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Enterococcus faecium is sometimes used in food production; however, its 
acquisition of antibiotic resistance has become an alarming health concern. The 
E. lactis species is closely related to E. faecium and has good probiotic potential. 
This study aimed to investigate the antibiotic resistance of E. lactis. We analyzed 
the antibiotic resistance phenotype and whole-genome sequences of 60 E. 
lactis isolates (23, 29, and 8 isolates from dairy products, Rice wine Koji, and 
human feces, respectively). These isolates showed varying degree of resistance 
to 13 antibiotics, and were sensitive to ampicillin and linezolid. The E. lactis 
genomes carried only a subset of commonly reported antibiotic resistance genes 
(ARGs) in E. faecium. Five ARGs were detected across the investigated E. lactis, 
including two universally present genes (msrC and AAC(6′)-Ii) and three rarely 
detected ARGs (tet(L), tetM, and efmA). To identify other undescribed antibiotic 
resistance-encoding genes, a genome-wide association study was performed, 
returning 160 potential resistance genes that were associated with six antibiotics, 
namely chloramphenicol, vancomycin, clindamycin, erythromycin, quinupristin-
dalfopristin, and rifampicin. Only around one-third of these genes encode known 
biological functions, including cellular metabolism, membrane transport, and 
DNA synthesis. This work identified interesting targets for future study of antibiotic 
resistance in E. lactis. The fact that the lower number of ARGs present in E. lactis 
supports that it may be an alternative to E. faecalis for use in the food industry. 
Data generated in this work is of interest to the dairy industry.
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1. Introduction

Enterococcus are lactic acid bacteria. They are widely distributed in natural environments 
and are common gut commensals of humans and animals. Members of this bacterial family are 
acid- and heat-resistant (García-Solache and Rice, 2019), and with strong intestinal adhesion 
ability (Cebrián et al., 2012). However, this genus is also considered conditional pathogens, as 
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they occasionally cause clinical diseases, such as bacteremia, infective 
endocarditis, urinary tract infection and so on (Gao et al., 2018). 
Moreover, the emergence of vancomycin-resistant enterococci (VRE) 
and the subsequent challenge in clinical treatment of VRE have 
received much attention in recent years (Eisenberger et al., 2020).

The taxonomic classification of the Enterococcus genus has been 
continuously changing since the last century. Enterococcus was 
originally a subspecies under the Streptococcus genus (Andrewes and 
Horder, 1906), and this group of bacteria were assigned to an 
independent genus in 1903 (Franz et al., 1999). Enterococcus faecium 
and E. faecalis are the two largest species under this genus, and they 
have been classified into different species in 1984 (Schleifer and 
Kilpper-Bälz, 1984). They are also the most characterized common 
species within the Enterococcus genus. The E. lactis was firstly isolated 
from dairy products in 2012 (Morandi et  al., 2012), which was 
considered closely related to E. faecium. However, differences in the 
16S rRNA gene sequence (Sukhodolets et al., 2005) and carbohydrate 
metabolism (Morandi et  al., 2011) support that E. lactis should 
be assigned to an independent species from E. faecium.

Although E. faecium is widely used in the field of food and even as 
probiotics (De Vuyst and Vandamme, 1994; Moreno et al., 2006), the 
clinical infection rate caused by this bacterial species has increased 
sharply, and the discussion on whether E. faecium can be  used as 
probiotics has become more and more intense. Compared with 
E. faecium, E. lactis lacks specific virulence and antibiotic resistance 
genes (ARGs), which make E. lactis a better choice to be used in the 
food and healthy food industries compared with E. faecium (Kim et al., 
2022). However, a comprehensive food safety assessment of E. lactis is 
still lacking. Given the overall medical concern of the enterococci 
genus, it is necessary to investigate the antibiotic resistance in E. lactis.

Therefore, in this study, we comparatively analyzed the antibiotic-
resistant phenotype (based on 15 antibiotics) and genomics of 60 
E. lactis strains isolated from food (dairy product and Rice wine Koji) 
and human feces. By using a genome-wide association study (GWAS), 
we identified potential ARGs in the E. lactis genomes. This study has 
provided a preliminary evaluation of the antibiotic resistance of 
E. lactis in dairy products, Rice wine Koji, and human feces.

2. Materials and methods

2.1. Bacterial isolates and genomes

A total of 60 E. lactis isolates were analyzed in this study 
(Supplementary Table S1). Our laboratory isolated the bacteria from 
natural fermented dairy products (23 isolates), Rice wine Koji (29 
isolates), and human feces (8 isolates) during 2007–2016. Nine of 
these isolates were previously sequenced (Zhong et al., 2019). In this 
study, 51 novel E. lactis genomes were sequenced.

2.2. E. lactis antibiotic susceptibility test

We determined the antibiotic resistance profile of the isolated 
E. lactis to 15 commonly used antibiotics, including ampicillin, 
vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, 
clindamycin, tetracycline, chloramphenicol, quinupritin-dalfopristin, 
linezolid, ciprofloxacin, rifampicin, neomycin, and trimethoprim, by 
a standard microbroth dilution method (Cockerill et al., 2012; EFSA 

Panel on Additives and Products or Substances Used in Animal Feed 
(FEEDAP), 2012). The results were expressed in minimum inhibitory 
concentration (MIC).

2.3. DNA extraction

Each clonal isolate was aerobically cultured and subcultured in de 
Man, Rogosa and Sharpe liquid medium at 37°C for 24 h. Each 
bacterial subculture was checked for purity by microscopic 
examination. The genomic DNA of pure bacterial subculture of each 
isolate was extracted by using the Omega Biotek E.Z.N.A. Bacteria 
DNA Mini Kit (D3350-02, Omega Bio-tek, Inc., Norcross, GA, 
United States), and the purity and concentration of DNA were assured 
by using an ultraviolet spectrophotometer (NanoDrop ND-1000, 
Thermo Fisher Scientific Inc., Wilmington, DE, United  States). 
Samples of DNA meeting the quality requirements (OD260/280 = 1.8 
to 2.0, >6 μg) were kept frozen in a refrigerator (−20°C) for whole-
genome sequencing.

2.4. Whole-genome sequencing, assembly, 
and annotation

The whole-genome sequencing of sequencing of enterococcus was 
done using the Illumina HiSeq platform (Illumina Inc., United States) 
by generating 2 × 150 bp paired-end libraries using the Nextera DNA 
Sample Preparation Kit (Illumina Inc., United States) following the 
manufacturer’s instructions. Then, the whole-genome sequencing was 
conducted on an Illumina HiSeq sequencing platform (Illumina Inc. 
United States; Lepage et al., 2006). The high quality pair-end reads 
data were first assembled using SOAP denovo v1.06 (Luo et al., 2012), 
and the genome gaps were filled with the GapCloser.1

2.5. Calculation of average nucleotide 
identity

The ANI analysis examined the intra-species relationship based 
on genome sequence similarity. The analysis was performed by the 
method described in Goris et al. (2007) with a cut-off level was 95%.

2.6. Construction of core- and 
pan-genomes

The coding sequences of 60 E. lactis isolates were predicted and 
annotated by Prokka v1.11 software (Seemann, 2014). Roary v3.6.1 
software (Page et al., 2015) was used to identify the core- and pan-gene 
sets of E. lactis. The same gene family was defined based on amino acid 
similarity of encoding sequences (>95%). The core-gene set was 
constructed by identifying gene families shared across all isolates, 
while all identified gene families were used to construct the pan-gene 
set. Finally, the PanGP software2 was used to construct the pan-/core-
gene accumulation curves.

1 http://sourceforgE.net/projects/soapdenovo2/files/GapCloser/

2 https://pangp.zhaopage.com/
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2.7. Construction of the phylogenetic tree

A core-gene phylogenetic tree was constructed by based on the 
core-gene nucleotide sequences using the Neighbor-Joining (NJ) 
method with TreeBeST software (Vilella et al., 2009). The tree was 
visualized using the online software iTol3 (Letunic and Bork, 2019), 
with the Bootstrap parameter set to 1,000.

2.8. Identification of ARGs

To uncover ARGs in the 60 E. lactis isolates, the identified protein 
sequences from these genomes were BLASTp-compared against the 
Comprehensive Antibiotic Resistance Database (CARD; http://
arpcard.mcmaster.ca), with a cut-off level of similarity of >85%, E 
values < le-15 (Tang et al., 2019).

2.9. Identification of virulence factors

To uncover virulence factors in the 60 E. lactis isolates, the 
identified protein sequences of these genomes were compared 
against the Virulence Factor Database,4 with a cut-off level of 
E-value <1e-15 and sequence identity >95%.

2.10. Identification of potential ARGs by 
GWAS

A GWAS was performed to identify potential ARGs using Scoary 
software (Brynildsrud et al., 2016). The MIC results of 60 E. lactis 
isolates were used as phenotypic characteristics. The screening criteria 
for potential ARGs were naive p < 0.05 and empirical p < 0.05. The false 
discovery rate (corrected by Benjamini and Hochberg method) < 0.05 
was considered statistically significance. Identified putative ARGs 
were annotated through the Kyoto Encyclopedia of Genes and 
Genomes database.

2.11. Statistical analysis

The ggpubr package in R (V4.1.2) was used to draw the boxplots. 
TBtools (Chen et  al., 2020) was used to draw the heatmap. Data 
analyses were performed using SPSS 26.

2.12. Data availability statement

The genomic sequences of the nine previously sequenced 
E. lactis were retrieved from DDBJ/ENA/GenBank database under 
the accession number PGPI00000000 to PGPM00000000. Currently 
assembled genomes of the other 51 isolates were deposited in 
DDBJ/ENA/GenBank database under the accession number 
JAIZWO000000000 to JAIZYM000000000 (Supplementary Table S1).

3 https://itol.embl.de/

4 http://www.mgc.ac.cn/VFs/main.htm

3. Results

3.1. Antibiotic-resistant phenotype of 
Enterococcus lactis isolated from dairy 
products

60 strains of E. lactis were tested for resistance to 15 common 
antibiotics by a microbroth dilution method (Supplementary Table S2). 
The species showed the strongest resistance to clindamycin (57/60, 
95%), followed by chloramphenicol (56/60, 93%). The resistance rate 
of E. lactis to neomycin (53/60, 88%), kanamycin (47/60, 78%), 
rifampicin (37/60, 62%), and erythromycin (37/60, 62%) were higher 
than 50%, and the species had a low resistance rate (<50%) to 
tetracycline (16/60, 27%), trimethoprim (12/60, 20%), streptomycin 
(11/60, 18%), gentamicin (9/60, 15%), ciprofloxacin (9/60, 15%), 
vancomycin (8/60, 13%), and quinupristin-dalfopristin (3/60, 5%). All 
tested isolates were sensitive to linezolid and ampicillin (Figure 1).

The phenotype of antibiotics resistance of E. lactis varied greatly. 
60 E. lactis isolates were resistant to 3 to 12 different antibiotics, and 
48 isolates were resistant to 5 or more antibiotics. Around half of the 
studied isolates were originated from Rice wine Koji, and three isolates 
showed a broad spectrum resistance to more than 10 different 
antibiotics (20-3, 15-3, and 19-3, resistant to 12, 11, and 10 different 
antibiotics, respectively). The isolates dairy-associated isolates, 
XJ28301 and XJ28304, showed the narrowest antibiotic 
resistance spectrum.

3.2. General characteristics of the 
Enterococcus lactis genomes

Comparative genomics analysis was performed on the 60 E. lactis 
isolates. Their average genome size was 2.73 ± 0.06 Mb (range = 2.61–
2.88 Mb), and the average number of predicted genes was 2,748 ± 100. 
The overall G + C content of E. lactis was low, ranging from 38.00 to 
38.33%. The dairy isolates had a significant larger genome size and a 
higher number of coding sequences compared with isolates from Rice 
wine Koji and human feces (p < 0.05), but no significant difference was 
observed in the GC content among isolates of three sources 
(Figure 2A).

3.3. The core- and pan-genomes of 
Enterococcus lactis

Then, we  determined the core- and pan-gene sets of the 
investigated isolates. The core gene set comprised 1,616 gene families, 
while the pan-gene set comprised 6,502 gene families (Figure 2B). The 
core genes accounted for 58.80% of the total number of predicted 
genes (2,748 genes). In other words, nearly 41.20% of the predicted 
genes in each genome were accessory genes. The pan-gene 
accumulation curve did not reach a plateau, suggesting an open 
pan-genomes and more accessory genes would be identified as more 
genomes are added into the dataset (Figure 2B).

The 60 E. lactis isolates contained an average of 24.51 isolate-
specific genes. The human fecal isolates (28.75 genes) had a 
significantly higher average number of isolate-specific genes compared 
with isolates from Rice wine Koji and dairy products (25.11 and 19.69, 
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respectively; p < 0.05; Figure  2C). Average nucleotide identity of 
E. lactis.

In order to evaluate the intraspecific genome sequence similarity, 
the ANI values were calculated and were shown in a heatmap 
(Figure 3A). All the pairwise ANI values were over 95% (range = 97.32 
to 99.99%), suggesting all of the investigated isolates belonged to the 
E. lactis species (Goris et al., 2007).

3.4. Phylogenetic reconstruction of 
Enterococcus lactis

In order to study the evolutionary relationships of E. lactis from 
different isolation sources, a phylogenetic tree was constructed based on 
1,616 core gene nucleotide sequence (Figure 3B). Two major clusters 
were formed, representing mainly isolates from Rice wine Koji and 

FIGURE 1

Antibiotic resistance of 60 strains of Enterococcus lactis to 15 antibiotics.

FIGURE 2

Genome characteristics of the studied Enterococcus lactis. (A) Mean genome size, G + C content, and number of coding sequences in dairy, Rice wine 
Koji, and human fecal isolates. Significant differences between sample pairs were evaluated with wilcox test, and the generated p values are shown. 
(B) Pan- and core-genomes of 60 strains of Enterococcus lactis. Upper and lower whiskers represent pan-and core-genomes. (C) Isolate-specific 
genes of the studied Enterococcus lactis genomes.
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human feces (the larger cluster) and isolates from dairy products (the 
smaller cluster), although there were few exceptions. Three isolates from 
Rice wine Koji (13-1, 9-1, 15-3) clustered were distributed in the cluster 
of dairy isolates, and five isolates from dairy products (BL2-16, NM29-3, 
NM30-4, BL25-6, HSK2-14-2) were distributed in the Rice wine Koji 
isolate cluster. These results suggested that the dairy isolates diverge from 
those originated from Rice wine Koji and human feces.

3.5. Virulence factors in Enterococcus lactis 
genomes

To identify potential virulence factors in the E. lactis genomes, the 
coding sequences of 60 E. lactis isolates were compared against the 
Virulence Factor Database. A total of 25 virulence factors were 
detected, which were mainly related to adhesion, immune regulation, 
and biofilm formation; and the category of adhesion-related virulence 
factors had the high number of virulence factors, namely cpsA/uppS, 
cpsB/cdsA, efaA, EFMU0317_RS16950, bopD, and acm (Figure 4).

3.6. Antibiotic resistance genes in 
Enterococcus lactis genomes

To identify known ARGs in the E. lactis genomes, the coding 
sequences of 60 E. lactis isolates were BLAST-search across the CARD 

database, returning a total of five ARGs (Figure  5). Two of these 
ARGs, msrC and AAC(6′)-Ii, were universal across all isolates. TetM 
and efmA were present in all three isolation sources. TetL was detected 
only in a fecal isolate XY10-9. The human fecal isolate (XY10-9) and 
the dairy isolate (NM29-3) contained the highest numbers of ARGs, 
five and four ARGs, respectively (Figure 5).

3.7. Identification of potential 
antibiotic-resistant phenotype-encoding 
genes by GWAS

To identify potential antibiotic-resistant phenotype-encoding 
genes other than the known ARGs, a GWAS was performed using 
Scoary software. Our analysis returned 160 potential antibiotic 
resistance-encoding genes that were associated with six antibiotics, 
including: chloramphenicol (123 associated genes; only 40 encode 
known function proteins), vancomycin (15 associated genes; 10 
encode known proteins), clindamycin (12 associated genes; only 
two encode known function proteins), erythromycin (5 associated 
genes; all annotated as hypothetical proteins), quinupristin-
dalfopristin (3 associated genes; all annotated as hypothetical 
proteins), and rifampicin (2 associated genes; both encoding known 
function proteins). The identified genes were annotated by the 
Kyoto Encyclopedia of Genes and Genomes database gene 
annotation; 54 genes encoded proteins of known function, and the 

FIGURE 3

Intra-species genomic similarity. The analyses were performed based on the genomes of 60 Enterococcus lactis isolates. (A) Heatmap showing 
average nucleotide identity (ANI). The color scale represents ANI level; and a darker red indicates a higher similarity, while a darker blue indicates a 
lower similarity. (B) Core-gene phylogenetic tree of the E. lactis isolates. The phylogenetic tree was constructed using the DNA sequences of 1,616 
core genes from these isolates.
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remaining 106 genes encoded hypothetical proteins 
(Supplementary Table S3).

4. Discussion

The Enterococcus genus is often found in fermented dairy 
products, and some of them have been used as fermented food starter 
and probiotics. Most previous research of Enterococcus focuses on 
their medical aspects, especially antibiotic resistance acquisition and 
genomics of clinically-associated strains, due to the fact that more 

than of nosocomial infections worldwide are related to this group of 
bacteria (Arias and Murray, 2012). However, in recent years, there has 
been a growing interest in studying food-originated Enterococcus 
species because of their increasing use in the food industry. 
Enterococcus lactis is a relatively new species and is closely related to 
E. faecium. This species is advantageous over E. faecium for use in the 
food industry because of its lack of obvious virulence and ARGs. 
Nevertheless, safety risk is a prime concern for any food use bacteria, 
and few reports have evaluated the risk of spread of antibiotic 
resistance in E. lactis. Thus, in this study, we determined the antibiotic 
resistance profile of 60 isolates, most of which were food-originated 

FIGURE 4

Cluster analysis based on the profile of virulence factors identified in 60 Enterococcus lactis genomes. The color scale indicates the number of 
virulence factors.

FIGURE 5

Cluster analysis based on the profile of antibiotic resistance genes identified in 60 Enterococcus lactis genomes. The color scale indicates the number 
of antibiotic resistance genes.
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(from dairy products and Rice wine Koji). We identified potential 
virulence factors and known ARGs in their genomes, and 
implemented a GWAS approach to uncover potential antibiotic 
resistance-encoding genes.

We first determined the antibiotic susceptibility of the collected 
isolates to 15 commonly used antibiotics, which would provide an idea 
of the antibiotic resistance spectrum of food-originated isolates of this 
species and a starting point for safety assessement. Our results 
indicated that 95% of the investigated isolates were resistant to 
clindamycin, which is surprising. Intrinsic antibiotic resistance of 
enterococci to lincosamide antibiotics has been reported in multiple 
studies (Klare et  al., 2003). 63% of our isolates were resistant to 
erythromycin, which corroborates the observation of a high 
prevalance of enterococci to erythromycin (Lopes et al., 2005). The 
major reason of resistance to macrolide antibiotics like erythromycin 
is horizontal gene transfer of drug-resistant gene elements through 
plasmids and transposons (Santagati et al., 2000; Arredondo-Alonso 
et al., 2020). On the other hand, linezolid is an important antibiotic 
for treating VRE infection, and all the investigated isolates were 
sensitive to linezolid, which is consistent with Kürekci et al. (2016). 
We also observed a relatively low prevalence of vancomycin resistance 
(13%). Glycopeptide antibiotics like vancomycin are the reserve 
antibiotics for resistant multidrug-resistant Enterococcus species. A 
high prevalence of vancomycin resisance (>50%) was previously 
reported in Turkish cheese-associted enterococci (Çitak et al., 2004). 
As antibiotic resistance became an alarming global health concern, the 
use of antibiotics in animal production was banned in 2006 (Demirgül 
and Tuncer, 2017). The implementation of such measure for over a 
decade has slowly brought down the antibiotic resistance in 
environmental enterococci isolates, and continuous monitoring of the 
spread of antibiotic resistance in clinical and environmental bacteria 
is crucial.

The overall ranges of genome size and GC content of E. lactis are 
similar to that of the genomes of E. faecalis and E. faecium (Sanderson 
et al., 2020). Enterococci carry a number of virulence factors in their 
genomes. For example, the efaA gene is a known virulent factor-
encoding gene in E. faecalis, and the vast majority of E. faecalis food 
isolates was found to contain the efaA gene (Eaton and Gasson, 2001), 
which can be  used as a gene target for molecular detection of 
E. faecalis. Our study consistently found that the efaA gene is present 
in all E. lactis isolates. Other commonly found virulence factors in 
enterococci, such as Acm and bopD, are also widely detected among the 
current lactis isolates. However, other high prevalent virulence factors 
in enterococci, such as gelE (responsible for producing extracellular 
enzymes; Bertelli et al., 2017) and esp (encoding surface proteins; Das 
et al., 2020) are not present in E. lactis. Instead, E. lactis possess two 
immune regulation and capsular polysaccharide production-
associated virulence factors, cpsA/uppS (encoding an undecaprenyl 
diphosphate synthase) and cpsB/cdsA (encoding a phosphatidate 
cytidylyltransferase), which are less reported in enterococci.

Compared with E. faecium and E. faecalis, a relatively small 
number of ARGs were detected in E. lactis. These detected genes 
represent a subset of consistently reported ARGs in E. faecium. For 
example, the msrC is a chromosomal gene that encodes an ABC efflux 
pump, conferring resistance to macrolides and streptosporin class B 
antibiotics in E. faecium (Munita and Arias, 2016). AAC(6′)-II encodes 
an aminoglycoside acetyltransferase that confers resistance to several 
aminoglycoside antibiotics (Costa et al., 1993), and it is an important 

determinant of microbial resistance in E. faecium (Draker et al., 2003). 
EfmA encodes is mainly responsible for promoting the permeability 
enzyme of the major facilitator superfamily transporters, conferring 
fluoroquinolone and macrolide to E. faecium (Vasconcellos et  al., 
2022). TetM and tetL genes are ribosome protective proteins that 
promote tetracycline resistance (Connell et  al., 2003). Neela et  al. 
(2007) reported that although some strains carry the tetM gene, they 
are still sensitive to tetracycline, indicating that the detection 
frequency of tetM gene in the strain does not represent the resistance 
level. Therefore, it is still necessary to gene expression to determine 
the drug-resistant phenotype (Neela et al., 2007). It is worth noting 
that virulence determinants like the vancomycin ARG cluster was 
detected in the investigated E. lactis, suggesting that the ARG 
distribution in the E. lactis genomes differs from that of E. faecium and 
E. faecalis, making E. lactis a better choice for food use.

Finally, we  performed a GWAS by applying the antibiotic 
resistance phenotype data and the whole-genome sequences of the 
E. lactis to locate yet unidentified antibiotic resistance-encoding genes 
based on association. A total of 160 genes were found to associate with 
six different antibiotics, although around two-thirds of which were 
annotated as hypothetical proteins (106/160, 66.3%). Most of the 
known function proteins are related to chloramphenicol resistance 
and vancomycin resistance. Interestingly, some of these genes encode 
function related to cellular metabolism, membrane transport, and 
DNA synthesis. For example, chloramphenicol resistance is associated 
with genes encoding lactose-inducible lactose-phosphotransferase 
operon (lacA to lacG; van Rooijen et al., 1991) and the mannose PTS 
system (manXa, manY, manZ), while vancomycin resistance is 
associated with genes encoding an ABC transport system ATP-binding 
protein (yknY), an ABC transport system permease protein (macB), 
and several putative proteins related with ribonucleotide reductases 
(nrdE, nrdF, nrdI). It is interesting to note that ribonucleotide 
reductase is an essential enzyme for de novo synthesis of DNA 
building; it has been proposed as antimicrobial drug target towards 
opportunistic pathogens like Pseudomonas aeruginosa (Tholander and 
Sjöberg, 2012).

One limitation of this study is that it remains at genomic-level 
analysis, so the functional roles of these known function proteins and 
hypothetical proteins in antibiotic resistance are not clear. 
Nevertheless, this study has provided interesting targets for future 
study aiming to comprehensively elucidate the antibiotic resistance in 
E. lactis.

5. Conclusion

In conclusion, this study comprehensively analyzed the antibiotic 
resistance in E. lactis. We identified some putative virulence factors 
and ARGs in the investigated E. lactis genomes, but some virulence 
determinants (such as vancomycin ARG cluster) commonly present 
in other enterococal species of clinical concern have not detected. 
Then, by conducting a GWAS, a number of potential antibiotic 
resistance-encoding genes have also been found, which are interesting 
targets for future study of antibiotic resistance in E. lactis. Moreover, 
the fact that the lower number of ARGs present in E. lactis supports 
that it may be an alternative to E. faecalis for use in the food industry.

Further studies should expand the number of isolates, so as to 
increase the confidence of results generated by GWAS. Nevertheless, 
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this study has provided a starting point for studying the antibiotic 
resistance in a potential food use species, E. lactis.
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