red) and 0.71 for the drug screen based classifier (blue). The (theoretical) result from random guessing is indicated by the 
dotted line. (B) Gene sets being enriched in HDF predicted by the knockout screening based classifier (left) and the drug screening based classifier 
(right).
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viruses. After 24 hpi, virus-induced cell lysis gradually reduced the 
confluence and increased surface roughness in DMSO-treated cells. 
SARS-CoV-2 and SARS-CoV-1 infected cells treated with low-dose 
PRI-724 started to lyse at 29 and 39 hpi, respectively, while high-dose 
PRI-724 treated cells showed no substantial loss in confluence over the 
course of the experiment (Figure 2, top; Supplementary Videos S1–S6). 
These findings were confirmed by brightfield microscopy at indicated 
time points (Figure 2, bottom). Here, cell–cell-fusion, i.e., syncytium 
formation, caused by both viruses, was initially detectable at 16 and 
24 hpi, respectively, in DMSO-treated cells and was not present in 
high-dose PRI-724 treated cells. In low-dose PRI-724 treated cells, 
SARS-CoV-2 syncytia and CPE were detectable, but much smaller 
compared to the control (Figure  2, bottom, row 2–3). Although, 
we found likewise results for SARS-CoV-1, cell lysis initiated at 32 hpi 
compared to the control (Figure 2, bottom, row 5–6).

3.6. PRI-724 reduces virus RNA replication 
and infectious virus progeny

Since PRI-724 inhibited CPE development, we  questioned 
whether it impaired virus replication and/or progeny virus production. 
For the replication analysis, the expression of intracellular subgenomic 
nucleocapsid (sg-N) RNA was monitored over the course of 24 and 
48 h in A549-AT and Calu-3 cells, respectively (Figure  3A). In 
A549-AT cells, intracellular SARS-CoV-2 (B.1.617.2 isolate) sg-N 
RNA was significantly reduced at 6, 10, 12, and 24 hpi when treated 
with 10, 3, and 1 μM PRI-724 just prior to infection. Most remarkable 
changes were detected 6 and 24 hpi where vRNA was reduced 
~370-fold/~96-fold, ~38-fold/~13-fold, and ~20-fold/~7-fold 
(Supplementary Table S9) compared to the control when treated with 
10, 3, and 1 μM PRI-724, respectively. Similarly, in Calu-3, SARS-
CoV-2 vRNA was significantly reduced at 8, 36, and 48 hpi, with most 
noticeable changes at 36 hpi, namely ~105-, ~69-, and ~10-fold 
(Supplementary Table S9) after treatment with 20, 15, and 10 μM 
PRI-724, respectively. For SARS-CoV-1  in A549-AT, PRI-724 
treatment reduced vRNA at 8, 10, 12, and 24 hpi. In comparison to 
SARS-CoV-2, the impact on SARS-CoV-1 vRNA levels was more 
pronounced. 24 hpi SARS-CoV-1 vRNA was reduced ~1,288-, ~157-, 

and ~22-fold (Supplementary Table S9) upon treatments with 10, 3, 
and 1 μM PRI-724, respectively. In A549-AT and Calu-3, Remdesivir 
treatment appeared more effective in terms of vRNA reduction 
compared to PRI-724, but timepoints of significant reductions were 
comparable between both treatments. After 24 h in A549-AT, 
Remdesivir reduced SARS-CoV-2 and SARS-CoV-1 vRNA 270-fold 
and ~3,142-fold, respectively (Supplementary Table S9). In Calu-3, 
SARS-CoV-2 RNA was reduced ~249-fold (Supplementary Table S9) 
at 24 hpi upon treatment compared to the DMSO control (Figure 3A). 
In general, reduced sg-N copies correlated with lower total N RNA in 
A549-AT and Calu-3 cells (Supplementary Figure S2).

To quantify infectious virus in supernatant, TCID50 and plaque 
assays were implemented (Figure 3B). In the supernatant of SARS-
CoV-2 infected A549-AT cells, infectious virus was not detectable 
following treatment with Remdesivir and 10 μM PRI-724. Virus titer 
was ~17.5-fold reduced upon treatment with 3 μM PRI-724 and no 
significant reduction was detected with 1 μM PRI-724, which is in line 
with the obtained RNA levels (Figure 3A). SARS-CoV-1 titer was 
reduced ~108-, ~105-, 103-, and ~31-fold upon treatment with 
Remdesivir, 10, 3, and 1 μM PRI-724, respectively. Quantification of 
SARS-CoV-2 in Calu-3 supernatants at 24 hpi by plaque assay revealed 
32.5-, 20.8-, and 8.1-fold reduction in infectious virus titer, when 
treated with 20, 15, and 10 μM PRI-724, respectively. Overall, a 
concentration-dependent reduction of SARS-CoV-2 and SARS-
CoV-1 vRNA and infectious virus titers upon PRI-724 treatment in 
A549-AT and Calu-3 cells was observed.

3.7. PRI-724 downregulates β-catenin/CBP 
target genes CDC25A, BIRC5 and cyclin D1 
protein levels and upregulates β-catenin/
p300 target c-Jun

After illuminating the protective in vitro properties of PRI-724 
during coronavirus infection in A549-AT and Calu-3 cells, we sought 
to investigate the underlying mechanism. In order to assess β-catenin/
CBP activity in A549-AT cells, we implemented a TOPFlash reporter 
assay (Figure 4A), The TOPFlash plasmid contains TCF/LEF binding 
sites coupled to a firefly luciferase reporter. Nuclear translocated 

TABLE 3 Selected genes of morphogenesis and development with high connectivity, closeness and betweenness centrality.

Gene symbol Degree1,2 Closeness centrality1–3 Betweenness 
centrality1–3

Quantile gene 
expression4

EP300 87 0.421 0.104 74

CUL3 82 0.405 0.148 89

TP53 65 0.390 0.068 82

AR 60 0.383 0.052 93

FASN 53 0.373 0.078 94

CTNNB1 40 0.394 0.046 98

HDAC1 57 0.381 0.047 58

MYCN 53 0.368 0.050 Not expressed

STAT3 39 0.382 0.046 94

AKT1 44 0.369 0.041 93

1Based on a generic protein interaction network of developmental genes. 2Determined using Python package Networkx. 3Decimal places are rounded. 4Based on the expression levels of the 
listed gene across several time points of SARS-CoV-2 infected A549 cells (details, see Materials and Methods).
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β-catenin binds to TCF/LEF transcription factors to recruit the 
co-factor CBP to the regulatory element (Lee et al., 2010) and thereby 
activates transcription. Treatment with 10, 3, and 1 μM PRI-724 
inhibited TOPFlash reporter activity significantly in comparison to 
the uninduced control. Moreover, induction of TOPFlash activity by 
10 mM LiCl was effectively blocked when using the same 
concentrations. The control construct with mutant TCF/LEF binding 
sites, showed almost no luciferase activity and no differences among 
treatments (Supplementary Figure S3).

We further verified the effect of PRI-724 on β-catenin/CBP 
activity by RT-qPCR and western blot analysis. The expression of the 
direct target genes CDC25A and BIRC5 were reduced ~2-fold in 
PRI-724-treated A549-AT cells (Figure 4B). Also, t protein levels of 
cyclin D1 were reduced when treated with 10 and 3 μM PRI-724. 
Reciprocally, β-catenin/p300 target c-Jun was increased in a 
concentration dependent fashion (Figure 4C). β-catenin expression 
remained unchanged upon treatments.

3.8. PRI-724 causes cell cycle deregulation 
in A549-AT cells

It has been reported that PRI-724 causes cell cycle deregulation 
and block proliferation in several cancer cell lines, such as 
hepatocellular carcinoma (Gabata et al., 2020), pancreatic (Martinez-
Font et al., 2020), and colon cancer (Emami et al., 2004; Kleszcz et al., 
2020). We  therefore determined whether PRI-724 and/or SARS-
CoV-2 infection (MOI 0.01) effects host cell cycle progression. Flow 
cytometry analysis revealed a significant reduction in G1 (55–60% to 
40%) and an increase in S cells (20–22% to 32–35%) upon treatment 
with PRI-724 compared to DMSO. No significant differences were 
obtained in G2/M populations. Sub-G1 populations were significantly 
elevated upon PRI-724 treatment and infected samples showed 
significantly higher sub-G1 populations than non-infected samples. 
SARS-CoV-2 infection did not seem to have any significant influence 
on the cell cycle distribution, although we  noticed a slight but 
significant reduction in the S population of DMSO-treated infected 
cells compared to non-infected cells. Furthermore, western blot 
confirmed decreased amounts of Survivin and Cyclin D1 upon 
treatment with PRI-724. Also, infected cells treated with DMSO but 
not with PRI-724 showed slightly increased CDK4 expression 
(Figure  5A). PRI-724-treated A549-AT cells also showed reduced 
proliferation (Figure 5B). To visualize whether PRI-724 induces lateral 
growth hindrance, a scratch assay was implemented. 10 μM PRI-724 
significantly hampered scratch closure at 24 h post treatment. After 
24 h, the scratch size remained at ~310 μm over the course of the 
experiment while the scratch was almost entirely closed up in the 
control after 72 h (Figure 5B).

4. Discussion

In this study we provide a comprehensive and robust machine 
learning-based host factor identification strategy (Xiao et al., 2015) 
using HDF screens performed for SARS-CoV-2 (Daniloski et al., 2021; 
Wang R. et al., 2021; Wei et al., 2021; Zhu et al., 2021) and a drug 
screen (Ellinger et al., 2021) along with validation of the predicted hit 
in the wet-lab. HDF screens of human or African green monkey cells 

infected with SARS-CoV-2 showed limited overlap in their hits. A 
better consistency was observed when regarding cellular pathways 
enriched in observed HDF of the screens. We reason this observation 
by variances among the different screens due to diverse experimental/
technical settings or/and observed biological entities, such as different 
host cell types or different viral strains. To some extent, such 
differences may be cleaned out, when regarding a gene set representing 
a cellular pathway which is essential for the virus. It may contain parts 
of signaling cascades supporting each other making knocked out 
genes replaceable in specific conditions. Such interdependencies are 
highly relevant for discovering drug targets and serve as a promising 
research venue for future investigations. We took another path here 
and let machines learn which genes are indispensable, independent of 
the experimental settings in an automated way. Our machines 
returned lists of predicted HDF that reconstruct HDF and non-HDF 
class labels well from unseen data when cross-validated. This proves 
that the machines can capture the data structure in the gold standard 
lists well. We followed up on investigating the predictions for their 
biological content, and particularly their enrichments in known 
cellular processes and functions. Interestingly, we  found a major 
portion of enriched gene sets being related to development and 
morphogenesis, followed by gene sets being related to neural 
processes. This is an intriguing observation in itself, suggesting that 
cellular processes for development and morphogenesis in particular 
are hijacked by the virus to facilitate reprogramming of the host cell 
from cellular proliferation to the proliferation of virus particles.

Focusing on gene sets related to development and morphogenesis, 
we selected β-catenin due to its top ranking connectivity and centrality 
scores in a constructed protein–protein interaction network, and it was 
highly expressed during viral infection in our observed cells. β-catenin 
has been intensively studied, particularly in oncology. It is known for its 
highly ambivalent roles. In its classical role, it migrates to the nucleus 
and acts as a cofactor for p300 or CBP (Teo and Kahn, 2010). 
Investigating hematopoietic stem cells (Rebel et  al., 2002) and an 
embryonal murine stem cell line (F9; Kawasaki et al., 1998; Ugai et al., 
1999), it was shown that the choice of the interaction partner CBP or 
p300 matters for the critical decision between proliferation/(pluri)
potency and initiation of differentiation. When interrogating publicly 
available small compound databases, we found PRI-724 and ICG-001 
as β-catenin inhibitors. More specifically, they inhibit the interaction of 
β-catenin with CBP. PRI-724 is a second-generation structural derivative 
of ICG-001. We sought to explore the effect of both of these CBP/β-
catenin inhibitors. PRI-724 performed better than ICG-001 
(Supplementary Figure S1) and showed an inhibitory effect on 
pathogenic viruses such as SARS-CoV-2 variants, SARS-CoV-1, MERS-
CoV, and IAV, in two different cell culture models. The inhibition doses 
were cell-type dependent which might be due to varying proliferation 
rates of the cells and different basal levels of β-catenin and CBP.

Viruses manipulate the cell cycle to create resources and cellular 
conditions that are advantageous for viral replication and assembly. Since 
PRI-724 is also known to affect cell cycle distribution, we hypothesized 
that the PRI-724-dependent reduction in virus replication and viral 
progeny production may be due to cell cycle deregulation. Sui et  al. 
observed that SARS-CoV-2 induces dose dependent S and G2/M arrest 
at the early phase of infection, particularly, when higher MOIs were used, 
to facilitate virus replication (Sui et al., 2023), and, in turn, at a higher 
MOI (0.1), a significant decline of cells in S and G2/M phase at the late 
phase of infection (24 and 48 hpi). In our experiments we did not observe 
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any significant difference 24 hpi. This is most likely due to lower MOI 
(0.01) used in our study and is hence in line with the late phase 
observations from Sui et al. We detected that PRI-724-dependent G1 
population decrease and S population increase is independent of the 
infection and thus it can effectively reduce virus replication and 
production for different SARS-CoV-2 variants, SARS-CoV-1, MERS-CoV 
and IAV. Regarding the drug toxicity, the total number of cells was lower 
after PRI-724 treatment (Supplementary Figure S4) and flow cytometry 
analysis showed a slight increase in sub-G1 population which was 
significantly pronounced following SARS-CoV-2 infection (Figure 5A). 
The cell distribution pattern we  found differs from the previously 
published work showing an increase in G0/G1 cell population (Arensman 
et al., 2014; Gabata et al., 2020) while using ICG-001 and C-82 (active 
compound of PRI-724) when applied to non-infected cells. This 
observation seems to be cell line or compound type dependent, because 
another study using colon carcinoma HCT116 cells also found a decrease 
in G1 and an increase in S cell population following PRI-724 treatment 
(Kleszcz et al., 2020). In summary, SARS-CoV-2 can reprogram the cell 
cycle in host cells. Our investigation showed that blocking the interaction 
between β-catenin and CBP with PRI-724 significantly reduced 
cytopathic effects, viral RNA replication, and infectious virus production. 
The treatment caused cell cycle deregulation in the host cell, which 
appeared to be unrelated to the infection. This suggests that our treatment 
effectively disrupts the virus-induced reprogramming of the cell cycle, 
which is essential for viruses to complete their life cycles. PRI-724 
treatment has been also clinically investigated. PRI-724 was shown to 
reduce hepatitis C virus-induced liver fibrosis in mice (Bojkova et al., 
2020). These investigations were followed up in two clinical trials of the 
same group (phase 1 and IIa, respectively; Kimura et al., 2017, 2022). The 
authors concluded that PRI-724 treatment was well tolerated by patients 
with HBV and HCV induced liver-cirrhosis and showed improvements 
of the pathology of concern in several patients. Besides this, blockade of 
β-catenin/CBP reversed pulmonary fibrosis (Henderson et al., 2010), 
which is a central COVID-19 complication (Zou et al., 2021). A recent 
study confirmed overall higher β-catenin levels in SARS-CoV-2 infected 
patients and targeting reduced virus shedding in vitro (Chatterjee 
et al., 2022).

A limitation of our study is that the machine learning procedure 
bases on screening data of the four initial screens which were at hand 
when we developed the computational method. New screens have 
been, and certainly more will be  published as means to better 
understand the mechanisms of this wide spread and evolving virus. 
As a future outlook, we  would like to repeat the computational 
analysis and include new screens that have been published since the 
initiation of this project. We thereby might identify additional HDF 
that are relevant for the SARS-CoV-2 life cycle. We would like to 
emphasize that further investigations with 3D models of primary 
cells, e.g., human bronchial epithelial cells (HBEpC) and human nasal 
epithelial cells (HNEpC) are crucial to validate our observations. 3D 
models have the ability to replicate cellular behavior in vivo more 
effectively than immortalized or cancer cell lines. These cell models 
can also offer a more accurate representation of host-pathogen 
interactions in vitro compared to 2D systems, resulting in more 
precise data and a superior prediction of drug efficacy and toxicity.

In conclusion, the machine learning approach brought up 
interesting connections between viral replication and the 
reprogramming of host cells in the context of SARS-CoV-2 infection. 
It may also suit for host factor studies of other viruses and a comparison 
between different virus entities may lead to intriguing new aspects in 

virus biology. We observed a strong correlation between the inhibition 
of CPE, vRNA, and infectious virus production for the tested 
concentrations in two different cell lines, making PRI-724 a promising 
HDA against SARS-CoV-2 and SARS-CoV-1 in our models.
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