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Microplastics (MP) are a hazardous pollutant of global concern that threatens 
aquatic ecosystems and public health. We used the invasive, cosmopolitan, and 
environmentally versatile red swamp crayfish Procambarus clarkii as a model 
to study the effects of MP on the intestinal microbiome. Crayfish collected 
from the environment were compared with specimens exposed to recycled 
Polyethylene terephthalate (rPET) MP in feed (30%) for 96 h in the laboratory and 
a control group. We  analyzed the 16S rRNA of the intestinal bacteria by PCR-
DGGE and high-throughput sequencing. MP exposure caused dysbiosis of the 
intestinal microbiota, with an increase in Alphaproteobacteria and Actinobacteria. 
We  detected higher abundance of opportunistic genera such as Klebsiella, 
Acinetobacter, Hydromonas, Pseudomonas, Gemmobacter, and Enterobacter on 
MP fed organisms. Moreover, MP exposure reduced the abundance of Clostridia 
and Bateroidetes, which are important for immune system development and 
pathogen prevention. Furthermore, MP exposure decreased the phenoloxidase 
(PO) immune response in crayfish. There was a significant difference in the richness 
of intestinal bacterial communities after consumption of food contaminated with 
MP, likely increasing the abundance of opportunistic bacteria in the intestinal 
microbiota. Our results suggest that MP alter the gut microbial composition and 
impair the health of P. clarkii.
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1. Introduction

Microplastics (MP) are plastic fragments with a size of less than 5 mm (Cole et al., 2011). 
They are ubiquitous in freshwater ecosystems (Klein et al., 2015; Elizalde-Velázquez and Gómez-
Oliván, 2021) and can be ingested by various aquatic organisms (Lechner et al., 2014; Eerkes-
Medrano et  al., 2015; Blettler et  al., 2018; Scherer et  al., 2018). The trophic transfer and 
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bioaccumulation of MP from primary producers to consumers in 
freshwater food webs may result in adverse effects on the organisms 
at higher trophic levels (Mattsson et al., 2015). Moreover, MP can 
contain or adsorb additives, heavy metals, antibiotics, pesticides, and 
other environmental contaminants (Derraik, 2002). Furthermore, 
they can host beneficial or pathogenic microorganisms that form the 
“plastisphere” (Hirai et al., 2011; Zettler et al., 2013; Harrison et al., 
2018; Amaral-Zettler et  al., 2020; Liu et  al., 2022). Therefore, the 
impacts of MP ingestion on the health of aquatic biota is a relevant 
research topic.

The transfer of microplastics (MP) along the food chains poses a 
potential risk for human health, as people may consume decapod 
crustaceans contaminated with MP (de Miranda and de Carvalho-Souza, 
2016; D’Costa, 2022). Therefore, it is important to understand how 
commercial fish and shellfish are affected by MP and other environmental 
pollutants, as aquaculture is a growing source of global protein production 
(Zhou et al., 2021). A recent study detected MP fragments in all five 
decapod species sampled from Australian seafood markets and found that 
48% of the specimens had MP pieces (Ogunola et al., 2022). However, 
most of the studies on MP exposure and effects in decapods focus on 
marine species (Devriese et al., 2015; Bordbar et al., 2018; Capparelli et al., 
2022; Ogunola et  al., 2022). Studies on MP presence on freswater 
decapods are very scarce, as mollusks and insects are relatively more 
represented in the literature of benthic freshwater invertebrates, as 
reviewed by D’Avignon et al. (2021). Therefore, additional studies focusing 
on freshwater decapods are needed.

The red swamp crayfish Procambarus clarkii (Girard, 1852) is the 
most cosmopolitan crayfish in natural environments, having adapted 
to different environments in more than 20 countries on all continents 
except Australia and Antarctica (Viccon-Pale et al., 2016; Loureiro 
et al., 2018). This crayfish has been recognized as the species with the 
greatest ecological plasticity of all decapods (Rodríguez et al., 2015). 
It was introduced in Costa Rica around 1966 and is now widespread 
in the country (Martín-Torrijos et al., 2021). This decapod species is 
economically and ecologically important, but little is known about its 
gut microbiota. Further, Pastorino et al. (2023) found this species as a 
good bioindicator of MP pollution in biotic and abiotic environment, 
in a study where Polypropylene (PP) and polyethylene terephthalate 
(PET) were the only MPs chemical types found. Still, few studies have 
examined the effects of microplastics (MP) on freshwater decapods 
like this species. The characterization of the digestive bacterial 
community in P. clarkii exposed to MP can provide insights into the 
additive toxicity of this pollutant (Shui et al., 2020; Capanni et al., 
2021; Huang Y. et al., 2021; Wu et al., 2021; Xavier et al., 2021). Since 
this crayfish is a common food source for humans, the accumulation 
of MP and its impacts on the intestinal microbiota and immune 
response of P. clarkii are relevant for both ecosystem health and public 
health and aquaculture (D’Costa, 2022; Ogunola et al., 2022).

Experimental studies have shown that microplastics (MP) can 
cause oxidative stress, immunotoxicity, and reproductive and 
development toxicity in decapod crustaceans (D’Costa, 2022). These 
functions are closely related to the microbiome, especially in the gut 
(Diwan et  al., 2022). The gut microbiota is the collection of 
microorganisms that live in the gastrointestinal tract and influence the 
health of their decapod host (Harris, 1993; Hsiao et al., 2013; Yano 
et al., 2015; Jin et al., 2018; Tang et al., 2021; Zhou et al., 2021). For 
example, Chae et al. (2019) showed how the microbiome can regulate 
the response to different pathogens in decapods (Chae et al., 2019; 

Foysal et al., 2021; Holt et al., 2021). Similarly, studies on the gut 
microbiota of the crayfish P. clarkii, revealed how bacterial 
communities interact and how dysbiosis can affect the crayfish health, 
ecosystem, and aquaculture productivity (Guo et al., 2020; Zhang 
et al., 2020; Zhang T. et al., 2021; Zhang et al., 2021a).

Environmental stress, such as changes in the aquaculture 
environment or contaminant input, can alter and ultimately destroy 
the microbial community in aquatic animals (Guo et al., 2020; Zhang 
et al., 2020; Huang Y. et al., 2021; Wu et al., 2021; Zhang T. et al., 2021; 
Zhang et al., 2021a), thus impairing host immunity. Changes in the 
gut microbial community of aquatic organisms, such as decapods, 
increase their risk of disease (Guo et al., 2020). Therefore, studies of 
the structure of gut microbiota help to assess the effects of 
contaminants on aquatic species. Plastic particles in particular, having 
a high surface-to-volume ratio, are colonized by microorganisms, 
including pathogens that can alter this structure, disrupting food 
webs, nutrient cycles, and the balance of aquatic ecosystems (Zettler 
et al., 2013; Kirstein et al., 2016; Arias-Andres et al., 2018).

More studies are needed to understand the effects of MP derived 
from commercially used plastics, as they are more abundant in the 
environment than virgin materials. Further, there is less 
ecotoxicological information from recycled resins compared to virgin 
materials. In this regard, PET is one of the most widely produced 
polymers in the world, and a major source of environmental pollution 
(Ranganathan et al., 2022). Recycling PET is a common practice to 
reduce waste and reuse this material for various applications, such as 
making new bottles or pavement construction (Sang et  al., 2020; 
Enfrin et al., 2022). PET is the most recycled plastic with recycling 
rates of 31 and 52% in USA and Europe, respectively (Das et al., 2021). 
However, recycling processes can also generate microplastics (MP) 
from recycled PET (rPET), which can be released into the environment 
through effluents and sludge in dozens of mg/L and thousands of μg/g, 
respectively (Guo X. et al., 2022; Guo Y. et al., 2022). Moreover, rPET 
products can degrade and fragment under certain conditions, 
producing more MP (Rorrer et  al., 2019; Yalcin-Enis et  al., 2019; 
Abuaddous et al., 2021). Since most of the rPET in aquatic systems 
ends up in benthic habitats due to its density, it is important to assess 
the potential ingestion and effects of rPET MP in aquatic benthic 
animals such as decapod crustaceans.

The present study aimed to determine the sublethal effects of 
ingestion of recycled Polyethylene terephthalate, or rPET-MP, through 
food consumption. We used the invasive crayfish species P. clarkii as 
a model to assess the impact of MP ingestion on intestinal microbiota. 
The model species was selected due to its tolerance to a wide range of 
environmental conditions and its importance for human consumption 
(Tang et al., 2020). Consequently, the results obtained are relevant to 
both ecosystem health and human well-being. Changes in immune 
response were also measured as phenoloxidase (PO) activity in the 
hemolymph. PO is part of the innate defense system of invertebrates 
against pathogens and damaged tissues by melanization (Cerenius and 
Soderhall, 2004; Huang and Ren, 2020). The experimental setup 
allowed us to compare the gut microbiome of crayfish collected in the 
environment, where the exposure to MP may vary, to changes 
observed in the intestinal microbiota after a controlled MP exposure 
in the laboratory. This information is valuable for an ecological risk 
assessment of MP presence and sublethal effects in a commercially 
important freshwater decapod exposed to MP made from recycled 
weathered plastic.
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2. Materials and methods

2.1. Obtention of individuals and gut tissue

We analyzed adult male individuals of the red crayfish Procambarus 
clarkii (Decapoda: Cambaridae), directly sampled from the 
environment, and after an exposure assay under laboratory conditions, 
with or without microplastics in the food. Three individuals of P. clarkii 
were collected in a reservoir formed by the Cachí Dam on the 
Reventazon River in Costa  Rica (Coordinates: 9°49′42.8″N 
83°48′45.3″W and 9°49′42.0″N 83°48′44.0″W) to analyze the gut 
microbiome under natural conditions. The site for collection was 
selected since it is a well-known habitat for the species, and the only 
location in Costa Rica where crayfish are sold for human consumption. 
The individuals were captured manually, using nitrile gloves and clean 
cloth bags, and then stored cold in coolers with ice until processing. 
Water temperature and pH were measured with a thermometer and pH 
strips at the sampling site. The identification of the red swamp crayfish 
was carried out following the morphometric and morphological 
characteristics described by Campos (2005). In addition, individuals 
obtained in the same reservoir by local vendors were purchased for the 
laboratory exposure assay. After collecting the crayfish from the 
environment, the specimens were weighed, measured, and dissected to 
obtain the intestine tube. Size (cm) of the crayfishes refers to total 
length, measured from tip of the rostrum to posterior median edge of 
the telson. The dorsal surface of each red swamp crayfish was washed 
with sterile water and disinfected with 70% v/v ethanol for 5 min. 
Subsequently, the digestive system was dissected with sterile surgical 
forceps and scissors. The intestine was removed by mechanical force 
(Meziti et al., 2010; Zhang et al., 2016). The gut sample was washed three 
times with sterile water and stored in sterile glass tubes at −80°C until 
DNA and MP extraction.

2.2. Production of feed with rPET-MP

Commercial plastic bottles of drinking water for human 
consumption and made entirely with rPET were manually cut using a 
razor blade and scissors before being blended using the laboratory 
knife mill GRINDOMIX gm300 (RETSCH) 15 times for 2 min at 
3,500 rpm, followed by cooling for 5 min in a 4°C refrigerator, 
alternating blade direction each time. The resultant fragments were 
sieved through a stainless steel mesh to produce 0.5–1 mm particles. 
To make food containing 30% rPET, 150 g of rPET-MP was added to 
500 g of powdered fish food (38% protein). A total of 50 g of cassava 
starch was then added, followed by 5 g of vitamin mix (ROVIMIX® 
E50) and 500 mL of boiling water. The mixture was mixed by hand 
until a consistent texture was achieved and then pelletized and dried 
in an oven at 40°C for 24 h. Equivalent food size was achieved by 
blending with a food processor, sieving through a 4 mm screen, and 
retaining pellets captured on a 1 mm screen. The same process was 
carried out with pure pellets without MP.

To characterize the rPET particles, we  performed Differential 
Scanning Calorimetry (DSC) using an SDT-Q600 thermal analyzer 
(TA Instruments, New Castle, DE) to detect and compare the 
characteristic endothermic reactions of pellets with rPET-MP and 
food pellets containing the rPET-MP. To perform the dynamic and 
isothermal analyses, we used 10 mg of each sample type. All DSC 

experiments were performed in a nitrogen atmosphere with a 
determined purge flow rate of 100 mL/min. The dynamic DSC was 
heated from room temperature to 800°C at a heating rate of 10°C/min 
(flow rate: 30 cm3/min). The temperature was monitored using a 
thermocouple inserted into the reactor to provide a graphical 
representation of the changes in sample mass as the temperature 
increased. Finally, the rate of change of sample mass as a function of 
temperature was plotted to simplify the weight reading as a function 
of the temperature thermogram peaks, which occur close together 
(Majewsky et al., 2016).

2.3. Laboratory exposure assay

Ten male specimens of P. clarkii were exposed to the control feed, 
and 10 were exposed to feed with MP. First, the specimens were 
acclimatized in the laboratory considering the parameters measured 
by Jin et al. (2018) and Zhang et al. (2020), adapting it to P. clarkii in 
the following conditions: The laboratory conditions were maintained 
at 26–28°C ± 2°C in fresh culture water (drinking water, filtered and 
sterilized with UV and well aerated; pH 7.6 ± 0.5) for 12 days for 
acclimatization. During the same period, the specimens were fed once 
a day every 48 h for 5 days with commercial food (Nutrafin commercial 
brand). Feed, droppings, and water changes were done every 48 h. 
Before laboratory experiments, the crayfishes were examined to 
ensure that they were of similar size and weight; subsequently, 
specimens were not fed for 48 h to empty their digestive systems.

Organisms were individually placed in 3 L glass recipients with 2 L 
of UV-treated water and 0.7 g of feed with or without MP. The 
specimens were kept at room temperature. Water and feed renewal 
were performed every 24 h for 96 h, and the following parameters were 
measured: pH, temperature (°C), dissolved oxygen (DO; mg/L), and 
conductivity (μS/cm). Subsequently, individuals were measured again, 
and their tissues were sampled as follows: (1) the specimens were 
placed at −20°C to numb them before hemolymph extraction using a 
sterile 1 mL/27-gauge syringe (JD-01 T2713-IB, NIPRO). A sample of 
200 μL hemolymph was extracted dorsally from the base of the 5th 
walking leg and immediately placed in a microtube with 200 μL of 
EDTA-free anticoagulant pre-cooled at 4°C (Huang et al., 2010). From 
this hemolymph-anticoagulant mixture, 200 μL was centrifuged at 
800 g for 10 min at 4°C. The plasma in the supernatant was quickly 
frozen with liquid N2 and stored at −80°C until enzymatic analysis. 
(2) Subsequently, individuals from treatment and control were 
decapitated and dissected to obtain half the gut for MP extraction and 
the other half for DNA extraction, as described before. 
Characterization of gut tissue and MP by electron microscopy, and 
microbiota analysis was performed for a subsample of five specimens 
from each treatment.

2.4. Phenoloxidase activity

The immunological response was assessed by measuring 
phenoloxidase activity (PO) in hemolymph based on Huang et al. (2010) 
and using L-DOPA solution as substrate (3 mg/mL in 0.1 M PPB buffer, 
pH 6.6). The plasma stored at −80°C was thawed, and 6 μL of 
hemolymph and 294 μL of L-DOPA solution was placed in triplicate on 
a 96-well spectrophotometer plate. The enzymatic reaction was 
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measured at 490 nm every 10 s for a total time of 2 min. One unit of 
enzyme activity (U) was defined as a linear increase in absorbance of 
0.001 per min. Total protein content (TP) in hemolymph was determined 
by the method of Bradford (1976), using bovine serum albumin (BSA) 
as standard. Enzymatic activity was normalized by TP (U/mg).

2.5. MP extraction from the gut

To extract MP, gut tissues were treated with 20 mL of 10% m/v KOH 
(Sigma Aldrich, St. Louis, Missouri, United States) for 3 weeks (Dehaut 
et al., 2016; Kühn et al., 2017). After digestion, the remaining solution 
was vacuum-filtered through 0.45 μm microfiber filter papers (47 mm 
diameter; Sartorius Stedim Biotech, Göttingen, Germany). Subsequently, 
filters were dried in an oven at 60°C for 48 h. A stereomicroscope (Leica 
Microsystem, Wetzlar, Germany) was used to inspect the MP particles 
collected from the intestinal tracts visually; MP were photographed and 
analyzed for color and shape. According to their shape, particles were 
classified into fibers (elongated) or fragments (angular and irregular 
pieces). In addition, to determine the presence of MP in the study 
samples, particles were separated by size, with a length of less than 
2.5 mm, and stored in aluminum foil and glass Petri dishes for further 
microscopic analysis. A Hitachi High-Technologies TM3000 tabletop 
scanning electron microscope (SEM) with an accelerating voltage of 
15 kV was used to observe the microstructure of the intestinal tissue of 
P. clarkii and associated MP. Cross-sections of the samples were placed 
on aluminum holders attached to a carbon sheet. Subsequently, 
we metalized the samples with gold–palladium to increase electrical 
conductivity using an EMS 150R ES ionic cover instrument (EMS, 
Hatfield, PA; Chae et al., 2019; Samal, 2020).

2.6. DNA extraction and sequencing

Five samples from each treatment in the bioassay were used for the 
DNA extraction, together with the three samples from specimens 
collected in the environment. Approximately 250 mg of the tissue was 
ground and extracted with the Power Soil Pro kit (Qiagen, United States) 
following the manufacturer instructions. The DNA samples from the 
intestine of P. clarkii were sent to Macrogen Corp (Beotkkot-ro 
Geumcheon-g, Seoul, Rep. South Korea) for 16S rRNA gene sequencing, 
targeting the V3-V4 region using the universal primers Bakt_341F: 
5′-CCTACGGGGNGGCWGCAG-3′ and Bakt_805R: 
5′-GACTACHVGGTATCTAATCC-3′, following the procedure of 
Klindworth et al. (2013). Sequencing was performed with the MiSeq 
sequencing platform (Illumina, San Diego, CA, United States).1 Libraries 
were prepared on a paired-end Illumina platform using the Nextera XT 
Index Kit V2 to generate 300 bp paired-end raw reads.

2.7. Bioinformatics

We used the DADA2 version 1.18 to process the Illumina-
sequenced paired-end fastq files and to generate a table of amplicon 

1 https://dna.macrogen.com/

sequence variants (ASVs), which are higher-resolution analogs of the 
traditional OTUs (Callahan et al., 2016). Briefly, we removed primers, 
inspected the quality profiles of the reads, filtered and trimmed 
sequences with a quality score < 30, estimated error rates, modeled and 
corrected amplicon errors, and inferred the sequence variants. After 
that, we  merged the forward and reverse reads to obtain the full 
denoised sequences, removed chimeras, and constructed the ASV 
table. We  assigned taxonomy to the ASVs with the function 
assignTaxonomy of DADA2, which uses as input the set of sequences 
to be classified and a training set of reference sequences with known 
taxonomy, which in this case was the SILVA database version 138 
(Quast et  al., 2013). We  carried out an additional taxonomic 
assignment of the ASVs using the tool IDTAXA of DECIPHER 
(Murali et al., 2018) with the same version of SILVA and using the 
RDP database version 18.2 The consistency between the taxonomic 
assignments of the different programs and databases was verified 
followed by performing a manual curation. All sequences assigned to 
Eukaryota or Chloroplast were removed. The sequence data were 
deposited in the NCBI Sequence Read Archive under project 
PRJNA930915.3 This process generated 671.092 sequences from the 
12 samples (mean length = 409 nt). The average number of sequences 
per sample was 55.924 (ranging from 49.089 to 64.961).

2.8. DNA amplification and DGGE

We performed a PCR in an AB applied biosystems thermocycler 
(Thermo Fisher Scientific, New York, United States) in 50 μL reaction 
volumes containing 0.3 mM of each primer, 0.2 mM of each dNTP 
(Thermo Fisher Scientific, New York, United States), and 0.03 U/μ 
Dream Taq DNA Polymerase (Thermo Fisher Scientific, New York, 
United States) as well as 1X of the Dream Taq Buffer, which contained 
KCl (NH4)2SO4 and 20 Mm MgCl2 (Thermo Fisher Scientific, 
New  York, United  States). The primers used for the PCR were 
341F-GC (with GC clamp) (CCTACGGGAGGCAGCAGCGCCC 
GCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG) and 
534R (ATTACCGCGGCTGCTGG) as a universal bacterial 16S rDNA 
reverse primer (Schäfer and Muyzer, 2001). The thermal cycling was 
as follows: initial denaturation at 94°C for 1 min, followed by 20 cycles 
of 94°C for 45 s, 65°C for 45 s (temperature decreases by 0.5°C with 
each new cycle, touchdown PCR-DGGE on the AB applied biosystems 
thermal cycler), and 72°C for 2 min. After that, another 20 cycles of 
denaturation at 94°C for 30 s were conducted, followed by annealing 
of 55°C for 30 s, extension at 72°C for 2 min, and one cycle for a final 
extension at 72°C for 10 min. The PCR products (expected sizes about 
200 bp) were analyzed by running 5 μL aliquots of the reaction 
mixtures in 2% agarose (Merck, Darmstadt, Germany) gels.

The DGGE technique was performed using the Dcode Universal 
Mutation detection System (BIO-RAD, California, United States). 
We  used 8% polyacrylamide gels (ratio of acrylamide and 
bisacrylamide 37:1) with a gradient of 45 to 65% denaturants (100% 
denaturant was defined as 7 M urea plus 40% formamide). The gels 
were run at 60°C (65 V) for 15 h in a 1X TAE buffer (40 mM Tris, 

2 http://rdp.cme.msu.edu/

3 https://www.ncbi.nlm.nih.gov/sra/PRJNA930915
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20 mM acetic acid, 1 mM EDTA, pH 8.3) and visualized with 1X 
GelRed® Nucleic Acid Gel Stain (Biotium, California, United States). 
Then the gel staining was visualized using a UVISAVE HD2 
transilluminator (Thermo Fisher, Diepoldsau, Switzerland). The bands 
obtained by DGGE were analyzed by clustering using the Unweighted 
Pair-Group Method Using an Arithmetic Average (UPGMA) method 
to construct molecular phylogenetic trees using the program Minitab® 
19.1.1 (Minitab, LLC, United States).4 The generated dendrogram was 
generated using Pearson’s correlation coefficient using the program 
Minitab® 19.1.1 (Minitab, LLC, United States).

2.9. Statistical analysis

Statistical analyses and the visualization of results were 
performed with the R statistical program (R Core Team, 2019) and 
the Rstudio interface. Package Vegan v2.5–6 (Oksanen et al., 2020) 
was used to calculate alpha diversity estimators and non-metric 
multidimensional scaling analyses (NMDS). Data tables with the 
amplicon sequence variant (ASV) abundances were normalized 
into relative abundances and then converted into a Bray–Curtis 
similarity matrix. To determine if there were significant differences 
between the bacterial community compositions according to 
factors of (1) individuals obtained directly from the environment, 
as well as reared in laboratory conditions, exposed to feed (2) with 
or (3) without MPs we  used the non-parametric multivariate 
analysis of variance (PERMANOVA) and pairwise PERMANOVA 
(adonis2 function with 999 permutations). In addition, 
we  performed an Indicator Species Analysis to identify ASVs 
associated with a specific treatment, using Package Indicspecies 
version 1.7.9 with 999 permutations (De Cáceres et  al., 2011). 
Phenoloxidase activity units were compared between control and 
treatment by nonparametric Kruskal-Wallis test.

3. Results

The males of P. clarkii collected from the Cachí reservoir and 
processed immediately had a smaller mean length of 4.36 ± 0.19 cm 
and mean weight of 19.56 ± 2.12 g compared to the 20 males used for 
the laboratory experiment. The control and exposed treatment 
specimens were of similar size with a mean initial length of 
6.19 ± 0.60 cm, and mean initial weight of 29.11 ± 6.69 g (t-test 
t = 0.71894, df = 15.967, p = 0.4826; Supplementary Table S1). 
Crayfish-fed pellets with MP showed a slight increase in final weight 
relative to P. clarkii fed pellets without MPs (Supplementary Table S1; 
paired t-test, p = 0.013), but no differences in length were found either 
for control or MP treatment after 96 h. During field sampling, the 
water temperature in the reservoir was 21°C with a neutral pH. The 
water parameters measured during laboratory experiments at the 
beginning and end of media renewals were similar between the two 
treatments. In both cases, pH and dissolved oxygen (DO) decreased 
after 96 h, while temperature and conductivity increased 
(Supplementary Table S2). One organism died in each treatment 

4 https://www.minitab.com/en-us/products/minitab/free-trial/

during the exposure. Five organisms from the control had visible food 
in their intestines after 96 h, while the same was true for the 
MP treatment.

Phenoloxidase activity (normalized to TP) in hemolymph from 
control organisms was significantly higher (1.60 ± 1.06 U/mg TP) than 
the one measured in animals that had MP in their feed (0.28 ± 0.28 U/
mg TP) (Kruskal-Wallis chi-squared = 5.63, df = 1, p = 0.017; 
Supplementary Table S5). Although mean TP in hemolymph was 
lower in animals fed with rPET (58.98 ± 16 mg/mL) than in those of 
control (73.26 ± 26 mg/mL), this difference was not statistically 
significant (Kruskal-Wallis chi-squared = 1.33, df = 1, p = 0.25).

DSC curves of rPET-MP and pellet mixture of food with the 
rPET-MP used for the bioassay (Supplementary Figure S1: red and 
black line, respectively) were measured to detect their characteristic 
endothermic reactions. The results showed two marked peaks in both 
samples: the first peak was at a melting temperature between 50 and 
100°C and the second peak at a melting temperature of 250°C.

The presence of MP particles and fibers was observed in three out 
of five of the intestinal tracts of individuals fed pellets with MP 
(Supplementary Table S3; Figure 1). Particles embedded in tissue were 
observed by SEM (Figure 1). The irregular and porous nature of the 
particles obtained after the digestion of gut tissue can be seen in the 
SEM images (Figure 1). No MP-resembling residues were detected in 
the three control samples from the Cachí reservoir or in the four 
intestinal tracts of the individuals fed pellets without MP.

According to the analysis of sequences of the V3-V4 region of 
the 16S rRNA gene, the intestinal tract microbiota of P. clarkii 
comprised 1.053 amplicon sequence variants (ASVs). All the 
bacterial sequences were assigned to 19 phyla and 37 classes. 
Firmicutes was the most abundant group of phyla representing 45% 
of the sequences and 12% of the ASVs, whereas Proteobacteria 
comprised 40% of the sequences and 46% of the ASVs; Bacteroidota 
13% of the sequences and 23% of the ASVs and Actinobacteria 
represented 0.7% of the sequences and 6.7% of the ASVs. Within 
Firmicutes, the most abundant genera were Candidatus_
Bacilloplasma, Candidatus, Hepatoplasma, and Erysipelothrix. The 
Proteobacteria was dominated by Citrobacter, Hafnia, and 
Shewanella. Bacteroides were the most abundant genus within 
Bacteroidota and Leucobacter within Actinobacteroidota. No 
sequences of Archaea were detected in the intestinal tract of P. clarkii.

Some differences between the treatments analyzed were 
determined at the class level (Figure 2). Guts studied from individuals 
from the Cachí reservoir presented a higher abundance of 
Gammaproteobacteria, Clostridia, and Bacteroidia compared to 
individuals maintained in the laboratory. According to the indicator 
species analysis, particularly the genus Tyzzerella (Clostridia) 
represented an indicator species of the digestive tract of the guts from 
the control Cachí reservoir specimens. Samples from crayfishes of the 
laboratory experiment (with and without MP) had a lower abundance 
of Clostridia. The intestinal tracts from crayfishes fed pellets with MP 
contained a higher proportion of Alphaproteobacteria and 
Actinobacteria than the control specimens from the Cachí reservoir 
and fed pellets without MP. According to the indicator species 
analysis, the predominant genera in the gut microbiota of specimens 
fed pellets with MP were: Klebsiella, Acinetobacter, Hydromonas, 
Pseudomonas, Gemmobacter, and Enterobacter. Also, a significant 
decrease of bacteria belonging to the Bacteroidia was observed in gut 
samples of specimens fed pellets with MP.
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The NMDS analysis of the bacterial community composition 
showed that samples from the different treatments were separated 
from each other (Figure 3). The structure of the bacterial communities 
of the intestinal tract from specimens taken directly from the Cachí 
reservoir separated clearly from the communities of the intestinal 
tracts of the red swamp crayfishes from laboratory experiments. The 
samples from P. clarkii fed with pellets with and without MP are 
generally separated except for some samples that overlap. However, 
according to the statistical analysis, differences between the structure 
of the communities per treatment were significant (Permanova, 
p = 0.034).

When analyzing the alpha diversity estimators, individuals fed 
pellets with feed containing MP presented an average richness of 238 
ASVs in their microbiota compared to 156 ASVs in individuals fed 
pellets without MP and 81 ASVs in the gut samples of P. clarkii from 
the Cachí reservoir (Supplementary Figure S2A). According to the 
Kruskal-Wallis test, these differences were statistically significant 

(p = 0.028). The Shannon diversity index values of the gut samples of 
individuals fed pellets with MP were slightly higher (average of 3.01) 
compared to 2.4 and 2.7 of the intestinal samples from red 
swamp crayfishes fed pellets without MP and specimens from the 
Cachí reservoir, respectively. These differences, however, were 
not significantly different (Kruskal-Wallis test: p > 0.5) 
(Supplementary Figure S2B, see test details in SI).

DNA banding patterns amplified satisfactorily between 190 
and 200 bp with 25 bands discernible for each sample 
(Supplementary Figure S3; Supplementary Table S4). Some bands 
matched samples from both the Cachí reservoir and samples from 
the experimental conditions, while other bands were found only in 
samples taken from experimental conditions. The samples from 
individuals fed pellets with MP showed a decrease in the intensity 
of six common bands (Supplementary Figure S3: bands 5, 6, 9, 9, 11, 
and 12) with respect to the control samples from the Cachí reservoir 
and organisms fed with pellets without MP. Four unique bands 

FIGURE 1

Microplastics (MP) found in gut samples of Procambarus clarkii fed with pellets with 30% rPET MP under light and SEM microscopes. MP can be seen 
from outside a section of the intestinal tube under the microscope (A) and inside the gut tissue in SEM images (B,C). Forms included fragments (D,E) 
and fibers (F). A closer look of particles (D–F) is presented on SEM images (G–I), respectively, and shows irregularities within the different shapes of 
particles.
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could be  identified in individuals fed pellets with MP 
(Supplementary Figure S3: bands 18, 19, 20, and 21). In contrast, in 
the red swamp crayfishes fed with pellets without MP only one 
unique band was identified (Supplementary Figure S3: band 24). On 

the other hand, there were two common bands in samples obtained 
from the pellet-fed individuals with and without MP 
(Supplementary Figure S3: bands 10 and 22), and other two common 
bands in the gut samples of the specimens fed without MP and 
those collected from the Cachí reservoir (Supplementary Figure S3: 
bands 8 and 25). There was only one common band 
(Supplementary Figure S3: band 7) in the red swamp crayfishes 
pellet-fed with MP and those from the Cachí reservoir. This band 
profile is presented as a matrix in Supplementary Information 
(Supplementary Table S4) and was used for a cluster analysis 
(Supplementary Figure S4) that highlights the division in two 
groups: Group 1 (from water sample, control organisms from the 
reservoir, four samples from organisms not fed with MP, and four 
from organisms fed pellets with MP) and Group  2 (sediment 
sample, one control not fed with MP and one fed with MP). The 
results of the cluster analysis revealed that the first group was more 
genetically diverse than the second one.

4. Discussion

Our results showed that the intake of weathered MP fragments 
from recycled PET in feed altered the bacterial communities in the 
intestinal tract of P. clarkii after 96 h exposure. This finding is 
significant because it shows the effects of recycled polymer MP mixed 
with food. The microbiota is crucial for the intestinal health of 
crayfishes, as it facilitates nutrient absorption and stimulates immune 
responses and disease resistance in hosts (Zhang et  al., 2020). 
Furthermore, the immune response of crayfishes fed with rPET-MP, 
measured by phenoloxidase activity in plasma, differed from that of 
non-rPET controls. These results underscore the importance of 
studying complex and multifactorial biological indicators of MP 

FIGURE 2

Relative abundances of dominant microbial communities at the class level in the intestine of Procambarus clarkii in environmental samples from the 
Cachí reservoir (A2, A4, and A7), treatment samples without microplastics (MP) (C2, C5, C6, and C10) and treatment samples with MP (T1, T3, T5, T7, 
and T9).

FIGURE 3

Non-metric multidimensional scale (NMDS) reflecting the degree of 
variation in intestinal bacterial communities of Procambarus clarkii. 
Data points of the same color represent the same sample type. 
Different symbols denote gut samples from crayfishes in control 
Cachí reservoir (circles) and after laboratory treatments (with MP as 
triangles and without MP as squares). Analysis reveals that gut 
microbiome in P. clarkii showed significant variation, but clusters 
according to treatment.
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effects, such as changes in the microbiome and its relationship to 
host health.

Previous studies have highlighted the importance of 
investigating sub-lethal effects using MP that reflect 
environmental materials and applying better characterization 
methods during bioassays (Guo X. et al., 2022; Guo Y. et al., 2022). 
PET is a major source of MP production, and its recycled form 
(rPET), as used in this study, is of interest and debate for upcycling 
and circular economies, making it relevant for current and future 
environmental exposure. Our microscopic analysis revealed that 
the rPET-MP used in this study were fiber-shaped or amorphous, 
clear-colored fragments less than 2 mm, after weathering by 
grinding (original bottles were blue). This size range of MP was 
similar to that found in commercial feed in proportions like the 
nominal percentage used in our study (Wang et  al., 2022). 
Moreover, the presence of MP in the food pellets was confirmed 
by a DSC thermal analysis. The rPET-MP showed a characteristic 
endothermic peak around 250°C that matched the maximum 
melting temperatures reported for PET (Majewsky et al., 2016). 
This signal was also detected in the food pellets with MP prepared 
for our experiment. The first marked peak in the pellets with MP 
(from around 50 to 100°C) could be due to protein denaturation, 
as proteins decompose at a temperature between 50 and 60°C 
(Ahmed et al., 2021), and the pellets contained 38% protein source 
in their composition.

MP was exclusively extracted from the guts of individuals fed with 
pellets with plastics. This finding agrees with previous observations 
that MP can accumulate in the internal tissues of crayfish, posing a 
potential health risk to aquatic animals and humans consuming 
crayfish (Capanni et  al., 2021; Zhang T. et  al., 2021; Zhang et  al., 
2021a). Unexpectedly, no MP were found in the samples directly taken 
from the Cachí reservoir, even with the high level of pollution known 
in this watershed (Mora Alvarado, 1997). A plausible explanation is 
that organisms had time to excrete MP particles before analysis. 
Moreover, smaller particles (nm-μm range) might have escaped our 
extraction procedure.

Water parameters during the laboratory exposure remained 
within the acceptable range for the growth of P. clarkii. Exposure of 
the intestinal microbiome to the surrounding water occurs in early 
developmental stages of crustaceans during oviposition, but 
environmental conditions and diet are particularly relevant in the 
definition of intestinal microbiomes of crustaceans (Xie et al., 2021). 
In our study, the PCR-DGGE as well as high-throughput sequencing 
of the 16S rRNA showed that shifting conditions from the reservoir to 
the laboratory provoked changes of the crayfish gut microbiota. 
However, both analyses were consistent and revealed higher bacterial 
richness in the gut of organisms fed pellets with MP compared to the 
control without MP. In this regard, there are reports of similar 
dysbiosis results associated to a response in the immune system 
(Clerissi et al., 2020; Tan et al., 2021; Wu et al., 2021). When the host 
becomes sick, dysbiosis in the gut microbiota occurs together with 
physiological adjustments in digestion, metabolism, and immunity 
(Wu et al., 2021). Therefore, consuming feeding pellets containing 
rPET MP generates in P. clarkii similar symptoms as observed in 
sick organisms.

Studies where a transient impact of MP on crustacean immunity 
was observed, suggest plastic polymers produce an activation of such 
system with the purpose to return to homeostasis, which is not always 

elicited by natural particles, and that can be different from that of 
co-exposed chemicals (Dolar et  al., 2021, 2022). Although it is 
recognized that there is still not enough assessments on interactions 
of MP in general with immune systems, and even less for specific 
polymers (Yang et al., 2022), hypothesis could be tested regarding 
rPET in relation to the characteristics of the polymer or the chemicals 
that co-occur with it. For example, packaging materials made from 
recycled PET contain heavy metal catalysts like antimony (Sb) (Whitt 
et al., 2016), which can be released from PET bottles (Filella, 2020) 
and influence the gut microbial community of other invertebrates 
(Huang B. et al., 2021).

The phenoloxidase (PO) activity of crayfishes fed pellets with MP 
in our experiment had a different reaction than the organisms from 
the control treatment. PO activity in shellfish is a standard measure of 
invertebrate immunity and response to microbial pathogens (Coates 
and Söderhäll, 2021). An increase in PO activity is usually associated 
with stress and disease, while decreased PO activity has been related 
to depleted proteins and immune-compromised animals (Coates and 
Söderhäll, 2021). Several studies demonstrated that low oxygen and 
low pH as well as chemical pollutants in water could result in 
decreased PO activity (Tanner et  al., 2006; Coates and Söderhäll, 
2021). A decrease in PO activity tied with changes in the gut 
microbiota of crustaceans has been linked with exposure to 
environmental pollutants such as pesticides (Fu et al., 2022) and, more 
recently, ingestion of μm-sized, pure polyethylene and polystyrene MP 
(Liu et al., 2019; Zhang et al., 2022). Adaptation of symbiotic bacteria 
in support of the homeostasis of the host is partly due to the immune 
system control by PO (Hooper et al., 2012; Groussin et al., 2020; Wu 
et al., 2021). Our results support that rPET MP ingestion prompts 
both an immune response and dysbiosis; however, the description of 
how these reactions develop in time during MP ingestion remains to 
be evaluated with more detail.

High-throughput sequencing analysis of 16S rRNA from the 12 
intestinal tracts showed that, overall, Firmicutes, Proteobacteria, 
Bacteroidota, and Actinobacteria were the predominant phyla in the 
intestinal microbiota of P. clarkii, which is in agreement with other 
studies conducted with the same species (Guo et al., 2020; Zhang et al., 
2020; Wu et al., 2021; Xie et al., 2021). These four phyla play principal 
roles in intestinal functions of digestion, absorption, and immunity of 
aquatic decapods such as P. clarkii (Li et al., 2020; Duan et al., 2021). 
The most abundant genera encountered in our study of Firmicutes 
were Candidatus_Bacilloplasma, Candidatus,_Hepatoplasma, 
Erysipelothrix, and Candidatus. These genera also constitute the core 
microbiota of the crayfish species Cherax cainii, and are known to play 
an essential role in crayfish digestion and immunity (Wei et al., 2019; 
Shui et al., 2020; Foysal et al., 2021).

Among Proteobacteria, the most abundant genera were 
Citrobacter, Hafnia, and Shewanella, coinciding with the analysis of 
gut microbiota in P. clarkii (see Wu et al., 2021). These genera include 
opportunistic pathogenic bacteria in some freshwater decapods 
(Zhang et al., 2020; Wu et al., 2021; Zhang T. et al., 2021; Zhang et al., 
2021a), but their abundance may also be attributed to the presence of 
foreign compounds in the diet or external environment (Zhang et al., 
2016; Foysal et al., 2021). Such changes may cause an alteration in the 
stability of the gut microbiota of P. clarkii, and thus may facilitate or 
hinder infection by pathogenic bacteria in the crayfish (Zhang et al., 
2020; Foysal et al., 2021). Finally, Bacteroides was the most abundant 
genus within Bacteroidota, and Leucobacter within Actinobacteria. In 
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this regard, Wu et  al. (2021) concluded that a predominance of 
Leucobacter might indicate possible dysbiosis and the presence of 
diseases in P. clarkii.

The gut content of specimens collected in the Cachí reservoir 
was predominated by classes of Gammaproteobacteria, Bacteroidia 
(Bacteroidetes), and Clostridia (Firmicutes). In dams, such as 
Cachí, the denitrification process depends on heterotrophic and 
autotrophic bacteria, and the abundance of Gammaproteobacteria 
and Bacteroidia is high (Zhang et al., 2021b). Also, Bacteroides 
microorganisms are known to produce carbohydrate metabolism-
related enzymes and to promote food digestion in the human gut 
(Karlsson et  al., 2011). The increase of this genus in the gut of 
P. clarkii has been interpreted as an adaptation strategy after 
exposure to xenobiotics (Zhang T. et al., 2021; Zhang et al., 2021a). 
Meanwhile, species of Clostridia are crucial in the modulation of 
physiological, metabolic, and immunological processes in the gut 
by interacting with other resident microbial populations (Lopetuso 
et al., 2013; Setälä et al., 2014). Finally, our analyses of the gut 
content revealed the presence of the genus Tyzzerella exclusively in 
specimens collected from the Cachí reservoir, which has an 
abundant aquatic vegetation. This finding agrees with the results of 
Shui et al. (2020), who reported this genus as frequent in P. clarkii 
specimens reared in rice fields. This bacterial genus could be related 
to the capacity of strains to metabolize plant polysaccharides and 
a broad feeding spectrum, including herbivorous items in P. clarkii 
(see Shui et al., 2020).

The intestinal tract of the specimens fed with pellets that contained 
MP showed a higher proportion of Alphaproteobacteria and 
Actinobacteria compared to those from control Cachí reservoir and fed 
pellets without MPs samples. Alphaproteobacteria are known to 
include a variety of aromatic hydrocarbon-degrading strains (Ghosal 
et  al., 2016), while Actinobacteria produce metabolites with 
antimicrobial activity and are involved in the degradation of recalcitrant 
compounds (Ranjani et al., 2016). Also, Actinobacteria participate in 
the decomposition of organic matter present in sediments (Shui et al., 
2020), and play a crucial role in maintaining intestinal homeostasis in 
humans (Glenny et al., 2017; Wang et al., 2021) and possibly also in 
crustaceans, with some strains applied as probiotics (Das et al., 2008; 
Li et  al., 2018; Gainza and Romero, 2020). An increase of 
Alphaproteobacteria and Actinobacteria, already predominant groups 
in the gut content of P. clarkiii, was also found by Zhang T. et al. (2021) 
and Zhang et al. (2021a) after exposure to the anti-inflammatory drug 
Diclofenac (mg/L). Finally, Duan et al. (2021) and Wang et al. (2021) 
observed an increase in these two phyla after 5 μm sized MP exposure 
(μg/L-mg/L) in the marine shrimp Litopenaeus vannamei, without 
feeding and after 48 h. Therefore, our results are congruent to other 
studies indicating these two phyla are involved in the response of 
crustaceans to emergent contaminants.

The most abundant genera in our samples of organisms fed with 
pellets containing MP were: Klebsiella, Acinetobacter, Hydromonas, 
Pseudomonas, Gemmobacter, and Enterobacter. Although these genera 
can be part of the intestinal microbiota of healthy humans, some 
strains are of clinical importance (Vogel et al., 2012; Hadder et al., 
2018). Moreover, species of Klebsiella, Acinetobacter, Pseudomonas, 
and Enterobacter (KAPE) are of particular concern due to their 
ongoing acquisition of genetic traits such as antibiotic resistance and 
virulence (Boucher et al., 2009). In this regard, Eckert et al. (2018) 
showed that MP promote the persistence of typical indicators of 

microbial anthropogenic pollution in natural waters. However, 
additional research is needed to demonstrate the transfer of human 
pathogenic bacteria to crayfish through MP.

The most abundant genera in gut samples of MP-fed crayfishes 
also comprise potential biodegrader species of recalcitrant xenobiotics 
(Vaz-Moreira et al., 2015; Liu et al., 2020), and further studies need to 
explore biodegradation metabolism of gut microbiome after exposure 
to MP. Additionally, the decrease of Bacteroides levels observed in 
MP-fed crayfishes suggests that MP exposure affects putative beneficial 
bacteria linked to the degradation of lignin and environmental 
pollutants in the gut of P. clarkiii, as seen in L. vannamei exposed to 
MP (Duan et al., 2021).

Clostridia is another class of bacteria that suffered a considerable 
decrease in gut samples of specimens fed with pellets containing 
MP. Generally, these microorganisms play a crucial role in developing 
the immune system, modulating immune tolerance, and helping to 
prevent the establishment of potentially harmful and pathogenic 
organisms (Kelly et al., 2005; Lopetuso et al., 2013). Therefore, this 
observed decrease in our crayfish specimens could suggest a reduction 
in the resistance to pathogen colonization and a possible dysbiosis 
effect in the presence of MP (Kelly et al., 2005).

We found a dysbiosis effect in the intestinal tract of P. clarkii with 
molecular tools after feeding them with rPET-MP in an irregular 
form. This result was associated with changes in the biochemical 
immune response of the crayfish PO. Since previous studies have 
shown that gut microbiome differs between male and female of 
P. clarkii, affecting their immune responses (Chen et  al., 2022), 
we suggest including females in future studies to examine the toxic 
effects of MP on crustaceans, by assessing histological and 
physiological changes as well as hemolymph microbiome reactions in 
the presence of MP. Studying other markers of crayfish immune 
system such as cellular responses (e.g., hemocyte parameters), 
receptors and signaling molecules (Bouallegui, 2021) would be useful 
to fully understand the relationship between the animal’s physiological 
response and microbiota changes.

The characteristics of the plastic used in our experiment and 
the exposure by feeding are more environmentally relevant than 
usual exposure to virgin materials mixed in water. However, 
further chemical characterization of recycled resins, and potential 
associated toxic substance release during processing of the resin, 
are necessary to understand the cause-effect relationship behind 
their effect on biota, as we  cannot discriminate to the precise 
mechanism of actions involved at cellular level. Also, we recognize 
the importance of comparing the responses of other recycled resins 
that have proven high toxicity as virgin materials such as 
Polystyrene or Polyvinyl chloride. Finally, we recommend studying 
sub-lethal MP effects along with microbiome changes to enhance 
the production and safer consumption of crustacean species in 
aquaculture and provide input for the conservation of species in 
natural ecosystems.
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