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The recent emergence of novel severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) causing the coronavirus disease (COVID-19) has become a 
global public health crisis, and a crucial need exists for rapid identification and 
development of novel therapeutic interventions. In this study, a recurrent neural 
network (RNN) is trained and optimized to produce novel ligands that could 
serve as potential inhibitors to the SARS-CoV-2 viral protease: 3 chymotrypsin-
like protease (3CLpro). Structure-based virtual screening was performed through 
molecular docking, ADMET profiling, and predictions of various molecular 
properties were done to evaluate the toxicity and drug-likeness of the generated 
novel ligands. The properties of the generated ligands were also compared with 
current drugs under various phases of clinical trials to assess the efficacy of the 
novel ligands. Twenty novel ligands were selected that exhibited good drug-
likeness properties, with most ligands conforming to Lipinski’s rule of 5, high 
binding affinity (highest binding affinity: −9.4 kcal/mol), and promising ADMET 
profile. Additionally, the generated ligands complexed with 3CLpro were found 
to be  stable based on the results of molecular dynamics simulation studies 
conducted over a 100 ns period. Overall, the findings offer a promising avenue 
for the rapid identification and development of effective therapeutic interventions 
to treat COVID-19.
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1. Introduction

Coronavirus disease (COVID-19) caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a 
global public health crisis. Vaccines saved many lives despite 
numerous clinical trials for medicines against SAR-CoV-2 is under 
process (World Health Organization, 2020; Das et al., 2023). With 
nearly 765 million cases and 6.9 million deaths worldwide as of 3rd 
May 2023,1 there exists a vital need to identify or develop novel 
therapeutic interventions. Various studies have shown promising 
results in using repurposed drugs (reusing existing approved drugs for 
new medical indications) to inhibit the virus at different target sites 
(Elmezayen et al., 2020; Sarma et al., 2020). Among the target sites 
being considered, the 3-Chymotrypsin-like protease (3CLpro), is 
hypothesized to be a crucial target for the development of drugs (Khan 
et al., 2020; Tahir ul Qamar et al., 2020). 3CLpro is responsible for the 
cleavage of polyproteins to produce non-structural proteins essential 
for viral replication (Elmezayen et  al., 2020). Therefore, targeting 
3CLpro can inhibit the maturation and replication of the virus. 
3-Chymotrypsin-like protease (3CLpro) and papain-like protease 
(PLpro) are essential enzymes in the peptide chain processing reaction. 
They cleave the C-terminus of the polypeptide chain at 11 sites and 
the N-terminus of the polypeptide chain at three sites. The cleavage 
products include structural proteins and some important 
non-structural proteins, such as RNA-dependent RNA polymerase 
(RdRp) and helicase. With more cleavage sites, 3CLpro serves as an 
attractive non-structural protein for the development of drugs 
targeting SARS-CoV-2 (Li et  al., 2020). The structure details are 
attached as a separate Supplementary file.

This protease contains several highly conserved substrate-binding 
sites within the active site of the enzyme, making it an attractive target 
for developing a diverse range of inhibitors. It is also exciting that the 
structures of 3CLpro in SARS-CoV-2 and SARS-CoV differ by only 12 
amino acids with comparable ligand binding efficiency 
(Macchiagodena et al., 2020). The 3-D structure and other details of 
the protease are attached as a PDBfile (RCSB, 2022). Jin et al. (2020) 
utilized the SARS-CoV2-PPC (protease pharmacophore clusters) to 
identify six principal protease flexible confirmations and active sites. 
The diverse druggable environments of the PPCs were explained by 
the presence of different sets of PPC consensus anchors in various 
PPCs, which affirmed the functionality of the PPCs. When a 
compound is present in a PPC, its protease binding affinities improve 
with an increasing number of occupied anchors, leading to a greater 
number of interactions (Pathak et  al., 2021). The 3D crystalline 
structure of 3CLpro was submitted to Protein Data Bank (PDB) in 
January 2020 under the PDB ID: 6 LU7 (Jin et al., 2020), and it was 

1 https://covid19.who.int/

complexed with an N3 inhibitor. Thus, the active site of the N3 
inhibitor could be chosen as the site for designing ligands that can 
potentially inhibit the activity of the protease (Corbeil et al., 2012; 
Paital et al., 2022).

During this period of a global pandemic, the drug discovery and 
development process must be  accelerated, but one of the greatest 
impediments to this is the lead discovery process (Kadurin et al., 
2017). To combat this issue, in-silico methods such as deep learning 
have emerged as a promising alternative, offering the potential to not 
only reduce costs but also significantly compress the timeline (Paital 
et al., 2015; Jin et al., 2020). These models can learn to generate new 
data that closely resembles the training data by extracting high-level 
features from the data (Kadurin et al., 2017). Deep learning has been 
successfully applied to generate novel molecules (Prykhodko et al., 
2019) and has been reported to produce effective lead candidates in 
very little time (Gupta et al., 2017; Vanhaelen et al., 2017; Zhavoronkov 
et al., 2019).

In this study, a deep learning model based on a Recurrent Neural 
Network (RNN) was used to generate new ligands that could 
potentially act as inhibitors of 3CLpro. RNNs are highly effective in 
modeling sequential data with a temporal relationship, where each 
data point depends on the previous one. In this case, the RNN was 
trained on chemical molecules represented as SMILES strings. The 
model learns the relationship between each ASCII character and its 
temporal dependence in the input SMILES strings and predicts the 
ASCII character in the SMILES string based on the previous 
characters. A Long Short Term Memory (LSTM) network was 
specifically selected, as vanilla RNNs suffer from the vanishing 
gradient problem, where the gradient becomes smaller and smaller for 
large sequences of data (Menon, 2022).

Molecular docking was performed by virtual screening to identify 
the best hits against the viral protease. Evaluation of the molecular 
properties of the ligands and absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) analysis were performed to study 
the biological activity and pharmacokinetic properties of the generated 
ligands. Additionally, molecular dynamic (MD) simulation was 
employed to investigate the stability and interaction of the ligand-
protease complex for a duration of 100 nanoseconds. Finally, the 
properties of the generated novel ligands were compared to drugs that 
are currently in clinical trials as a therapeutic intervention for 
COVID-19. This study evaluates the effectiveness and potential of the 
newly generated ligands in inhibiting the main viral protease (3CLpro) 
of SARS-CoV-2.

2. Materials and methods

2.1. Technical implementation

The RNN was implemented using Tensorflow (v2.02) and Keras 
(v2.33) in Python (v3.74) and RDkit5 was used for the processing of 
the molecules.

2 https://www.tensorflow.org

3 https://keras.io

4 https://www.python.org

5 https://www.rdkit.org
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2.2. Recurrent neural network

To accelerate the synthesis of potential inhibitors against 3CLpro, a 
transfer learning approach was applied. Transfer learning is a machine 
learning technique where a pre-trained model is used as a starting 
point for training a new model with a similar task or domain. This 
allows the model to leverage the knowledge and experience gained 
from the pre-training to adapt to the new data and tasks more quickly 
and efficiently. In other words, transfer learning allows for faster and 
more accurate model development by building on top of previously 
learned representations.

Here, a publicly available model named LSTM_Chem (License: 
CC BY-NC-ND 4.0) was used (Gupta et al., 2017). The model consists 
of two LSTM layers with a 256-sized hidden state vector. It is 
regularized, having dropout layers. The two layers are followed by a 
final dense output layer with the softmax activation function. The 
model input is a bit array sequence of the molecule in the simplified 
molecular-input line-entry system (SMILES) format. This model was 
initially trained to produce novel TRPM8 inhibitors.

2.3. Dataset curation

For the LSTM_Chem model to generate potential inhibitors for 
3CLpro, it was necessary to retrain and optimize the model on a ligand 
dataset that exhibits a certain degree of activity against 3CLpro. The 
training process involved two stages with distinct datasets. The first 
stage-trained the model on a training dataset to learn the latent space 
features of chemical molecules. The second stage involved fine-tuning 
the model using a separate dataset to enable it to generate ligands that 
possess the chemical features of protease inhibitors for COVID-19.

The training dataset consists of a large volume of diverse ligands 
from which the RNN learns to produce valid ligands with high 
accuracy (Figure 1). The dataset was obtained from ChEMBL226 and 
contained 556,134 SMILES strings, which were processed to remove 
duplicates, salts, and stereochemical information, resulting in a 

6 https://www.ebi.ac.uk/chembl

collection of unique ligands. Furthermore, only SMILES strings that 
had lengths between 34 and 74 tokens were retained, leading to a final 
size of 439,217 SMILES strings. This methodology was chosen 
following the work done by Gupta et al. (2017). The SMILES string 
length was constrained as having very long strings would result in the 
vanishing gradient problem, and the network would not learn 
anything. Although LSTMs are good at tackling the vanishing 
gradient, they are not completely immune to it (Moret et al., 2019). 
Additionally, the LSTM_Chem model accepts a bit array sequence as 
input, which was obtained by converting the SMILES strings using the 
Morgan algorithm in RDKit Open-source cheminformatics; (Open-
Source Cheminformatics, see Footnote 5). The Morgan algorithm is a 
graph relaxation algorithm used for molecule canonicalization, which 
assigns a unique identifier to a molecule regardless of its 
representation. However, the Morgan algorithm has known issues that 
can result in noncanonical atom orderings and can be problematic 
when used with large molecules such as proteins. Therefore, restricting 
the length of the SMILES strings to fall within a range of 34–74 tokens 
limits the size of the molecules to small ligands and reduces the 
likelihood of encountering issues with the Morgan algorithm 
(Schneider et al., 2015; Moret et al., 2019; Schneider, 2019).

To create a dataset for fine-tuning the model, 845 drugs 
undergoing clinical trials and drugs that demonstrated activity in 
different biological assays for COVID-19 were collected from 
PubChem.7 This dataset included compounds that showed activity 
against not only 3CLpro but other drug targets of SAR-CoV-2 as well. 
In PubChem BioAssay, “PUBCHEM_ACTIVITY_OUTCOME” is a 
column that reports the outcome of a specific assay run for a given 
compound. It describes whether the tested compound showed activity 
(i.e., produced a measurable effect) against the target of interest or not. 
Only compounds that were termed “active” were selected. The ligand 
structures were retrieved in SDF format using compound IDs, via 
PUG_REST, an application program interface (API) for accessing 
PubChem (Kim et al., 2018), and SMILES strings were generated 
using the MolToSmiles function from RDKit. This dataset was 
preprocessed similarly to the training dataset, resulting in 639 ligands 

7 https://pubchem.ncbi.nlm.nih.gov/#query=covid-19&tab=bioassay

FIGURE 1

Model training and optimization.
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that were used for fine-tuning the model. However, unlike the training 
dataset, no restriction was set on the string length of the SMILES in 
the fine-tuning dataset.

2.4. Training and optimization

The model underwent training for 50 epochs on the training 
dataset, followed by 25 epochs of fine-tuning on the fine-tuning 
dataset. During fine-tuning, 1,000 SMILES strings were generated 
and evaluated for their validity. The validated ligands were then 
subjected to docking onto 3CLpro. The ligands that exhibited a 
binding affinity greater than that of the native ligands were 
incorporated back into the fine-tuning dataset. The fine-tuning 
dataset underwent preprocessing and shuffling, with this entire 
fine-tuning process being repeated for three cycles. This process 
of adding validated ligands with high-binding affinity back into 
the dataset and repeating the fine-tuning process is a way to 
iteratively improve the performance of the model and helps it 
identify the characteristics of ligands that contribute to their 
strong binding affinity with 3CLpro. A schematic overview of the 
model training and optimization process is provided in Figure 1.

2.5. Virtual screening

Virtual screening involves docking ligand libraries to a target 
macromolecule to discover a lead that would confer a biological 
function. The virtual screening was done using AutoDock Vina in 
PyRx (Dallakyan and Olson, 2014).

The generated ligands were converted from SMILES to SDF using 
openBabel-GUI (O’Boyle et al., 2011). To obtain the lowest free energy 
of the ligand, the Merck molecular force field (mmff94) parameter was 
used in PyRx. Finally, the ligands were converted to PDBQT format, 
preparing the ligand for molecular docking (Morris et al., 1998; Huey 
et al., 2007).

The 3D crystalline structure of SARS-CoV-2 main protease or 
3CLpro (PDB: 6 LU7) was obtained from PDB8; this served as the target 
for docking. The target was prepared by removing the native ligand 
present (N3 Inhibitor) and water molecules using Biovia Discovery 
Studio (Biovia, 2017).

The native ligand was docked onto the target molecule, and 
the binding affinity was found to be  −7.9 kcal/mol. The  
amino acid residues involved in binding with the native ligand 
were obtained using the 2D structure in Biovia Discovery Studio. 
The amino acid residues are Thr24, Thr26, Phe140, Asn142, 
Gly143, Cys145, His163, His164, Glu166, His172. The grid box 
was then positioned over the binding site (center: x = −10.606, 
y = 17.214, z = 64.716, total size: x = 24.074 Å, y = 24.134Å, 
z = 19.174Å).

Further post-docking analysis and visualization of the ligand-
target complex were carried out in Biovia Discovery Studio 
(Biovia, 2017).

8 https://www.rcsb.org/pdb/

2.6. Evaluation of molecular properties

To evaluate the molecular properties of the ligands, an online tool, 
Molinspiration9 was used by uploading the ligands in SMILES format. 
Molinspiration also provides bioactivity scores for drug targets such 
as Ion channel modulators, GPCR (G protein-coupled receptor) 
ligands, kinase inhibitors, nuclear receptor inhibitors, protease 
inhibitors, and enzyme inhibitors. The bioactivity score of 
Molinspiration is calculated by a machine learning-based model that 
predicts the probability of a molecule being active against a particular 
target. The model is trained on a large database of known active and 
inactive compounds and uses various molecular descriptors, such as 
physicochemical properties and substructure information, to make 
predictions. These bioactivity scores provide an additional metric for 
evaluating the drug-like properties of the ligands (Vardhan and Sahoo, 
2020). Another online tool Molsoft10 was used to evaluate the drug-
likeness score of the ligands (Prabhavathi et al., 2020).

2.7. Evaluation of ADMET profile

The absorption, distribution, metabolism, elimination, and 
toxicity (ADMET) are some of the important pharmacokinetic 
properties that must be evaluated. An online tool called admetSAR11 
was used to obtain the ADMET profile of the ligands (Yang et al., 
2018). Some of the properties calculated include ames mutagenesis, 
blood-brain barrier penetration, BSEP inhibition, Caco-2, 
Carcinogenicity, cytochrome p450 substrate and inhibitors, 
glucocorticoid receptor binding, hepatotoxicity, human ether-a-go-go 
(hERG) inhibition, p-glycoprotein inhibitors and substrate, human 
intestinal absorption, and human oral bioavailability.

2.8. Curating the reference dataset

To evaluate the capability of the generated ligands as potential 
anti-COVID drugs, a reference dataset comprising 20 drugs currently 
in clinical trials for COVID-19 treatment was obtained from 
PubChem. This included drugs such as Remdesivir, Ritonavir, 
Galidesivir, etc. (For full list of drugs—Appendix A). The properties 
of the generated ligands were compared to those of the reference drugs 
to assess their potential as anti-COVID agents. This comprehensive 
comparison of the ligands and clinical trial drugs facilitates the 
assessment of the ligand’s properties.

2.9. Molecular dynamics simulations

Molecular Dynamics simulation is a sophisticated computational 
tool for predicting and analyzing the dynamic behavior of molecules 
(Verdonk et al., 2003; Radinnurafiqah et al., 2016; Girdhar et al., 2019; 
Choubey et al., 2022; Mishra et al., 2022). The stabilities of six selected 
protein-ligand complexes were assessed using GROMACS 2021 

9 http://www.molinspiration.com

10 http://molsoft.com/mprop

11 http://lmmd.ecust.edu.cn/admetsar2/
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package through Molecular Dynamics (MD) simulations (Van Der 
Spoel et al., 2005). The complexes included SARS_COV2_MOL_1, 
SARS_COV2_MOL_3, SARS_COV2_MOL_9, SARS_COV2_
MOL_10, SARS_COV2_MOL_17, and SARS_COV2_MOL_20. The 
ligand topology parameter for CHARMM forcefield (Vanommeslaeghe 
et al., 2010) was created using the CGenFF server.12 A cubic box of 
TIP3P water models was used to solvate all the complexes. To 
maintain the periodic boundary conditions, the distance between the 
protein and the box edge was kept at 1 nm. The systems were 
neutralized by adding 0.15 M NaCl. Energy minimization was 
performed using the steepest descent method followed by the 
conjugate gradient method with maximum number of minimization 
50,000 per alogorithm. The Particle Mesh Ewald (PME) method was 
employed to calculate long-range interactions (Abraham and Gready, 
2011). The first phase of equilibration was carried out with an NVT 
ensemble, where the temperature was equilibrated using 50,000 
iterations of 2 fs each. In the second phase, the pressure was 
equilibrated at 300 K with an NPT ensemble using Parrinello-Rahman, 
a pressure coupling method. The temperature inside the system was 
regulated using V-rescale, a modified Berendsen thermostat. Finally, 
a production run of 100 ns was established to gain insights into the 
dynamic behavior of the complex.

2.10. Trajectory analysis

The obtained trajectories after the MD simulations were analyzed 
for calculations such as root mean square deviation (RMSD), root 
mean square fluctuation (RMSF), radius of gyration (Rg), solvent 
accessible surface area (SASA), and inter-molecular hydrogen bond 
using the in-built tools of the GROMACS package. To compute the 
RMSD in the protein backbone, the rms module of GROMACS was 
employed. RMSD of the ligands were also calculated using the same 
module, whereas the rmsf module was used to determine the RMSF 
in the atomic positions of the protein Cα backbone. In addition, 
modules like h-bond, gyrate, and SASA were used to calculate the 
number of hydrogen bonds, Rg, and SASA, respectively.

3. Results

A deep learning model called LSTM_Chem was trained, using 
transfer learning, to produce novel ligands that could inhibit 3CLpro, 
the main viral protease of SAR-CoV-2. The ligands’ ability to inhibit 
the protease is evaluated through molecular docking, ADMET 
analysis, and molecular dynamics simulation.

3.1. Selection of generated ligands

After the first stage of training on the training dataset, a final 
loss of 0.427 on the training set and 0.567 on the validation set 
(20% of data from the training dataset) was obtained. Additionally, 
the model had an accuracy of 82% in generating valid ligands, i.e., 

12 https://cgenff.umaryland.edu

out of every 100 ligands the model produces, 82 are 
valid molecules.

The model then underwent three cycles of fine-tuning on the fine-
tuning dataset, and after each cycle, the binding affinity of 30 
randomly selected ligands was evaluated. Figure  2 depicts the 
distribution of the binding affinities across the three cycles, indicating 
that the 3rd generation of molecules had a significantly better binding 
affinity to 3CLpro than the previous two generations (Mann Whitney 
U Test, p < 0.001). The average binding affinity for the 3rd generation 
was −8.406 ± 0.087 kcal/mol, and 26 (86.67%) of the ligands had a 
value higher than the binding affinity of the native Ligand 
(−7.9 kcal/mol).

After evaluating the binding affinity of 30 ligands generated by the 
model, the top 20 ligands were chosen for additional investigations. 
To confirm the novelty of these molecules, a search was conducted in 
the PubChem database, which did not yield any results for these 
ligands. Therefore, it can be inferred that the generated molecules are 
novel. The molecules were named SARS_COV2_MOL_1 - SARS_
COV2_MOL_20 as an identifier.

3.2. Comparative analysis

Various molecular and ADMET properties of the generated 
ligands and drugs in the reference dataset were calculated and 
contrasted to assess the efficacy of the generated ligand to serve as a 
potential inhibitor to the 3CLpro protease (Tables 1, 2).

3.2.1. Assessment based on Lipinski’s rule
Lipinski’s rule of 5 provides a set of criteria to estimate the 

solubility and permeability of a ligand. This has become a crucial 
criterion for assessing the oral bioavailability of any drug during the 
drug development process. The criterion for oral activity is based on 
the molecular properties of drugs such as molecular weight 
(MW ≤ 500), partition coefficient (logP ≤ 5), hydrogen bond donors 
(HBD ≤ 5), hydrogen bond acceptors (HBA ≤ 10), and the number of 

FIGURE 2

Binding affinity of generated ligands after 3 cycles of fine-tuning. 
Ligands generated after the 3rd cycle exhibit significantly better 
binding affinity to 3CLpro (Mann–Whitney U Test, ***≥ p < 0.001, 
****≥ p < 0.0001) than the previous generations.

https://doi.org/10.3389/fmicb.2023.1194794
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://cgenff.umaryland.edu


Prabhakaran et al. 10.3389/fmicb.2023.1194794

Frontiers in Microbiology 06 frontiersin.org

rotatable bonds (NRB ≤ 10) (Lipinski et  al., 1997). Table  1 and 
Figure 3 show the various molecular properties of generated and 
reference ligands plotted to assess their compliance with 
Lipinski’s Ro5.

According to Lipinski’s Rule, ligands having less than or equal to 
1 violation of Lipinski’s criteria can be  considered to have oral 
bioactivity. 16 (80%) of generated ligands exhibit 0 or 1 violation, and 
all ligands show less than or equal to 2 violations. 19 (95%) generated 
ligands have less than 5 H Donors, and 17 (85%) have less than 10 H 
Acceptors. Octanol-water partition coefficient or logP is used as a 
measure of molecular lipophilicity. Lipophilicity affects drug 
absorption, bioavailability, hydrophobic drug-receptor interactions, 
metabolism of molecules, as well as their toxicity. It is one of the key 
parameters that determine the drug-likeness of compounds 
(Amézqueta et al., 2020). 16 (80%) compounds among the generated 
ligands exhibit a LogP < 5.00.

For the oral bioavailability of compounds, the molecular weight 
of the compound should be ≤500 Da. 13 (65%) generated ligands and 
14 (70%) ligands in the reference dataset were found to have a 
molecular weight less than 500. The average molecular weight among 
the generated ligands was found to be 527.176 ± 29.552 Da. Refer to 
Table 1 for additional information.

3.2.2. Assessment based on bioactivity score
Molinspiration was used to obtain the bioactivity scores of 

the generated ligands and the reference drugs. Bioactivity here 
refers to a quantitative estimate of the compound’s potency and 
efficacy in inhibiting or activating various targets. Compounds 
with a bioactivity score of more than 0 are considered biologically 
active, while values between −0.50 and 0.00 are considered 
moderately active, and less than −0.50 are inactive (Khan et al., 
2017). Figure 4 represents the distribution of the bioactivity score 

for the generated and reference ligands. It can be referred from 
Table  2, that the generated ligands and reference drugs have 
comparable bioactivity scores. 14 (70%) generated ligands show 
a bioactivity score greater than 0 as a protease inhibitor. This 
suggests that the ligands share structural characteristics with 
other protease inhibitors, indicating a high likelihood of their 
potential as protease inhibitors.

3.2.3. Assessment based on docking
The generated ligands exhibit a strong binding affinity toward 

the target protease 3CLpro (6 LU7), as evidenced by molecular 
docking results presented in Figure  5 and Appendix A. These 
results indicate that the binding affinities of the generated ligands 
are higher than that of the N3 inhibitor in the 6 LU7 structure of 
3CLpro, which is −7.9 kcal/mol. On average, the generated ligands 
display a binding affinity of −8.515 ± 0.091 kcal/mol toward the 
target protease 3CLpro. The highest binding affinity among the 
generated ligand was −9.4 kcal/mol, and the lowest was 
−7.5 kcal/mol.

Among the reference drugs, Nafamostat had the highest binding 
affinity at −8.6 kcal/mol, while Fingolimod and Favipiravir had the 
lowest at −5.0 kcal/mol. The average binding affinity of the reference 
drugs was −6.81 ± 0.238, which is significantly lower than the binding 
affinity of the native ligand.

The generated ligands were further evaluated for their binding 
energy with two additional SARS-CoV-2 3CLpro structures, 7EN8, 
and 7JKV in the PDB database. The results showed that the 
binding affinities of the ligands to these structures were 
significantly better than the reference drugs (Mann Whitney U 
Test, p < 0.001) (Figure 6A). The average binding affinity of the 
generated ligands for all three structures was −8.928 ± 0.091 kcal/
mol (Figure 6B).

TABLE 1 Comparison of Lipinski’s parameters between generated and reference ligands.

Property
% compliance with 

Ro5 (generated 
ligands)

Mean ± SD
% compliance with 

Ro5 (reference 
drugs)

Mean ± SD % difference

MW ≤ 500 65 527.18 ± 29.55 70 434.44 ± 48.13 −5

HBD ≤ 5 95 3.0 ± 0.40 90 3.45 ± 0.42 5

HBA ≤ 10 85 8.55 ± 0.59 80 8.25 ± 0.81 5

NRB ≤ 10 60 10.8 ± 0.81 70 7.55 ± 1.13 −10

LogP ≤ 5 80 3.85 ± 0.41 85 2.61 ± 0.73 −5

TPSA ≤ 140 75 825.51 ± 709.55 60 120.01 ± 10.78 15

TABLE 2 Comparison of bioactivity scores between reference and generated ligands.

Mean reference 
ligands

Reference ligands 
score > - 0.5 (%)

Mean generated 
ligands

Generated ligands 
score > - 0.5 (%)

Enzyme inhibitor −0.15 ± 0.26 80 −0.35 ± 0.18 80

Ion channel modulator −0.52 ± 0.25 75 −0.62 ± 0.23 65

Kinase inhibitor −0.25 ± 0.21 50 −0.58 0 ± 0.20 65

GPCR ligand −0.22 ± 0.25 80 −0.12 ± 0.15 85

Nuclear receptor inhibitor −0.90 ± 0.26 45 −0.61 ± 0.21 65

Protease inhibitor −0.21 ± 0.21 80 0.05 ± 0.11 90
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3.2.4. Assessment based on ADMET properties
To evaluate the pharmacokinetic properties of the reference 

and generated ligands admetSAR was used. Figure 7 provides an 
overview of the various ADMET properties assessed. The 
generated ligands exhibit a good degree of human intestinal 
absorption (95%) compared to the reference ligands (66.67%). 
Although the generated ligands show low oral bioavailability 
(15%) and none permeate through Caco-2 monolayer, from 
Lipinski’s Ro5 and TPSA predicted earlier (Figure  3), it can 

be  inferred that the ligands will be  absorbed effectively 
after administration.

P-glycoprotein (P-gp) is an efflux transporter found in various 
organs and it plays a vital role in the distribution of drugs. 16 (80%) 
of the generated ligands of the present study were found to be acting 
as substrates for P-gp. Cytochrome P450 is known to be one of the 
most important drug-metabolizing families of enzymes. Out of the 
57 different CYP genes in the human body, it is established that 
only about a dozen gene products mediate most of the 

FIGURE 3

Comparative evaluation of structural properties between reference drugs and generated ligands based on Lipinski’s rule of 5. (A) Lipophilicity (miLogP), 
(B) number of H-Bond donors, (C) number of H-bond acceptors, (D) number of rotatable bonds, (E) total polar surface area is compared to the 
molecular weight (MW). (F) The total polar surface area (TPSA) vs. number of rotatable bonds. (A–F) The red box indicates the ligands that comply with 
Lipinski’s rule. (G) Distribution of molecular weight and the black line depicts the Lipinski’s criteria for MW < 500 Da. (H) Distribution of the number of 
violation to Lipinski’s rule. Having 1 or less violation of Lipinski’s criteria imply molecules with drug-like properties (depicted by the black line).
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biotransformation reactions against foreign substances. 100% of the 
generated ligands were substrates for CYP3A4, which is responsible 
for the metabolism of nearly 50% of all drugs in clinical use (Zanger 
and Schwab, 2013), and 35 and 10% of the ligands were also 
CYP2C9 and CYP2D6 substrates, respectively. One of the major 
drug excretion routes is the renal organic cation transporters 
(OCT) (Yin and Wang, 2016), and inhibitors of OCT are known to 
cause renal toxicity leading to excess drug accumulation. Only 10% 
of the generated ligands inhibit OCT1, and 15% inhibit OCT2.

Nearly 85% of ligands show some degree of hepatotoxicity; this 
could be due to the inhibition of the bile salt export pump (BSEP), as 
all the generated ligands inhibit BSEP (Kenna et al., 2018). However, 
most (>90%) of the generated ligands are non-carcinogenic and 
non-mutagenic for Ames mutagenesis.

FIGURE 4

Distribution of bioactivity scores from Molinspiration between generated Ligands and reference drugs. The green line represents a bioactivity score of 
0; ligands above this line are considered to be active, the red line represents a bioactivity score of −0.5, below which ligands are considered to 
be inactive; in the region between the red and green line, ligands are considered to be moderately active.

FIGURE 5

Distribution of binding affinities of generated and reference ligands 
to 3CLpro (Structure: 6 LU7). The red line represents the binding 
affinity of the native ligand (−7.9 kcal/mol).

FIGURE 6

(A) Evaluation of binding affinities for three 3CLpro PDB 
structures. The generated ligands show significantly better 
binding affinity than the reference drugs (Mann–Whitney U Test, 
***≥  p  < 0.001, ****≥  p  < 0.0001). (B) Distribution of binding 
affinity across all three 3CLpro. The mean binding affinity of 
generated ligands (−8.928 ± 0.091 kcal/mol) and reference drugs 
(−7.441 ± 0.164 kcal/mol) are depicted by red and green lines, 
respectively.
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3.3. Drug likeness score prediction

The drug-likeness score of the generated ligands predicted by 
MolSoft are shown in Figure 8A. The average drug-likeness score 
was found to be  0.663 ± 0.118, and the scores of the generated 
ligands were found to be in the range with FDA reference drugs used 
by MolSoft. Drugs that have drug–likeness scores greater than 0 are 
considered to have drug-like properties (Prabhavathi et al., 2020). 
In Figure 8B, ligands that fall in the green region have a binding 
affinity greater than −7.9 kcal/mol and have a drug-likeness score 
greater than 0. 16 (80%) ligands fall under the green region, 
indicating that these ligands have a good potential to be developed 
as lead molecules.

3.4. Post docking analysis

From the 20 generated ligands, 6 were selected to study their 
interactions with 3CLpro using Discovery Studio. Figures  9A–F, 
displays the interaction of the six ligands with the protease, and the 
amino acid residues interacting with the ligand have been annotated. 
Hydrogen bonds are an essential factor that determines the stability 
of the docked complex. Most of the ligands can be seen interacting 
with receptor residues Leu 141, Asn 142, Gly 143, and Ser 144 via a 
hydrogen bond. SARS_COV2_MOL_17 (Figure 9E) shows the highest 

binding affinity of −9.4 kcal/mol and a drug-likeness score of 0.29. The 
ligand showed hydrogen bond interaction with receptor residues at 
Leu 141, Gly 143, and Ser 144. However, there is an unfavorable 
donor-donor interaction at Cys 145. Unfavorable bonds greatly hinder 
the stability of the protein-ligand complex. SARS_COV_MOL_20 
(Figure 9F) has the highest drug-likeness score of 1.57 and a binding 
affinity of −8.3 kcal/mol. This ligand can be  seen interacting with 
hydrogen bonds at receptor residues Thr 26, Glu 166, and Gln 189. 
However, among the six ligands, SARS_COV2_MOL_1, 3, 9, and 10 
(Figures 9A–D respectively) have shown high binding affinity with a 
good drug-likeness score and less than 1 violation of Lipinski’s Rule. 
SARS_COV2_MOL_9 has shown a high drug-likeness score of 1.27 
and is also a good protease inhibitor (Protease inhibitor bioactivity 
score - 0.26 (refer Appendix-A)). It also exhibits a high number of 
hydrogen bond interactions at the receptor (Thr 24, Thr 26, Gly 143, 
Glu 166, and Gln 189) and interacts with a pi-pi stacked bond at His 
41 and pi-alkyl bond at Pro 168, and Met 49. In conclusion, the 
generated ligands are seen to be forming stable complexes with 3CLpro 
protease having high binding affinities.

3.5. MD simulations analysis

To further validate the structural stability of the generated ligands, 
MD simulations was performed on the docked complexes for 100 ns. 

FIGURE 7

Absorption, distribution, metabolism, excretion, toxicity (ADMET) properties of generated and reference ligands.

https://doi.org/10.3389/fmicb.2023.1194794
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Prabhakaran et al. 10.3389/fmicb.2023.1194794

Frontiers in Microbiology 10 frontiersin.org

The trajectories obtained after the simulations were analyzed to 
calculate RMSD, RMSF, hydrogen bonds, Rg, and SASA to assess the 
stability of the simulated systems.

3.6. Root-mean-square deviation

RMSD is commonly used to evaluate docked complex stability 
(Martínez, 2015; Sargsyan et al., 2017). It measures the difference 
between the initial position and the final conformation of the protein 
backbone. From Figure 10, the SARS_COV2_MOL_3 (red) complex 
showed the lowest average RMSD value, around 0.18 nm, among all 
six complexes. The average RMSD values of the other five complexes 
with SARS_COV2_MOL_1 (black), SARS_COV2_MOL_9 (green), 
SARS_COV2_MOL_10 (blue), SARS_COV2_MOL_17 (yellow), and 
SARS_COV2_MOL_20 (brown) was estimated to be ~0.2 nm same as 
that of the apoprotein. The RMSD values remained nearly constant 
over the 100 ns period, indicating that the protein-ligand complexes 
were structurally stable (Figure 9A). The low RMSD values suggest 
that the protein-ligand interactions were energetically favorable and 
contributed to the stability of the complexes. The SARS_COV2_
MOL_20 and SARS_COV2_MOL_1 complexes showed slight 
deviations of ~0.4 and ~0.38 nm around 50 and 66 ns, respectively. 
These fluctuations were further confirmed by observing local changes 
at the residue level using the RMSF plot.

The ligand RMSD ranged between 0.16–0.39 nm as shown in 
Figure 9B. SARS_COV2_MOL_17 had the least average RMSD which 

FIGURE 8

(A) Distribution of drug-likeness scores of generated ligands. The red 
line represents the average drug-likeness score. (B) Binding affinity 
vs. Drug-likeness score-generated ligands. The green region 
represents ligands showing good drug-likeness scores and having 
binding affinity greater than −7.9 kcal/mol.

FIGURE 9

Docked 3D and 2D interaction with 3CLpro (6 LU7, A–F).
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suggest the stability of the protein-ligand system when bound with 
SARS_COV2_MOL_17. Rests of the ligands also showed no sharp 
deviation and were stable throughout the period of simulation. It 
indicates the stability of the complexes. Alignment of the post-MD 
complexes with their respective initial-docking poses corroborate the 
low deviations observed, as illustrated in Figure 11.

3.7. Root-mean-square fluctuation

The fluctuations in the protein can be determined by calculating 
RMSF, which measures the flexibility of each residue over time. The 
stability of the protein-ligand complexes can be inferred from the 
RMSF scores, with higher values indicating less stability and more 
flexibility. The RMSF of Cα atoms was calculated for all complexes, 
and the resulting average values for the six ligands were between 0.103 
and 0.150 nm, as shown in Figure 12. The RMSF of the apoprotein was 
around 0.134 nm with no major fluctuation with respect to the 

protein-ligand complexes. However, the residues in the range of 46–50 
showed slight fluctuation of average 0.37 nm. These low RMSF values 
suggest that the protein-ligand complexes are relatively stable and 
exhibit a moderate degree of flexibility. The close proximity of the 
complexes with the apoprotein also indicates about the stability of the 
complexes. This indicates that the ligands can bind to the protein 
without causing significant changes in its conformation. So, the 
predicted system appears to be stable (Farmer et al., 2017).

3.8. Radius of gyration and solvent 
accessible surface area analysis

The compactness and stability of protein structures can 
be measured using the Rg, which represents the mass-weighted root 
mean square distance of the atomic distribution from their mutual 
center of mass. The Rg values depict the inclusive dimensions of the 
protein and protein-ligand complexes and reflect their appropriate 

FIGURE 10

RMSDs of the receptor (A) backbone atoms and ligands (B) during MD simulation.
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interactions. The protein-ligand complexes that displayed the least 
radius of gyration are considered to be more compact and stable. The 
Rg values of all the complexes were analyzed, and the solvent-
accessible surface area (SASA) was also computed for all the proteins 
for 100 ns. The SASA is an important measure to determine the area 
of the receptor exposed to the solvents during the simulation. As 
shown in Figure 13A, all the systems exhibited similar Rg values, 
ranging from 2.2 to 2.6 nm throughout the simulation, indicating their 
stability. The estimated SASA values also displayed a similar pattern, 
varying between 150.59 and 153.93 nm2, as depicted in Figure 13B, 
with the highest value observed for the SARS_COV2_MOL_3 

complex. These observations confirm the stability and compactness of 
all the protein-ligand complexes, as smaller deviations in average Rg 
and SASA values (Figure 13) Suggesting a stronger binding between 
the protein and ligand (Shaji, 2016).

3.9. Hydrogen bond analysis

The stability and molecular recognition process of a protein-
ligand complex is affected by the intermolecular hydrogen bonds 
(H-bonds) between interacting atom pairs. The number of H-bonds 

FIGURE 11

Superimposition of the post-MD complexes of (A) SARS_COV2_MOL_1, (B) SARS_COV2_MOL_3, (C) SARS_COV2_MOL_9, (D) SARS_COV2_MOL_10, 
(E) SARS_COV2_MOL_17, and (F) SARS_COV2_MOL_20, with initial docking pose of the respective complexes.

FIGURE 12

RMSF analysis of Cα during MD simulation.
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formed between the receptor protein and selected ligands was 
determined during the 100 ns MD simulations to ascertain the 
dynamic stability of each complex. The binding strength and 
specificity of the protein-ligand complex are determined by 
hydrogen bonds. Figure  14, represents the number of hydrogen 
bonds formed between the receptor protein and selected ligands 
throughout the MD simulation. The complex formed with SARS_
COV2_MOL_3 (red) showed a higher number of hydrogen bonds, 
while the rest of the complexes showed a stable number of hydrogen 
bonds throughout the 100 ns simulation (Figure 12). The results 
further suggest the stability of the studied 3CLpro inhibitors (Pereira 
et al., 2019; Zhu et al., 2022).

4. Discussion

Here, the properties of ligands produced by a deep neural network 
(RNN-LSTM) to inhibit 3CLpro were assessed and compared to drugs 
currently undergoing clinical trials as a potential treatment for COVID-
19. The findings demonstrate the RNN-LSTM’s ability to produce new 
ligands with strong binding affinities to 3CLpro, outperforming the native 
ligand and reference drugs in most cases. The selection of ligands was 
primarily based on their binding affinity to the target protease, which is a 
crucial parameter here. Similar methods for screening and selecting 
ligands were employed by Meng et al. (2011) and Hernández-Santoyo 
et  al. (2013). In-silico docking studies with drugs such as Ritonavir, 

FIGURE 13

(A) Radius of gyration and (B) solvent accessible surface area.

FIGURE 14

Hydrogen bond analysis of the docked complexes.
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Lopinavir, Remdesivir, and Benzophenone derivatives have suggested the 
potential of these drugs to inhibit viral proteases (Bhardwaj et al., 2020; Li 
et al., 2020; Li and Kang, 2020; Rujuta et al., 2020). Polymerase inhibitors 
such as Sofosbuvir, Remdesivir, Tenofovir, Ribavirin, and Galidesivir have 
also been identified as promising inhibitors based on their binding 
energies (Ju et al., 2020a,b). The binding energy of inhibitors, including 
nucleotide analogs, is a crucial parameter for assessing their potential to 
inhibit viral replication (Udofia et al., 2021).

Of the 20 ligands chosen, most exhibit physicochemical properties 
that satisfy Lipinski’s Rule of 5, but some deviate from it in terms of 
molecular weight. Nonetheless, a molecular weight of 500 Da alone is not 
a reliable predictor of oral bioavailability and drug-likeness. Studies have 
shown that compounds having ten or fewer rotatable bonds and a total 
polar surface area (TPSA) of less than 140 have a higher probability of oral 
bioavailability and drug-likeness (Veber et  al., 2002). And 10 of the 
generated ligands satisfy this criterion (Figure 3F). The drug-likeness 
potential was further reinforced by the results from Molinspiration and 
Molsoft. ADMET analysis revealed that the ligands have an acceptable 
ADME profile and showed very low toxicity. Leeson et al. (2021) discussed 
the ability of physicochemical descriptors commonly used to define “drug-
likeness” and ligand efficiency measures to differentiate marketed drugs 
from compounds reported to bind to their efficacious target or targets. The 
study found that recent drugs approved in 2010–2020 had no overall 
differences in molecular weight, lipophilicity, hydrogen bonding, or polar 
surface area from the marketed compounds. However, drugs differed by 
higher potency, ligand efficiency (LE), lipophilic ligand efficiency (LLE), 
and lower carboaromaticity (Leeson et al., 2021). The ligands generated by 
the model can be further improved by repeating the fine-tuning process 
using a dataset of generated ligands with these desirable properties.

Molecular dynamic simulation studies at 100 ns revealed that the 
generated ligands formed stable complexes with 3CLpro. The root-
mean-square deviation was 0.18 nm and ~0.2 nm, with a root-mean-
square fluctuation ranging from 0.103 to 0.150 nm, a solvent-accessible 
surface area between 150.59 and 153.93 nm2, a radius of gyration 
ranging from 2.2 to 2.6 nm, and a stable number of hydrogen bonds. 
The results suggest that these ligands form strong and stable complexes 
with 3CLpro. As docking and simulation studies using in silico tools are 
well accepted for various purposes (Paital et al., 2015; Shaji, 2016; 
Farmer et al., 2017; Mishra et al., 2019; Pereira et al., 2019; Bulut et al., 
2020; Sahoo et al., 2022; Zhu et al., 2022; Hou et al., 2023), the present 
study may be useful for targeting 3CLpro.

Overall, the generated ligands demonstrated comparable or even 
superior drug-like properties when compared to the drugs currently 
undergoing clinical trials, making them a promising candidate for 
further development in the treatment of COVID-19.

5. Conclusion

In the current study, a deep RNN was trained to produce novel 
ligands that could potentially inhibit the main viral protease of SARS-
CoV-2, 3CLpro (PDB: 6 LU7), and 20 novel ligands were identified. The 
study’s results unequivocally indicate that the novel ligands produced 
by the deep generative model have the potential to serve as effective 
anti-COVID drugs. Furthermore, the study adds to the growing body 
of evidence supporting the use of deep learning as a means of 
expediting drug discovery. However, further testing by in vitro and in 
vivo studies is necessary before considering them for human use.
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