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Acinetobacter baumannii is increasingly associated with various epidemics, 
representing a serious concern due to the broad level of antimicrobial resistance 
and clinical manifestations. During the last decades, A. baumannii has emerged as 
a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, 
urinary tract, and skin and soft tissue infections are the most common presentations 
of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems 
have been considered the first choice to treat A. baumannii infections. However, 
due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), 
colistin represents the main therapeutic option, while the role of the new 
siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, 
high clinical failure rates have been reported for colistin monotherapy when used 
to treat CRAB infections. Thus, the most effective antibiotic combination remains 
disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is 
also known to form biofilm on medical devices, including central venous catheters 
or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains 
in multidrug-resistant populations of A. baumannii poses a significant treatment 
challenge. This review provides an updated account of antimicrobial resistance 
patterns and biofilm-mediated tolerance in A. baumannii infections with a special 
focus on fragile and critically ill patients.
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Introduction

Acinetobacter baumannii is an opportunistic pathogen causing severe nosocomial 
infections (Gonzalez-Villoria and Valverde-Garduno, 2016; Morris et al., 2019). The global 
estimated incidence rate of A. baumannii infections is approximately 1 million cases 
annually, with high crude mortality rates, particularly in critically ill patients (Peleg et al., 
2008; Magill et al., 2014; Lob et al., 2016; Piperaki et al., 2019; Ma and McClean, 2021). 
Over the last 30 years, A. baumannii has emerged as one of the most troublesome pathogens 
for healthcare institutions, but it rarely causes disease outside of the healthcare setting 
(Wong et al., 2017). The clinical significance of A. baumannii has been raised due to its 
ability to acquire antibiotic resistance and tolerate desiccation. Indeed, multidrug-resistant 
(MDR), extensively drug-resistant (XDR), and A. baumannii isolates resistant to all 
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clinically available antibiotics (pan-drug resistant—PDR) have 
been reported worldwide (Piperaki et al., 2019; Weinberg et al., 
2020). The rates of MDR are approximately four times higher than 
those described for other major nosocomial pathogens (Hamidian 
and Nigro, 2019). Currently, 45% of all A. baumannii isolates are 
classified as MDR, with peaks of 70% in South America, Asia, and 
Europe (Giammanco et  al., 2017; Hamidian and Nigro, 2019). 
These observations place A. baumannii among the most 
problematic nosocomial ESKAPE (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter spp) 
pathogens, and a “high priority” by the World Health Organization 
(WHO) and Centers for Disease Control and Prevention [CDC; 
Tacconelli et al., 2018; Tiku, 2022].

The ability to acquire antibiotic resistance, the environmental 
persistence, along with the absence of identified toxins in its genome 
suggest that the virulence potential of A. baumannii resides in the 
ability to survive for prolonged periods throughout a hospital 
environment (Whiteway et al., 2022). Indeed, adhering to plastics 
allows A. baumannii to colonize endotracheal tubes or central venous 
catheters, thus increasing its persistence and transmission in 
hospitalized patients (Peleg et  al., 2008; Roca et  al., 2012). In 
particular, A. baumannii has been demonstrated to grow as a biofilm 
on different materials, including health-care-associated equipment, 
porcelain, stainless steel, rubber, endotracheal tubes, polycarbonate 
plastic, and polypropylene plastic (Greene et al., 2016a,b). Biofilm 
formation contributes significantly to establishing medical-device-
associated infections conferring a high desiccation resistance and 
survival of A. baumannii isolates (Pour et al., 2011; Greene et al., 
2016a,b). Recent reports also suggested that biofilm-producing 
A. baumannii strains are commonly isolated from intensive care units 
and in oncological patients (Zeighami et al., 2019; Asaad et al., 2021; 
Di Domenico et  al., 2021; Roy et  al., 2022). MDR A. baumannii 
(MDRAB) forms robust biofilms, both in the wound and on occlusive 
dressings in the skin and soft-tissue infections (Thompson et  al., 
2014). Notably, A. baumannii exhibits several adhesive and protective 
elements that significantly contribute to the formation and 
maintenance of biofilms, thus increasing tolerance to environmental 
stressors (Greene et al., 2016a,b). Biofilm is also important to the 
virulence of A. baumannii because it facilitates horizontal gene 
transfer (HGT) of antibiotic-resistance mobile elements while 
physically protecting bacteria from the immune system (Eze et al., 
2018; Harding et al., 2018).

Infections caused by MDRAB in immunocompromised 
individuals result from complex relationships between several factors, 
including A. baumannii pathogenicity, the fitness costs of resistance, 
the site-specific microflora composition of the human host, and the 
selective forces following clinical interventions such as antibiotic 
therapy. Therefore, understanding the consequences of mutations 
driving antibiotic resistance and the worrisome convergence of 
virulent traits, including biofilm production, has important 
implications for controlling the spread of A. baumannii and developing 
novel treatment strategies in critically ill patients.

This review provides an updated analysis of antimicrobial 
resistance mechanisms and biofilm-mediated tolerance in 
A. baumannii. Moreover, we discuss current therapeutic options for 
carbapenem-resistant A. baumannii (CRAB) infections, with a special 
focus on fragile and critically ill patients.

Virulence and pathogenicity

Various studies have revealed that A. baumannii owns more 
human virulence potential than other Acinetobacter spp. In particular, 
A. baumannii resists macrophage uptake and grows better at 37°C 
than other species (Tayabali et al., 2012). Some elements, such as the 
outer membrane proteins (OMP), secretion systems, immunity 
interaction, or adhesion to the host cells, are highly characterized by 
virulence and pathogenicity in A. baumannii (Morris et al., 2019; 
Tiku, 2022).

Outer membrane proteins and outer 
membrane vesicles

Outer membrane proteins (OMPs) are a class of integral 
membrane proteins anchored in the outer membrane with a β-barrel 
structure. OmpA is one of the most abundant porins in the outer 
membrane of A. baumannii (Park et al., 2011; Uppalapati et al., 2020). 
OmpA is connected to the diaminopimelic acid of the peptidoglycan 
by two conserved residues (Asp271 and Arg286) in its periplasmic 
C-terminal domain (Park et  al., 2012.). These characteristics give 
OmpA high stability in the membrane and the capability to fight 
against harsh environments (Moon et  al., 2012). Indeed, being 
exposed to the outside of the bacterial cell OmpA provides the first 
line of contact between the bacterium and its surroundings. Given its 
central position, OmpA acts as an adhesion factor in virulence, 
channels for the uptake of nutrients, siderophore receptors, and 
enzymes such as proteases and lipases. Three OMPs were identified as 
fibronectin-binding proteins, such as OmpA, TonB-dependent copper 
receptor, and 34 kDa Omp (Smani et  al., 2012). OmpA forms a 
non-selective channel in bacterial outer membranes that permits the 
passage of ions and other solutes (Sugawara and Nikaido, 2012; Confer 
and Ayalew, 2013). Furthermore, OmpA contributes to the 
antimicrobial resistance of A. baumannii (Sugawara and Nikaido, 
2012; Smani et al., 2014). Indeed, disrupting the OmpA gene decreases 
the minimal inhibitory concentrations (MICs) of aztreonam, 
chloramphenicol, and nalidixic acid by 8, 8, and 2.7-fold, respectively. 
This data suggests that OmpA participates in the extrusion of 
antibiotics from the periplasmic space through the outer membrane 
and couples with inner membrane efflux systems (Smani et al., 2014). 
In A. baumannii, OmpA serves multiple functions, both in vitro and 
in vivo, including adherence to epithelia, induction of epithelial cell 
death, drug resistance, channels for the uptake of nutrients, 
siderophore receptors, binding to factor H (Choi et al., 2005, 2008; 
Gaddy et al., 2009; Kim et al., 2009). OmpA enhances the survival and 
persistence of A. baumannii by facilitating biofilm formation (Gaddy 
et al., 2009; Shin et al., 2009). In particular, outer membrane receptor 
proteins are significantly upregulated in biofilm than in planktonic 
cultures (Shin et  al., 2009). Moreover, it has been reported that 
overexpression of OmpA represents a significant risk factor for 
pneumonia, bacteremia, and enhanced mortality in patients infected 
with A. baumannii (Sánchez-Encinales et al., 2017). In A. baumannii, 
virulence factors, including OmpA and certain tissue-degrading 
enzymes, are delivered to host cells via OMVs (Jin et al., 2011). OMVs 
are spherical elements with a 20–200 nm diameter, secreted by various 
Gram-negative pathogenic bacteria (Kulp and Kuehn, 2010). They 
mainly comprise lipopolysaccharide (LPS), outer membrane and 
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periplasmic proteins, phospholipids, and nucleic acids, representing 
delivery vehicles for bacterial effectors to host cells (Ellis and Kuehn, 
2010). OMVs are central in delivering A. baumannii virulence factors, 
including OmpA, and certain tissue-degrading enzymes, such as 
proteases and phospholipases (Lee et al., 2017). Furthermore, OmpA 
has the highest content in OMVs, which is involved in the 
mitochondrial decomposition of the host’s cell apoptosis (Choi et al., 
2005; Tiku et al., 2021).

Phospholipase

Phospholipases are lipolytic enzyme essential for phospholipid 
metabolism and a major virulence factor in many Gram-negative 
bacteria. Phospholipids are the primary building blocks of biological 
membranes and a carbon and energy source in the human host. In 
A. baumannii, have been identified two phospholipases C (A1S_0043 
and A1S_2055) and three phospholipases D (PLD1, PLD2, PLD3), all 
with substrate specificity toward the eukaryotic membrane component 
phosphatidylcholine (PC; Flores-Díaz et al., 2016). PC is abundant in 
eukaryotic membranes representing 50% of all phospholipids and 
increasing up to 80% in the lung and tracheobronchial secretions 
(Girod et  al., 1992; Bernhard et  al., 2001; Tomaras et  al., 2003) 
Experimental evidence suggests that it may serve as a nutrient source 
during lung infections by pathogens like Pseudomonas aeruginosa and 
A. baumannii (McConnell et al., 2013; Sun et al., 2014; Özarslan et al., 
2023). Phospholipids’ degradation compromises the stability of host 
cell membranes, interfering with cellular signaling, thus resulting in 
changes in the host immune response (Flores-Díaz et al., 2016). In 
particular, the 1,2-diacylglycerol released by cellular phospholipases 
C plays roles in modifying biophysical membrane properties, 
including charge, fluidity, and permeability, and can recruit cytosolic 
proteins that induce spatial reorganization of signaling complexes, 
which in turn affect diverse cellular processes (Toker, 2005; Flores-
Díaz et  al., 2016). Consequently, products generated by bacterial 
phospholipases could affect the immune response and promote the 
infection’s establishment or progression (van der Meer-Janssen et al., 
2010). In A. baumannii, phospholipases D concertedly promote serum 
resistance, epithelial cell invasion, and in vivo pathogenesis (Jacobs 
et al., 2010; Stahl et al., 2015). Interestingly, PLD1 and PLD2 appear 
to result from a gene duplication characterized by the HxKx4Dx6GSxN 
(HKD) pattern similar to eukaryotic cells and required for catalytic 
activity (Stahl et al., 2015). Despite their similarity, PLD2 is more 
important for invasion and virulence than the other two PLDs (Jacobs 
et al., 2010; Stahl et al., 2015). Since phospholipases are conserved 
across numerous strains of A. baumannii and are essential for host 
invasion, they may represent promising targets for developing enzyme 
inhibitors and potential vaccine candidates to limit the impacts on 
human diseases (Flores-Díaz et al., 2016).

Protein secretion systems

The Type II secretion system (T2SS) is a two-step process, 
dependent on the general secretory pathway (Sec) or the Twin-
arginine (Tat) system for substrate translocation to the periplasm 
before secretion in the extracellular environment (Weber et al., 2017). 
The T2SS was first described in A. baumannii ATCC17978, with the 

specific apparatus encoded by genes designated, general secretory 
pathway (GspA-O), located in six separate operons (Eijkelkamp, 
2014). Secretion of type II effector proteins includes enzymes such as 
lipase, elastase, alkaline phosphatase, and phospholipases, which are 
essential for A. baumannii virulence (Elhosseiny and Attia, 2018). In 
A. baumannii, major T2SS effectors include the metalloendopeptidase, 
CpaA, and the lipases, LipA and LipH (Johnson et al., 2016; Weber 
et al., 2017). Secretion of CpaA and LipA requires specific membrane-
associated chaperones CpaB and LipB (Zheng et al., 2013; Harding, 
2016). In particular, LipA contributes to extracellular lipolytic activity 
by using long-chain fatty acids as carbon sources for growth and may 
use fatty acids derived through lipid hydrolysis as signaling molecules 
allowing bacterial escape from innate immunity (Johnson et al., 2016; 
Lee et  al., 2017). In addition, CpaA is a zinc-dependent 
metalloendopeptidase forming an active complex with its chaperone 
(CpaAB), essential for secretion. It targets the common coagulation 
pathway by interfering with fibrinogen, factor XII and factor V, 
disrupting blood clotting and allowing the dissemination and 
colonization of A. baumannii (Waack et  al., 2018; Urusova et  al., 
2019). Moreover, mutations in gspD and lipA showed a significant 
virulence reduction in both G. mellonella and murine models 
(Harding, 2016; Johnson et al., 2016).

Previous studies showed that A. baumannii strains produce a type 
VI secretion system (T6SS) involved in interbacterial competition 
(Fitzsimons et  al., 2018). The T6SS is a complex nanomachine 
structurally and mechanistically analogous to an intracellular 
membrane-attached contractile phage tail (Cianfanelli et al., 2016). 
T6SS is an efficient weapon that can inject toxic effectors into the 
extracellular environment or directly into eukaryotic or prokaryotic 
cells (Cianfanelli et al., 2016). In addition, this system is implicated in 
bacterial competition and DNA uptake released by the prey cells, 
which promotes horizontal gene transfer (HGT; Weber et al., 2017). 
Indeed, HGT plays a significant role in the spread of antibiotic 
resistance cassettes and pathogenicity islands. Therefore, the potential 
involvement of T6SS in acquiring antibiotic resistance in A. baumannii 
has attracted considerable attention (Weber et al., 2017). It remains to 
be  determined what, if any, benefit the T6SS may provide to 
A. baumannii during infection. In particular, G. mellonella infected 
with A. baumannii defective for the T6SS did not succumb to infection 
as quickly as did worms infected with the wild-type but were killed to 
the same extent at later time points (Repizo et al., 2015).

Multiple antibiotic-resistance 
mechanisms

Increasing reports of the hospital- and community-acquired 
MDRAB infections are accumulating worldwide (Assimakopoulos 
et  al., 2019; Girija and Priyadharsini, 2019; Darby et  al., 2023; 
Mangioni et  al., 2023). In addition to its intrinsic resistance to 
antibiotics, A. baumannii can acquire new functions by HGT, enabling 
rapid dissemination and maintenance of resistance genes between 
different isolates (Decré, 2012). Indeed, the European Centre for 
Disease Prevention and Control’s (ECDC) reported that from 2012 to 
2020 in Europe, there had been an increase of 3.4% of A. baumannii 
strains resistant to fluoroquinolones, aminoglycosides, and 
carbapenems and an alarming rise of 11.3% (217 to 2,451 isolates) in 
Italy only.
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Fluoroquinolones

The quinones/fluoroquinolones are antibiotics that inhibit two 
enzymes involved in DNA synthesis: DNA gyrases and Topoisomerase 
IV. A. baumannii has genetic mutations providing resistance. 
Mutations in the gyrA and parC genes of the DNA gyrase subunit and 
Topoisomerase IV subunit C play a major role in conferring direct 
antibiotic resistance (Roy et al., 2021). Other important antibiotic 
resistance mechanisms of A. baumannii involve efflux pumps, 
permeability defects, and alteration of the target site (Figure 1). More 
generally, three resistance-nodulation cell division (RND)-family 
efflux pump systems, such as AdeABC, AdeFGH, and AdeIJK, and the 
multi-antimicrobial extrusion protein family (MATE) efflux pump in 
A. baumannii are overexpressed due to amino acid substitutions in 
their regulatory genes (Fernandez and Hancock, 2013; Sun et al., 2014; 
Darby et al., 2023). These two systems allow a broad spectrum of 
antibiotic resistance to aminoglycoside, chloramphenicol, 
erythromycin, tetracycline, and tigecycline (Magnet et  al., 2001; 

Fournier et al., 2006; Vila et al., 2007). The plasmid-encoded qepA 
gene is an efflux pump belonging to the major facilitator superfamily 
that decreases susceptibility to hydrophilic fluoroquinolones, 
especially ciprofloxacin (Jacoby et  al., 2014). With less antibiotic 
resistance efficiency, mutations in the aminoglycoside transferase 
AAC(6′)-Ib-Cr by Tryp102Arg and Asp179Typ substitution permit 
N-acetylation modification of two fluoroquinolones (ciprofloxacin 
and norfloxacin; Roy et al., 2021; Venkataramana et al., 2022).

Aminoglycosides

The aminoglycosides antibiotic family inhibits protein synthesis 
by binding to the 16S ribosomal RNA of the 30S ribosome, with high 
affinity. Two main mechanisms, involving aminoglycoside 
modifying enzymes and RNA 16S methylase modification, are 
associated with increased resistance. Several reports reviewing 
clinical A. baumannii isolates find a match in genes coding for 

FIGURE 1

The main antibiotics resistance mechanisms of Acinetobacter baumannii. The resistance mechanisms are divided into six categories. (A) The 
permeability defects are due to porins modification, such as the carbapenem-associated outer membrane protein (CarO) and the OMP family. (B) The 
one-step or two-step drug extrusion from the cytosol to the outer membrane via the efflux pumps family. Among them, the resistance-nodulation-
division superfamily (RND-superfamily) takes over the drug from the cytoplasm or the periplasm by its AdeABC, AdeIJK, or AdeFGH efflux pumps 
system. The major facilitator superfamily (MFS; e.g., TetA, TetB, CmlA, CraA, AmvA, AbaF), the multidrug and toxic compound extrusion (MATE) 
transporter family (e.g., AbeM), and the small multidrug resistance (SMR) transporter (e.g., AbeS) are H+ and Na+ coupled multidrug efflux pumps at the 
inner membrane. (C) The hydrolysis of β-lactam antibiotics by β-lactamases. Acinetobacter baumannii β-lactamases are classified into four molecular 
classes: class A (e.g., TEM, GES, PER, CTX-M, SCO, VEB, KPC, CRAB enzyme family), class B (e.g., IMP, VIM, NDM, SIM enzyme family), class C (e.g., Amp 
family) and class D (e.g., OXA subgroups enzyme family). (D) The complete loss of LPS by inactivating the lipid A biosynthesis genes (lpxA, lpxC, and 
lpxD) results in colistin resistance. (E) The aminoglycoside-modifying enzymes classified in three class acetyltransferases [e.g., AAC3, AAC(6′)], 
adenyltransferases [e.g., ANT(2″), ANT(3″)], and phosphotransferases [e.g., APH(3″), APH(3′)]. (F) The alteration of targeted sites of TetM confers 
ribosomal protection against tetracycline, and GyrA subunit modification of DNA gyrase confers resistance to quinolone.
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aminoglycosides enzymes modification ant(3″)-I, aac(3)-I, aph(3′)-I, 
aac(6′)-Ib and aph(3′)-IIb; and a gene coding for an rRNA 16S 
methylase armA allowing a high antibiotic resistance (Nie et al., 
2014; Hasani et al., 2016).

β-lactam resistance in Acinetobacter 
baumannii

Carbapenems are the most important class of antibiotics against 
A. baumannii and, generally, for Gram-positive and negative isolates 
(Meletis, 2016). Indeed, carbapenems are considered the drugs of choice 
to treat A. baumannii infections and the first-line agents for empirical 
therapy in areas with low rates of resistant strains (Pandey and Cascella, 
2022). However, different mechanisms of β-lactam resistance have been 
described resulting in overexpression of OXA β-lactamases and 
chromosomal cephalosporinases, which have been classified as 
Acinetobacter-derived cephalosporinases (ADCs; Paton et al., 1993). 
The ADCs overexpression is caused by an insertion sequence (ISAba1) 
close to these resistance genes (Heritier et al., 2006). The first ADC gene 
was reported in Spain in 2000 (Bou and Martínez-Beltrán, 2000). 
Currently, several variants have been described worldwide conferring 
resistance against penicillins, extended-spectrum cephalosporins, 
monobactam (aztreonam), and β-lactamase inhibitors (sulbactam; 
Rodríguez-Martínez et al., 2010; Tian et al., 2011; Kuo et al., 2015; Ingti 
et al., 2020). The extensive use of carbapenems has been regarded as one 
of the main risk factors promoting the emergence and spread of 
MDRAB (Garnacho-Montero et al., 2015). The most effective resistance 
mechanism is the acquisition of carbapenem-hydrolyzing enzymes. In 
CRABs, the most common are class D oxacillinases (OXA type) 
β-lactamases classified in subgroups, with more than 400 OXA-type 
enzymes identified. Specifically, OXA-23, OXA-24, OXA-51, and 
OXA-58 subgroups are widespread in A. baumannii (Evans et al., 2013). 
Nevertheless, other β-lactamases classes are involved in carbapenem 
resistance, such as class A β-lactamases and class B metallo-β-lactamases 
(MBLs; Smet et al., 2008). OXA-type β-lactamases (especially OXA-23) 
have also been commonly detected in cefiderocol-resistant A. baumannii 
clinical isolates (Iregui et al., 2020; Kohira et al., 2020; Abdul-Mutakabbir 
et al., 2021; Yamano et al., 2021). Moreover, PER-like β-lactamases and, 
to a lesser extent, NDM β-lactamases have been shown to contribute to 
a decreased susceptibility to cefiderocol (Poirel et al., 2021). Therefore, 
combined factors, including the presence of β-lactamases such as 
NDM-like enzymes, modification of the penicillin-binding proteins 
(target gene PBP-3), permeability defects associated with efflux 
overexpression and reduced expression or mutation of genes involved 
in the ion transport, might contribute to resistance to cefiderocol in 
A. baumannii (Malik et al., 2020; Wang et al., 2022). More seldom is the 
presence of mutations affecting iron transport genes (pirA and piuA) in 
cefiderocol-resistant A. baumannii isolates (Malik et al., 2020). The pirA 
and piuA genes encode components of the pyoverdine and ferric iron 
uptake systems, respectively. Cefiderocol is transported across the outer 
cell membrane via iron transporters; thus, mutations in these genes may 
reduce antibiotic susceptibility. Nevertheless, the finding that mutations 
in these iron transport genes are relatively rare in A. baumannii isolates 
may suggest that iron acquisition is central to A. baumannii survival 
and, at the same time, genes involved in drug efflux, cell envelope 
modification, and cell wall biosynthesis may be  more efficient in 
providing resistance to cefiderocol (Moynié et al., 2017).

The emergence of colistin resistance in 
multidrug-resistant isolates

The increase in colistin treatments after the rise of CRAB has led 
to a critical emergence of resistant strains, particularly in the hospital 
environment (Katip et  al., 2021a,b). The first recorded case of a 
colistin-resistant Acinetobacter sp. was in 1949 in the Czech Republic 
(Sun et  al., 2020). Currently, the high-resistant clonal lineage of 
A. baumannii has been described across 12 hospitals in Italy, Greece, 
and Spain, with resistance rates for colistin of 50% (Nowak et al., 
2017). Moreover, 42% of A. baumannii isolates causing bloodstream 
infections in intensive care unit (ICU) patients from a Greek hospital 
have been found resistant to colistin and directly linked to fulminant 
septic shock and high mortality (Papathanakos et al., 2020). Despite 
that discovery, the resistance mechanisms to colistin in A. baumannii 
are only partially understood. Colistin is positively charged and 
interacts electrostatically with the negatively charged phosphate 
groups of lipid A, the LPS component of Gram-negative bacilli outer 
membrane. Colistin’s binding causes displacement of calcium (Ca2+) 
and magnesium (Mg2+) ions, associated with lipid A phosphoresters, 
thus affecting the stability of the LPS molecules. Subsequently, colistin 
inserts its hydrophobic terminal acyl fatty chain, causing disruption 
and permeabilization of the outer membrane. When permeabilization 
occurs, colistin penetrates the outer membrane, affecting the integrity 
of the inner membrane’s phospholipid bilayer, leading to membrane 
destabilization and cell death (Rhouma et  al., 2016; Novović and 
Jovčić, 2023). Unlike Gram-negative bacteria such as Salmonella spp., 
Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, 
A. baumannii does not possess a PhoP/PhoQ two-component system. 
The primary polymyxin resistance mechanisms in A. baumannii relies 
on the PmrA/PmrB two-component system. The PmrA/PmrB is a 
major regulatory system implied in the lipid A modification (Hua 
et  al., 2020) and is well-characterized in E. coli, P. aeruginosa, or 
K. pneumoniae (Chen and Groisman, 2013). The histidine-kinase 
PmrB sensor reacts to various stress conditions, such as low Mg2+ and 
Ca2+ concentrations, acid pH, and high Fe3+ concentrations (Figure 2).

In Gram-negative bacteria, resistance to polymyxins results 
mostly from LPS modifications, which is the drug target. These 
modifications originate from the addition of cationic groups such as 
4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine 
(PEtN) on the lipid A (Ezadi et al., 2019). Unlike Enterobacterales, 
A. baumannii lacks all the genes of the arn operon required for 
L-Ara4N biosynthesis. Consequently, colistin resistance is caused by 
the addition of PEtN to the lipid A on position 1 or 4′ by the 
chromosomally-encoded EptA-like phosphoethanolamine transferase 
by the pmrC gene (El-Sayed Ahmed et al., 2020).

Mutations in the PmrAB system have been found in a large 
number of colistin-resistant A. baumannii isolates. These mutations 
constitutively activate the PmrAB regulatory system, which in turn, 
upregulates the expression of the operon pmrCAB (Adams et  al., 
2009). The self-regulation of the pmrCAB transcription enables the 
modification of lipid A (Olaitan et al., 2014). The colistin resistance-
related mutations in the coding sequence for the amino acids Pro102 
and Ile13 of PmrA and Pro233, Thr235, and Gln270 of PmrB caused 
an overactivity of PmrA. These mutations in pmrA were located in the 
sulfatase domain, while in pmrB were in the histidine kinase domain. 
Mutations in pmrA-pmrB promote phosphorylation of the PmrB 
receptor kinase, activating PmrA. The activated PmrA modulates the 
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expression of the pmrC gene that encodes the phosphoethanolamine 
transferase that catalyzes the addition of PEtN to the 1′- or 
4′-phosphate group of lipid A (Sun et  al., 2020). Another study, 
analyzing the genetic determinants associated with colistin resistance 
in A. baumannii isolates collected from various regions of Greece, 
identified additional mutations in PmrB (Glu140 or Leu178) and 
PmrA (Lys172 or Asp10) genes (Palmieri et al., 2020). Besides, PmrA 
also regulates the naxD transcription coding for an 
N-acetylhexosamine deacetylase which is involved in the deacetylation 
of the β-galactosamine modifying the Lipid A (Adams et al., 2009; 
Moffatt et al., 2010; Llewellyn et al., 2012; Deveson Lucas et al., 2018; 
Sun et al., 2020; Ilsan et al., 2021).

Recently, a plasmid-mediated resistance to polymyxin has been 
described in Enterobacterales. The mcr (mobile colistin resistance) 
genes also encode a phosphoethanolamine transferase that adds 
PEtN to lipid A (Partridge et  al., 2018). The mcr-1 remains the 
predominant plasmid-mediated colistin resistance gene, while 
mcr-2, -3, -4, -5, -6, -7, and -8 have been detected in isolates from 
animals, humans, and different environments worldwide. Currently, 
56 mcr variant sequences are available in GenBank (Partridge et al., 
2018). The mcr genes initially found in Enterobacterales, have been 
only recently described on A. baumannii (Ma et al., 2019; Al-Kadmy 
et  al., 2020), for which resistance to polymyxin was previously 
restricted to chromosome-encoded elements (Jeannot et al., 2017; 
Poirel et al., 2017; Partridge et al., 2018).

More recently, a colistin-resistant mutation has also been shown 
in A. baumannii by insertion into the hns gene, an H-NS family 
transcriptional regulator. That mutation alters the expression of more 
than 150 genes, including the eptA gene. Overexpression of this LPS 
modifying enzyme codes for EptA, a PEtN transferase homolog to 
PmrC, which confer colistin resistance (Deveson Lucas et al., 2018; 
Trebosc et al., 2019; Palmieri et al., 2020; Ilsan et al., 2021).

Instead of lipid A modification, A. baumannii can acquire 
resistance to colistin due to the complete loss of LPS by inactivating 
the lipid A biosynthesis genes (lpxA, lpxC, and lpxD; Moffatt et al., 
2010; Cafiso et al., 2019). LpxA, LpxC, and LpxD are three enzymes 
involved in the first main steps of LPS biosynthesis of A. baumannii 
occurring in the cytoplasm compartment (Powers and Trent, 2018). 
Specifically, mutations in LpxA and LpxC can lead to modifications in 
the fatty acid chains of lipid A, while mutations in LpxD can affect the 
addition of PEtN groups to lipid A. These changes can reduce the 
outer membrane’s net negative charge and permeability, decreasing 
colistin susceptibility (Palmieri et al., 2020).

Bacterial attachment and biofilm 
formation

A. baumannii forms biofilms on a wide range of surfaces, including 
medical and ventilator-associated pneumonia (VAP), as well as on host 

FIGURE 2

Model for activation of the polymyxin resistance PmrA/PmrB two-component system in Acinetobacter baumannii. Resistance to polymyxins can 
be induced in response to various stress conditions, such as low Mg2+ and Ca2+ concentrations, acidic pH, and high Fe3+ concentrations, which 
activate the two-component system PmrA/PmrB. Once activated, PmrA/PmrB upregulates pmrC gene expression, which encodes lipid A 
phosphoethanolamine (PEtN) transferase that promotes the addition of PEtN to lipid A. PmrC upregulates naxD, which codes for an 
N-acetylhexosamine deacetylase involved in the deacetylation of the β-galactosamine and Lipid A modification. Alternatively, overexpression of the 
eptA gene, homolog to PmrC, promotes the addition of the cationic pEtN moiety to the lipid A of LPS. Lastly, the plasmid-mediated mobile colistin 
resistance (mcr) genes encode a phosphoethanolamine transferase that adds PEtN to lipid A residues lowering the binding affinity of colistin to its 
target site.
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epithelial cells leading to meningitis, pneumonia, urinary tract infection, 
sepsis, and other conditions (Greene et al., 2016a,b; Wong et al., 2017). 
Biofilm contributes to A. baumannii survival on surfaces and in dry and 
nutrient-deprived conditions for several weeks (Orsinger-Jacobsen et al., 
2013; Chapartegui-González et al., 2018). The current understanding 
suggests biofilm formation in A. baumannii is a complex process 
mediated by a large repertoire of molecules and two-component systems 
(Mcconnell et al., 2013; Wong et al., 2017; Roy et al., 2022).

Early surface colonization

Generally, biofilm production relies on the initial reversible 
bacterial attachment to a surface in response to environmental 
stimuli (Toyofuku et al., 2016). Thus, early adhesion is essential in the 
colonization process and in establishing an A. baumannii infection. 
The CsuA/BABCDE chaperon-usher assembly system encodes for 
the bacterial pili that mediate the attachment of A. baumannii to 
various abiotic surfaces (Longo et al., 2014). The Csu pili comprise 
four protein subunits, CsuA/B, CsuA, CsuB, and CsuE, assembled via 
the chaperone–usher pathway (Tomaras et  al., 2008). The CsuC 
chaperone assists the CsuA/B polymerization in forming the major 
pilus subunit (Pakharukova et al., 2015). In addition, CsuD functions 
as the usher, CsuE forms a tip adhesin, while CsuA and CsuB 
constitute minor pilin subunits (Tomaras et  al., 2003, 2008; 
Pakharukova et  al., 2015). Previous studies showed that the 
inactivation of the csuE gene abolishes pilus production and biofilm 
(Amala Reena et al., 2017; Ghasemi et al., 2018). However, a study 
conducted with 52 different clinical strains revealed that biofilm 
formation and the ability to attach host cells are independent abilities 
and not necessarily associated (Eijkelkamp et al., 2011). Indeed, most 
A. baumannii carry the csuA/BABCDE locus; nevertheless, a subset 
of clinical isolates is csu deficient, indicating that these pili may 
be dispensable for biofilm formation and maintenance and that other 
pili systems may functionally replace them (Wright et al., 2016). In 
A. baumannii, the expression of the csu operon is mainly regulated 
by the two-component system BfmRS where BfmS acts as a sensor 
kinase and BfmR functions as a response regulator (Tomaras et al., 
2008; Gaddy and Actis, 2009). Indeed, the two-component system 
BfmRS is considered the master regulator of resistance to stress in 
A. baumannii (Law and Tan, 2022). BfmrR-P can act directly or 
indirectly on regulating genes for osmotic and oxidative stress, heat 
shock, the biosynthesis of siderophores, and the production of 
capsular polysaccharides, in addition to pili production. Furthermore, 
BfmR is also important for pellicle formation in A. baumannii 
(Krasauskas et al., 2019). A pellicle is an alternative biofilm growing 
at the air-liquid interface that may favor the colonization and 
persistence of A. baumannii in respiratory tracts, humidifiers, and 
moist surfaces (Martí et al., 2011; Nait Chabane et al., 2014).

Biofilm maturation

The two-component system BfmRS is also responsible for the 
subsequent irreversible adhesion starting with the production of 
factors under the control and early extracellular DNA (eDNA) release. 
An early eDNA release was demonstrated to be responsible for the 
first tridimensional biofilm formation. Notably, eDNA release is 

independent from the cell lysis in the early stage of biofilm formation 
and is mediated by membrane vesicles (Sahu et al., 2012).

In A. baumannii, the AdeABC, AdeIJK, and AdeFGH RND-type 
efflux systems are critical in biofilm formation (Coyne et al., 2011). 
Mutant strains of AdeABC, AdeIJK, and AdeFGH efflux pumps 
produce a significantly lower level of biofilm than the wild-type strain 
(Yoon et al., 2015). Moreover, mutation of AdeABC and AdeIJK efflux 
pumps showed lower expression of several pilus system-encoding 
proteins, including CsuA/B, CsuC, and FimA. These proteins play a 
central role in the initial stages of adhesion, surface colonization, and 
biofilm maturation in A. baumannii (He et  al., 2015; Shadan 
et al., 2023).

The AdeRS two-component system regulates the AdeABC efflux 
pump’s expression (Richmond et  al., 2016; Xu et  al., 2019). In 
particular, the deletions of adeRS and adeB reduced the biofilm 
growth of A. baumannii without affecting the number of adherent 
cells. This observation suggests that cells might be unable to produce 
a mature biofilm without this efflux pump (Richmond et al., 2016). 
After the initial surface attachment, biofilm maturation occurs. 
During this process, individual cells produce the biofilm matrix 
entering the irreversible attachment stage. In A. baumannii, biofilm 
maturation is modulated by the Biofilm-associated proteins (Bap) 
and their interaction with the extracellular polymeric substances 
(EPS; Soroosh et al., 2020; Upmanyu et al., 2022). The main elements 
of the A. baumannii EPS are alginates and poly-β-(1-6)-N-
acetylglucosamine (PNAG) compounds that interact with each other, 
with ions or heterologous molecules to form an elastic structure 
(Marvasi et al., 2010). The pgaABCD locus is involved in the synthesis 
of PNAG, facilitating cell adhesion, promoting biofilm integrity, and 
limiting desiccation (Choi et al., 2009; Morris et al., 2019; Flannery 
et al., 2020). Accordingly, deleting the pgaABC genes in A. baumannii 
impairs biofilm formation (Choi et  al., 2009). The Bap are large 
surface proteins orthologous to the Staphylococcus aureus Bap 
protein (Cucarella et  al., 2001; Loehfelm et  al., 2008). A type 
I secretion system secretes Bap. It is required in cell-to-cell adhesion 
and for developing higher-order structures on polystyrene and 
titanium (Loehfelm et al., 2008; Harding et al., 2017). Moreover, the 
Bap protein increases host colonization by facilitating A. baumannii 
adherence to human neonatal keratinocytes and bronchial epithelial 
cells (Brossard and Campagnari, 2012). In addition to the Bap 
protein, the AdeABC efflux pump, normally related to antibiotic 
resistance, may also contribute to biofilm maturation (Richmond 
et  al., 2016). Notably, in mature A. baumannii biofilms, can 
be observed two types of colonies: the avirulent translucent (AV-T) 
colonies that produce dense biofilms and virulent opaque (VIR-O) 
colonies that exhibit low biomass but enhanced virulence in 
G. mellonella, increased surface motility an antibiotic resistance 
phenotype (Tipton et al., 2015). Several genes are linked to different 
genomic expression profiles. Among them, ABUW_1132, a highly 
conserved gene that encodes a LysR-type transcriptional regulator 
(LTTR) that contributes to the passage of AV-T to VIR-O; its 
overexpression up-regulates abaI and activates the abaI/abaR 
quorum sensing (QS) signal (Tierney et al., 2021). In A. baumannii, 
the QS system is regulated by the two-component system, AbaI/
AbaR, which is homologous to the typical LuxI/LuxR system found 
in other Gram-negative bacteria. abaI encodes the autoinducer 
synthase, which catalyzes the synthesis of N-(3-hydroxy dodecanol)-
L-HSL (AHL), which at high density interacts with the cognate 
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receptor AbaR leading to downstream cellular responses  
(Oh and Han, 2020). Previous studies have found that abaI and abaR 
disruption reduces biofilm formation (Niu et al., 2008; Anbazhagan 
et al., 2012). Moreover, A. baumannii cultured in the presence of 
AHL showed increased expression of Csu pili and biofilm formation 
(Luo et al., 2015).

Biofilm dispersion

In the final stage, the cells within the biofilm disperse and colonize 
new surfaces. Biofilm dispersal is induced prevalently under 
environmental stress, including the A. baumannii SOS response, and 
the activation of the UmuDAb RecA-dependent repressor inactivated 
by RecA cleavage when DNA damage occurs. As a result, the UmuDAb 
mutant cannot activate the transcription of bmfR. Thus, no Csu pili or 
biofilm is formed (Ching et al., 2019). Notably, dispersed cells exhibit 
variable phenotypes, antibiotic susceptibility, transcriptomic patterns, 
and metabolic activities (Rumbaugh and Sauer, 2020). For example, 
dispersed clinical isolates of A. baumannii are more hydrophobic and 
adhere more efficiently to the surface than the planktonic cells 
(Berlanga et  al., 2017). Moreover, the dispersed cells were more 
susceptible to ciprofloxacin and tetracycline than the same cells in the 
planktonic state (Berlanga et  al., 2017). In contrast, another 
A. baumannii clinical strain disseminating from ciprofloxacin-
exposed biofilms is highly resistant to ciprofloxacin, erythromycin, 
and tetracycline (Penesyan et al., 2019). These studies suggest that the 
ability of the dispersed cells to evolve, acquiring higher antibiotic 
resistance, could complicate the management and treatment of the 
infection (Law and Tan, 2022).

What is the clinical relevance of biofilm 
production among patients with 
Acinetobacter baumannii infection?

The ability of A. baumannii to form biofilms has been reported as 
an essential factor contributing to its persistence and tolerance to 
antimicrobial agents (Roy et al., 2022). The proportion of A. baumannii 
clinical isolates that produce biofilms can vary significantly depending 
on the study and sample population. In a collection of 20 clinical 
isolates of A. baumannii, emerged that 80% of the strains formed 
biofilm, perhaps because of a dominant clone (Sechi et al., 2004). 
Bardbari et al. compared biofilm-production ability between clinical 
and environmental A. baumannii. In this study emerged that the 
majority of both clinical and environmental isolates could form 
varying degrees of biofilm. Specifically, the prevalence of strong 
biofilm producers in clinical and environmental strains was 58.7 and 
31.2%, respectively (Bardbari et al., 2017). Others reported that among 
154 A. baumannii isolated in Taiwan, 45.4% possessed strong biofilm 
formation ability (Yang et  al., 2019). Moreover, among 100 
A. baumannii clinical isolates from three hospitals in Iran, 58% were 
strong biofilm producers (Zeighami et  al., 2019). Another study 
investigating 92 unrelated strains of A. baumannii isolated from two 
Spanish hospitals found that 63% of isolates formed biofilm, mainly 
from device-associated infections. Notably, these isolates were less 
frequently resistant to imipenem or ciprofloxacin than non-biofilm-
forming isolates (Rodrı́guez-Bano et al., 2008).

A study from 4 Chinese hospitals analyzed the contribution of 
biofilm formation in the epidemic spread of A. baumannii by 
comparing biofilm-forming abilities and genetic characteristics of 
international clonal lineage II (ICL II) and non-ICL II isolates. From 
a total of 114 clinical A. baumannii isolates, collected from various 
specimens, including blood, sputum, urine, and wound, emerged that 
36% of the clinical isolates were able to form biofilm, but only 19.5% 
were strong biofilm producers. Of the A. baumannii isolates, the 
biofilm formation capacity of ICL II was significantly lower than that 
of non-ICL II isolates. The authors concluded that biofilm formation 
might not be a critical factor for the epidemic spread of A. baumannii, 
particularly for the ICL II lineage. They suggested that other factors, 
such as antimicrobial resistance and virulence, could play a more 
critical role in the epidemic potential of A. baumannii (Hu et  al., 
2016). Despite the propensity to produce biofilm, the clinical impact 
of biofilm in A. baumannii isolates is still debated. Indeed, a recent 
multicenter study in Taiwan including 711 patients showed that higher 
APACHE II score, shock status, lack of appropriate antimicrobial 
therapy, and carbapenem resistance were independent risk factors of 
28-day mortality in the patients with A. baumannii bacteremia but not 
the level of biofilm formation. In addition, biofilm formation was most 
commonly observed in survivors than in non-survivors (38.4% vs. 
31.9%; Chiang et  al., 2022). Similar results have been previously 
observed in a cohort of 273 patients with A. baumannii bacteremic 
pneumonia (Wang et al., 2018). Accordingly, other studies have shown 
that infections caused by biofilm-producing A. baumannii are not 
necessarily associated with worse clinical outcomes (Rodrı́guez-Bano 
et al., 2008; Wang et al., 2018). Therefore, the impact and pathogenesis 
of biofilm production remain elusive and, in many cases, related to the 
patient’s underlying condition or to the strain that causes the infection 
(Rodrı́guez-Bano et al., 2008; Barsoumian et al., 2015; Wang et al., 
2018; Di Domenico et al., 2020, 2021).

A. baumannii is known for its ability to develop resistance to 
multiple antibiotics, making treatment of infections particularly 
challenging. In addition, the formation of biofilms further exacerbates 
this issue, as the extracellular matrix can act as a physical barrier, 
limiting the penetration of antibiotics and protecting the bacteria 
from the host’s immune system (Perez et al., 2007; Antunes et al., 
2011). Several antibiotics and antibiotic combinations have shown 
promise in combating A. baumannii biofilms. However, their 
effectiveness may vary depending on the strain and resistance profile. 
The use of two or more antibiotics with different mechanisms of 
action can enhance the therapeutic efficacy by affecting multiple 
bacterial targets. In particular, the combination of colistin and 
rifampicin was more effective at eradicating biofilms formed by 
multidrug-resistant A. baumannii isolates than either antibiotic alone 
(Batoni et  al., 2016). The antimicrobial combinations of colistin-
levofloxacin, colistin-tigecycline, and tigecycline-levofloxacin or these 
combinations with clarithromycin were effective as lock solutions in 
the treatment of A. baumannii catheter-related infections (Ozbek and 
Mataraci, 2013). Nevertheless, candidate antibiotics were active 
against biofilm-embedded A. baumannii cells at 400-fold the 
MIC. This concentration is unachievable in human serum, making 
those antimicrobials an undesirable option for systemic use in 
A. baumannii biofilm-associated infections (Ozbek and Mataraci, 
2013). Synergistic effects were also observed on biofilm-embedded 
carbapenem-resistant and carbapenem-susceptible A. baumannii 
strains. In particular, meropenem was active against 
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biofilm-embedded carbapenem-susceptible A. baumannii, whereas 
meropenem plus sulbactam exhibited synergism against biofilm 
CRAB and caused significantly more damage to the biofilm 
architecture than colistin or tigecycline used alone (Wang et al., 2016). 
Additionally, clinical isolates of MDRAB exhibited different degrees 
of biofilm formation in the presence of sub-minimum inhibitory 
concentrations of colistin and tigecycline (Sato et al., 2018). A recent 
study showed that biofilm-embedded MDRAB had been eradicated 
with colistin but not tigecycline. Notably, the eradication increased 
with a combination of colistin and high concentrations of tigecycline 
(Sato et al., 2021). Moreover, combining azithromycin and polymyxin 
B displayed synergistic activity against biofilm-producing 
A. baumannii clinical isolates, improving antimicrobial efficacy (Peng 
et al., 2020). These data suggest that the effects of different antibiotics 
may depend on bacterial strains and the response of A. baumannii 
may vary under specific environmental stress conditions, such as in 
the presence of multiple antimicrobial agents. Nevertheless, one of the 
main challenges in analyzing these studies is the considerable 
heterogeneity in the design, methodologies, and patient populations 
examined (Table 1). While reflecting the field’s richness, such diversity 
can make it difficult to draw firm conclusions or compare findings 
directly across studies. Additionally, there is not yet a universally 
accepted definition or a standardized method for determining biofilm 
formation by A. baumannii. The absence of such standards introduces 
variability between studies and complicates the comparison of results. 
Furthermore, many of our findings are based on in vitro studies. 
While these studies provide valuable insights, they cannot fully 
capture the complexity of clinical infections. The behavior of 
A. baumannii in a real-world clinical setting can be influenced by 
myriad factors not present under laboratory conditions.

Acinetobacter baumannii infections 
and treatment options in critically ill 
patients

The two most common clinical manifestations of A. baumannii are 
nosocomial pneumonia, particularly VAP, and bacteremia (Wong et al., 
2017). While an endotracheal tube allows Acinetobacter spp. to establish 
biofilm facilitating its transmission and spread in the environment, the 
development of VAP occurs due to the aspiration of bacterial droplets 
directly into the alveoli. Likewise, bacteremia occurs as a hematogenous 
spread from pneumonia or in the presence of an infected central 
venous catheter. Less commonly, A. baumannii causes urinary tract 
infections (often associated with the presence of urinary catheters), 
central nervous system infections (often after neurosurgery or in the 
presence of external ventricular drain), wound or bone infections 
(often after surgery or trauma; Wong et al., 2017). Typically, infections 
sustained by A. baumannii occur in intensive care units, where patients 
are characterized by critical illness, multimorbidity, prolonged hospital 
stay, exposure to multiple invasive procedures, and prolonged antibiotic 
therapy (Ogutlu et al., 2014; Ayobami et al., 2020; Ibrahim et al., 2021).

During the COVID-19 pandemic, MDR organisms, particularly 
CRAB, have been increasingly reported as causative agents of secondary 
infections, especially in severe and critical diseases (Patel et al., 2021; 
Cogliati Dezza et al., 2022; Russo et al., 2022; Langford et al., 2023). 
Furthermore, CRAB acquisition increased during the hospital stay and 
accounted for high mortality rates in patients with COVID-19 (Falcone 

et  al., 2021; Iacovelli et  al., 2023). Increased antibiotic resistance, 
reported for clinical isolate, is even more significant in oncological 
patients (Ñamendys-Silva et  al., 2015; Nazer et  al., 2015; Cornejo-
Juárez et  al., 2020). A previous report highlights that among 635 
oncological patients, 6.1% were infected by A. baumannii MDR (Nazer 
et al., 2015). An oncology department in China demonstrated that 
A. baumannii accounted for 9.8% of infections (Li and Wang, 2018). 
Two studies have shown that 19% of patients died within 72 h after 
A. baumannii isolation (Nazer et al., 2015; Cornejo-Juárez et al., 2020).

Therefore, CRAB represents a threat to the most vulnerable patients, 
contributing to the observed high mortality, which reaches values up to 
50%–70% in patients with septic shock and VAP (Iovleva et al., 2022). 
Furthermore, despite sharing similar comorbidities and risk factors, 
patients infected with CRAB or XDR strains had a significantly higher 
mortality rate than those caused by susceptible strains (Lee et al., 2014; 
Lemos et al., 2014). A recent study further highlighted that the absolute 
excess 30-day mortality due to infection sustained by PDR A. baumannii 
compared to only PDR A. baumannii colonization was 34%, suggesting 
that one of every three treated patients would have been saved if 
effective drugs were available (Karakonstantis et al., 2020).

Despite being a strong biofilm producer, it has been shown that 
biomass production was not an independent risk factor for 28-day 
mortality in patients with A. baumannii bacteremia (Chiang et al., 
2022). Indeed, one of the major drivers of mortality is the inappropriate 
initial effective therapy, which mainly depends on the high resistance 
level in A. baumannii. Currently, there is still no consensus on the 
optimal treatment of CRAB infections (Paul et al., 2022; Tiseo et al., 
2022). Colistin has been considered the backbone of CRAB treatment 
for many years, mostly in combination with carbapenems, fosfomycin, 
tigecycline, or ampicillin/sulbactam or even with vancomycin and/or 
rifampin (Durante-Mangoni et al., 2013; Ceccarelli et al., 2015; Oliva 
et  al., 2017; Giacobbe et  al., 2020; Katip et  al., 2020). Colistin is 
administered as an inactive prodrug, colistimethate (also known as 
colistin methanesulfonate, CMS). International consensus guidelines 
and recent studies highly recommend administering CMS as a loading 
dose (LD) followed by a maintenance dose for the treatment of 
infections due to carbapenem-resistant Gram-negative bacilli, 
especially in critically ill patients (Tsuji et al., 2019; Wang et al., 2022). 
A recent study evaluated the efficacy and safety of using a CMS LD in 
the treatment of critically ill patients with CRAB infections and 
showed higher clinical, microbiological, and 30-day survival rates in 
patients receiving LD compared with patients not receiving LD; 
however, the administration of the LD was associated with a higher 
risk of nephrotoxicity (Katip et al., 2021a,b).

Colistin use is limited by the risk of nephrotoxicity if 
administered at clinically effective dosage (Ordooei Javan et  al., 
2015) and the relatively poor lung epithelial lining fluid (ELF) 
penetration in critically ill patients (Imberti et  al., 2010). 
Furthermore, resistance to colistin may occur in up to 30% of CRAB 
strains (Iovleva et  al., 2022), rendering the treatment of CRAB 
infections even more challenging. In any case, the rate of colistin 
resistance is lower than that of tigecycline (45.5%; Chang et al., 2012; 
Muthusamy et al., 2016), suggesting this antibiotic still represents an 
effective antimicrobial agent against CRAB infections (Katip et al., 
2021a,b).

Sulbactam is an irreversible competitive beta-lactamase 
inhibitor with direct antimicrobial activity thanks to its intrinsic 
affinity for the A. baumannii PBPs (Tamma et  al., 2022). In 
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TABLE 1 Activity of different antibiotics against carbapenem-resistant Acinetobacter baumannii (CRAB).

Drug Mechanism of action MIC breakpoint for CRAB 
(EUCAST)§

Side effects Anti-biofilm activity vs. 
CRAB

Dosage for CRAB 
infections

Colistin Colistin binds to LPS and phospholipids in the outer cell 

membrane of Gram-negative bacteria

2 μg/mL Nephrotoxicity, neurotoxicity No As per international consensus 

guidelines (Tsuji et al., 2019)

It competitively displaces divalent cations (Ca2+ and 

Mg2+) from the phosphate groups of membrane lipids, 

which leads to disruption of the outer cell membrane, 

leakage of intracellular contents, and bacterial death

Absence of anti-biofilm activity also 

when combined with meropenem, 

ampicillin/sulbactam, and 

minocycline

Colistin plus rifampin retains anti-

biofilm activity (Wang et al., 2016; 

Wences et al., 2022)

Tigecycline Tigecycline binds to the 30S ribosomal subunit and 

blocks the entry of amino-acyl tRNA molecules into the 

A site of the ribosome, inhibiting protein translation in 

bacteria.

IE Nausea, vomiting, diarrhea, 

hepatotoxicity, pancreatitis

No (Wang et al., 2016) 200 mg loading dose followed by 

100 mg every 12 h

Ampicillin/sulbactam Sulbactam is an irreversible competitive beta-lactamase 

inhibitor that can saturate Penicillin Binding Proteins 

(PBP) 1 and 3 in Acinetobacter spp. when given in high 

doses

IE Hepatotoxicity No 3–9 g every 8 h (for ampicillin-

sulbactam 2:1)

Anti-CRAB activity is exerted by sulbactam. Meropenem plus sulbactam was 

synergistic against biofilm-

embedded CRAB (Wang et al., 2016; 

Chaiben et al., 2022)

A high dosage (9 g every 8 h) is 

required for VAP (Jaruratanasirikul 

et al., 2019)

Cefiderocol Cefiderocol is a siderophore cephalosporin actively 

transported into the periplasmic space of Gram-negative 

bacteria through the bacterial siderophore iron uptake 

system, as well as through passive diffusion via outer 

membrane porin channels

Zone diameters of ≥17 mm for the 

cefiderocol 30 μg disk correspond to 

MIC values below the PK-PD 

breakpoint of S ≤ 2 μg/mL

Elevated liver tests, 

hypokalemia

Yes (Pybus et al., 2021) 2 g every 8 h infused over 3 h

2 g every 6 h infused over 3 h if 

CrCl≥120 mL/min

Fosfomycin Fosfomycin interferes with the first cytoplasmic step of 

bacterial cell wall biosynthesis, the formation of the 

peptidoglycan precursor UDP N-acetylmuramic acid 

(UDP-MurNAc).

No breakpoint available Hypernatremia, hypokalemia Alone: no 12–24 g/die (divided every 8–12 h)

In combination with colistin: yes 

(Boncompagni et al., 2022)

Eravacycline Eravacycline binds reversibly to the 30S ribosomal 

subunit, inhibiting protein translation in bacteria.

IE Gastrointestinal side effects No data 1 mg/kg/dose every 12 h

Sulbactam/durlobactam Durlobactam is a novel non-ß-lactam diazabicyclooctane 

ß-lactamase inhibitor with broad-spectrum activity 

against class A, C, and D ß-lactamases.

No data Gastrointestinal side effects No data 1/1 g every 6 h, according to the 

ATTACK study (ClinicalTrials.gov: 

NCT03894046)

CRAB, carbapenem-resistant A. baumannii; §, accessed on 7th March 2023; IE, insufficient evidence that the organism or group is a good target for therapy with the agent; CrCl, creatinine clearance.
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addition, when given in high doses, sulbactam has the ability to 
saturate PBP-1 and PBP-3 and may therefore overcome the 
increasing described rates of sulbactam resistance in CRAB (Bartal 
et al., 2022).

In recent years, cefiderocol, a novel siderophore cephalosporin, has 
been approved by the Food and Drug Administration to treat serious 
infections caused by carbapenem-resistant Gram-negative bacteria (US 
Food and Drug Administration, 2019) and represented an encouraging 
advancement, especially for the treatment of CRAB infections. While 
the phase 3 randomized clinical trial CREDIBLE-CR, which compared 
cefiderocol with the best available therapy, showed higher mortality in 
the subgroup of patients with CRAB treated with cefiderocol (Bassetti 
et al., 2021), subsequent real-world observations from case series or 
observational studies showed promising results of cefiderocol in terms 
of efficacy (Oliva et al., 2020; Bavaro et al., 2021; Rando et al., 2021; 
Falcone et al., 2022) and safety (Pascale et al., 2021). This advantage was 
more evident in patients with bloodstream infections than those with 
VAP (Falcone et al., 2022), probably due to a sub-optimal penetration 
of cefiderocol in the ELF at current dosages (Gatti et  al., 2021). 
However, the possibility of developing resistance to this drug under 
treatment, associated with an observed higher microbiological failure 
than the best available therapy (Falcone et al., 2022), requires caution 
and deserves further prospective studies to define cefiderocol optimal 
place in therapy toward CRAB infections (Volpicelli et al., 2021).

Given the limited therapeutic options with conventional antibiotics, 
there is ongoing research on alternative or adjuvant strategies for treating 
CRAB infections. In particular, N-acetylcysteine (NAC) exhibited high 
in-vitro activity against both planktonic and biofilm CRAB (Pollini et al., 
2018; De Angelis et al., 2022), while a recent clinical observation showed 
a survival benefit of intravenous NAC addition to antibiotics in critically 
ill patients with CRAB septic shock (Oliva et al., 2021).

Conclusion

A. baumannii has emerged as an opportunistic pathogen 
responsible for a broad range of severe nosocomial infections. Much 
of A. baumannii’s success can be directly attributed to its genome 
plasticity, which rapidly mutates under stress. The ability to resist most 
last-line antimicrobial agents poses a considerable challenge, especially 
in critically ill patients.

In particular, the dissemination of CRAB and the increase in the use 
of colistin has led to a critical emergence of resistant strains. However, 
several virulence mechanisms beyond canonical drug resistance were 
recently identified, enabling A. baumannii to thrive in the healthcare 
environment. Indeed, it has been observed that A. baumannii can 
contaminate hospital surfaces or devices, caregivers’ hands, and can 
be  spread by asymptomatically colonized persons. In addition, 
desiccation resistance, surface adherence, and biofilm formation make 
A. baumannii outbreaks in acute care hospitals difficult to control.

The environmental persistence has probably contributed to the 
increase in the incidence of A. baumannii from COVID-19 patients 
highlighting the value of appropriate prevention and control 
practices, particularly in open-space ICUs. During the COVID-19 
pandemic, decreased vigilance for MDR control of transmissions, 
suspension or limitation of the hospital infection control committees, 
reduced surveillance, and personnel numbers likely contributed to 
the increase in hospital-acquired infections caused by A. baumannii. 
Notably, this review focuses on critically ill patients, a population 
particularly vulnerable to A. baumannii infections. Nevertheless, 
these infections also occur in other patient populations, and some of 
the data and conclusions herein presented may not be universally  
applicable.

Therefore, rapid diagnostic tests to identify and track high-risk 
clones, and antibiotic resistance genes, together with appropriate 
antibiotic regimens and strict adherence to infection control measures, 
may represent priorities for effectively dealing with 
A. baumannii infections.
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