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Heterotrophic microbes play an important role in the Earth System as key drivers

of major biogeochemical cycles. Specifically, the consumption rate of organic

matter is set by the interaction between diverse microbial communities and the

chemical and physical environment inwhich they reside. Modeling these dynamics

requires reducing the complexity of microbial communities and linking directly

with biogeochemical functions. Microbial metabolic functional guilds provide

one approach for reducing microbial complexity and incorporating microbial

biogeochemical functions into models. However, we lack a way to identify these

guilds. In this study, we present a method for defining metabolic functional

guilds from annotated genomes, which are derived from both uncultured

and cultured organisms. This method utilizes an Aspect Bernoulli (AB) model

and was tested on three large genomic datasets with 1,733–3,840 genomes

each. Ecologically relevant microbial metabolic functional guilds were identified

including guilds related to DMSP degradation, dissimilatory nitrate reduction to

ammonia, and motile copiotrophy. This method presents a way to generate

hypotheses about functions co-occurring within individual microbes without

relying on cultured representatives. Applying the concept of metabolic functional

guilds to environmental samples will provide new insight into the role that

heterotrophic microbial communities play in setting rates of carbon cycling.

KEYWORDS

modeling, community assembly, biogeochemical cycling,marinemicrobiology,microbial

metabolisms, functional guilds

1. Introduction

Microbes are the engines that drive many global processes critical for maintaining

Earth as a habitable planet, including the cycling of carbon and nitrogen. In

particular, heterotrophic microbes (bacteria and archaea) control the rate at which

organic compounds are cycled (Pomeroy, 1974; Fuhrman and Azam, 1980, 1982;

Falkowski et al., 2008), which has important implications for atmospheric CO2

concentrations and thus climate. However, we currently have limited knowledge of

what sets the rate of organic matter cycling (Dittmar et al., 2021; Zakem et al.,

2021) and how these rates vary as a function of microbial community composition.

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1197329
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1197329&domain=pdf&date_stamp=2023-06-30
mailto:n.levine@usc.edu
https://doi.org/10.3389/fmicb.2023.1197329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1197329/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Reynolds et al. 10.3389/fmicb.2023.1197329

Global ecological models, which are used to study large-

scale carbon cycling, typically consider the impact of microbial

heterotrophy to be a constant or a bulk approximation acting on

a generic organic carbon pool (Aumont and Bopp, 2006; Séférian

et al., 2013). Thus, these models are unable to capture variations

in rates of biogeochemical cycling driven by dynamic and diverse

microbial communities. This is partially due to the lack of a

tractable framework for explicitly modeling complex heterotrophic

microbial communities, their biogeochemical function, and

how these functions vary both temporally and spatially. Such

a framework requires an understanding of organismal-level

metabolic potential (i.e., which metabolic pathways co-occur

within individual cells) and how microbes are assembled to form

communities. While such a framework exists for phytoplankton

(Quere et al., 2005; Raitsos et al., 2008), we lack a similar

framework for defining meaningful heterotrophic functional types

or metabolic functional guilds. Metabolic functional guilds are

defined here as groups of organisms that are capable of the same

biogeochemical or ecological function (e.g., nitrogen fixation or

chitin degradation) in an ecosystem.

Microbial communities have primarily been characterized

using the amplification of marker genes (e.g., 16S small subunit

RNA gene). Analysis of functional diversity has either relied upon

‘omics analyses (Venter, 2004; Yooseph et al., 2007; Larkin et al.,

2021; Ustick et al., 2021) or closest cultured representatives (Staley

et al., 2014; Hornick and Buschmann, 2018; Roth Rosenberg

et al., 2021). The former provides an account of which genes

are present but does not provide insight into which functions

are co-occurring within individual organisms. The latter extends

phylogenetic analyses to gain insight into function by using

genomic data from the closest cultured representative via tools such

as PICRUSt or Tax4Fun2 (Langille et al., 2013; Wemheuer et al.,

2020). While this provides insights into the metabolic potential

of the community, it relies on having a cultured representative

where the vast majority of organisms in the ocean do not

have such representatives (Sogin et al., 2006; Parks et al., 2017).

In addition, the cultured representative approach relies on the

assumption that biogeochemically relevant functions are highly

phylogenetically conserved, which may not always hold due to

high rates of horizontal gene transfer (McDaniel et al., 2010).

Several experimental and observational studies have demonstrated

that function and phylogeny are often decoupled in a variety of

environments (Louca et al., 2016, 2017, 2018; Tully et al., 2018a).

Pangenomics has revealed microdiversity within individual species

that results in genetically distinct species sub-groups or sub-clades

(Delmont and Eren, 2018) further complicating the link between

function and phylogeny.

Recent advances in bioinformatic techniques have allowed

for the high throughput assembly of organismal genomes from

metagenomes, termed metagenome assembled genomes (MAGs)

(Strous et al., 2012; Imelfort et al., 2014; MetaHIT Consortium

et al., 2014; Kang et al., 2015, 2019; Lu et al., 2016; Wu et al.,

2016; Graham et al., 2017). In addition, microfluidics techniques

have enabled the sequencing of single cells [single-cell amplified

genomes (SAGs)] (Stepanauskas and Sieracki, 2007; Swan et al.,

2011, 2013; Martinez-Garcia et al., 2012; Pachiadaki et al., 2019;

Sieracki et al., 2019). Combined, these innovations have led to

large datasets of publicly available annotated MAGs and SAGs

(Klemetsen et al., 2018; Pachiadaki et al., 2019; Paoli et al., 2021),

thus significantly increasing our knowledge of microbial diversity.

Most notable is the Tara Oceans circumnavigation expedition

(Sunagawa et al., 2015), which collectedmetagenomes from a global

set of sampling stations that have been subsequently assembled

into thousands of MAGs (Lombard et al., 2014; Baker et al., 2015;

Graham et al., 2018; Rawlings et al., 2018; Zhang et al., 2018;

Zhou et al., 2019). These large, well-annotated datasets provide an

unprecedented opportunity to assess co-occurring functions within

a cell for uncultured organisms.

In this study, we present a new statistical approach for

defining microbial metabolic functional guilds and show that

the guilds we identify are specific and ecologically relevant. This

approach also establishes a framework that can be used to generate

new hypotheses for co-occurring functions. As our approach is

agnostic to phylogeny with no a priori phylogenetic data provided,

this framework provides an excellent tool for interrogating the

metabolic potential of uncultured organisms. This study lays

the foundation for defining microbial communities in terms of

metabolic functional guilds that will allow us to better understand

the role that dynamic microbes play in determining the rates of

biogeochemical cycles.

2. Materials and methods

2.1. Dataset

Three different sources of genomes were used for this

analysis, MAGs, isolate genomes (i.e., from cultures), and SAGs.

Specifically, we used 1,859 MAGs (Tully et al., 2018b) assembled

from the Tara Oceans metagenomes (Sunagawa et al., 2015)

using the BinSanity v0.2.6.1 technique and assembly pipeline

(Graham et al., 2017). Only bins that met the following

minimum requirements were assigned as draft genomes and

included as MAGs: >90% complete and <10% contamination,

80–90% complete with <5% contamination, or 50–80% complete

with <2% contamination. These genomes can be found at

NCBI under BioProject ID PRJNA391943. A total of 6,872

SAG genomes were obtained from the GORG-Tropics database

(Pachiadaki et al., 2019), which can be found at NCBI under

BioProject ID PRJEB33281 and at Open Science Framework

under DOI 10.17605/OSF.IO/PCWJ9. Only SAGs with at least

70% completeness were included in our analysis (N = 1,733). In

addition, 967 isolate genomes and 980 genomes with unresolved

provenance (i.e., unclear from the metadata whether MAGs

or isolates) were obtained from the MarDB (Klemetsen et al.,

2018) (https://mmp.sfb.uit.no/databases/) (accessed 31 May 2018).

A composite genomic dataset was generated using the Tara

Oceans MAGs, isolates, and MarDB genomes (N = 3,840). To

compare and contrast the guilds derived from different methods

of genome reconstruction, two additional datasets were used. The

1,859 known MAGs from the composite dataset were separated

out into a second dataset, and the 1,7333 high-quality SAGs

from the GORG-Tropics database were separated out into a

third dataset.

Genomes from the composite and SAG datasets were classified

using the GTDB taxonomy toolkit (GTDB-Tk) (Chaumeil et al.,
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2022) using r207 of the Genome Taxonomy Database (Parks

et al., 2018). GTDB-Tk v2.1.0 utilized Prodigal v2.6.3 (Hyatt et al.,

2010) to predict genes on the 3,840 input genomes provided as

FASTA nucleotide sequence files. The set of 120 bacterial and

53 archaeal target marker genes used in GTDB-Tk was identified

with HMMER 3 v3.1b2 (Eddy, 2011). Phylogenetic estimation

was performed with FastTree2 v2.1.11 (Price et al., 2010), and

then FastANI v1.32 (Jain et al., 2018) and Mash v2.3 (Ondov

et al., 2016) were used to confirm phylogenetic groups with ANI

measures. Quality analysis of the genomes in both datasets was

performed using CheckM v1.2.1 (Parks et al., 2015). The average

completeness for the composite dataset was 90.8% with an average

contamination of 1.5%, and the average completeness for the

SAG dataset was 80.6% with an average contamination of 0.15%.

Phylogenomic trees were constructed for the full set of genomes

using GToTree v1.7.05 (Lee, 2019), as well as for the guilds shown

in Supplementary Table 2 using the taxonomic classifications from

GTDB-Tk to annotate each tree. Similar to GTDB-Tk, GToTree

utilized Prodigal v.2.6.3 (Hyatt et al., 2010) to predict functional

genes for the 3,840 input genomes provided as FASTA sequence

files. Target genes from the pre-built Archaea_and_Bacteria gene

set (25 genes) were identified with HMMER 3 v3.3.2 (Eddy, 2011),

aligned with muscle v5.1 (Edgar, 2021), trimmed with TrimAl

v1.4 (Capella-Gutierrez et al., 2009), and concatenated before

phylogenetic estimation was performed using FastTree 2 v2.1.11

(Price et al., 2010).

To further assess the phylogenetic diversity of the composite

dataset, we also computed the average nucleotide identity

(ANI) and average amino acid identity (AAI). ANI values

were computed on the whole genomes using fastANI v1.33

(Jain et al., 2018) while AAI values were computed using

fastAAI v0.1.20 (https://github.com/cruizperez/FastAAI).

fastAAI also used Pyrodigal (Larralde, 2022), a Python

library binding to Prodigal (Hyatt et al., 2010), to predict

genes, as well as PyHMMER (Larralde, 2022) to perform

the alignments to fastAAI’s single-copy protein (SCP)

datasets. A full breakdown of this pipeline is presented in

Supplementary material S1.

We selected 212 experimentally verified and well-characterized

metabolic pathways from the KEGG database (Ogata et al., 1999)

(Supplementary Table 1). These functions were chosen due to

their biogeochemical (e.g., nitrogen fixation and methanogenesis)

and ecological (e.g., motility and chemotaxis) relevance. All

genomes were then analyzed using KEGG-Decoder v0.6sbp

and KEGG-Expander v0.5 (Graham et al., 2018) to identify

the presence or absence of the 212 pathways. KEGG-Decoder

is informed by KEGG pathways/modules; however, specific

steps and key biogeochemical reactions are broken down to

reflect essential steps. Specifically, several different criteria or

thresholds were used in order to determine whether pathways

were present in a given genome. KEGG-Decoder first assumes

that core metabolisms must be present for normal cellular

functioning for most organisms, and thus it is unlikely to

find a fragmentary pathway that is non-functional. Thus for

core metabolisms (e.g., glycolysis, gluconeogenesis, ATP synthase,

etc.), a low threshold of 25% total gene presence was used.

Conversely, KEGG-Decoder assumes that the same is not true

for complex/geochemically relevant pathways, thus a higher

threshold is implemented to ensure that it is tracking actual

functionality rather than misannotation. Thus, for pathways

that were either complex (e.g., multiple branching options),

geochemically relevant (e.g., thiosulfate oxidation), or both (e.g.,

secretion pathways), a total gene presence between 50 and 75% was

required. An intermediate threshold of 33–40% total gene presence

was used for simple pathways constituting 3 to 4 genes. For

“pathways” that possess only a single reaction, presence/absence

was directly determined.

This large binary dataset was used as input for metabolic

guild identification both using classical methods and our new

Aspect Bernoulli (AB)-based method (see below). It is important

to note that the AB method presented here is not restricted

to this number of functions and can be extended to include

as many functions or hypothetical proteins as the user desires.

Furthermore, genome annotations can be performed in any

manner the user desires so long as the resulting data matrix is

binary. However, we emphasize that the choice of annotations

is paramount in determining the types of metabolic signals

the user can receive when running this method. This is a

discovery-based dimension reduction method and as such can

only directly identify patterns based on the data presented

to it.

2.2. Classic methods

We tested several clustering and dimensionality reduction

methods to attempt to identify microbial metabolic guilds

including Non-metric Multidimensional Scaling (NMDS)

(Kruskal, 1964) of the functions and complete linkage hierarchical

clustering of both the genomes and functions concurrently.

NMDS was performed using the metaMDS function from the

vegan package v2.6.4 (Oksanen et al., 2019) in R v4.2.3 with two

dimensions, Bray-Curtis dissimilarity (Bray and Curtis, 1957)

and a maximum of 50 iterations. We also analyzed our composite

dataset using an agglomerative hierarchical clustering method

using the clustergram function from the Statistics and Machine

Learning toolbox v12.1 from MATLAB R2021a (The Math Works,

2021). We applied these two statistical methods to our composite

dataset of 3,840 genomes and assessed their ability to extract a

low-dimensional structure of co-occurring functions in the form

of guilds.

Finally, we sought a method that could reduce our data to a

lower number of dimensions with defined and clear separation into

clusters of functions that represent metabolic guilds. Therefore, it

was essential that our method could identify signals of metabolic

guilds driven by relatively rare functions even in the presence

of high abundance functions such as core carbon metabolism

or housekeeping genes. This aspect was important because we

expected many of these core metabolisms to strongly co-occur due

to their essential nature and thus could potentially limit our ability

to define more biogeochemically relevant metabolic functional

guilds. We found that an augmented AB model was able to best

accommodate all of these requirements. We present this model and

the underlying statistical method that defines this approach in the

following section.
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2.3. Aspect bernoulli

We used the AB model (Bingham et al., 2009) to perform a

statistical matrix decomposition of our binary data matrix Y ∈

RG × F . The AB model was selected as it is designed for sparse

matrices of binary data. AB is similar to Latent Dirichlet Allocation

(LDA) that has been applied to similar problems [e.g., topic

modeling, population structure (Pritchard et al., 2000; Blei, 2003)]

but is not designed to handle binary data. The AB model assumes

that each entry Yg,f in the data matrix Y is a random Bernoulli

realization of an underlying scalar probability Vg,f ∈ [0, 1]. Here,

g denotes genome, and f denotes function. In other words, the AB

method assumes that the observed pattern in the data is the result of

a Bernoulli coin flip based on the probability of a specific function

occuring in a specific genome. Thus, we can define another matrix

{Vgf }g=1,...,G,f=1,...,F with the same dimensions as the data matrix

that represents these underlying probabilities.

We then assume that this matrix of probabilities

{Vgf }g=1,...,G,f=1,...,F can be defined as the product of two

additional matrices β and Ŵ such that

Vgf = Ŵg·β·f (1)

for each probability Vgf in the matrix. The β and Ŵ matrices

are of size G by k and k by F, respectively, where G is the total

number of genomes in the data set and F is the total number of

functions. These two matrices allow us to identify k groups or

aspects in our dataset (see Box 1 for definition). Aspects are distinct

from guilds in that they are defined on the entire set of functions,

rather than a co-occurring subset of functions (guilds). The term

aspect is used to describe the direct output of the AB method.

As we describe below, we can then define metabolic functional

guilds based on the β matrix, which provides the probability that

function f is present in a given genome if that genome is associated

with the kth aspect. Particularly, if βkf is close to 1 then function

f is highly associated with aspect k. The Ŵ matrix quantifies

how strong the kth aspect is, within each genome g. Specifically,

if Ŵgk is close to 1, then genome g is strongly associated with

aspect k. and Ŵ are then optimized using an iterative Expectation

Maximization (EM) algorithm as described in Bingham et al.

(2009). For a detailed, rigorous description of the methods, please

see Supplementary material 1.2.

One key advantage of the AB method is that the use of the

matrix of probabilities {Vgf }g=1,...,G,f=1,...,F allows the method to

deal with inaccuracies in the data (e.g., false absences or presences)

as detailed in the study by Bingham et al. (2009). Specifically, the AB

method can accommodate instances where the presence (absence)

of a function in the genome is otherwise inconsistent with the main

aspects associated with it.

2.4. Scoring

In order to define metabolic functional guilds (see Box 1 for

definition) from the ABmodel output, we needed a way to quantify

the relative importance of functions within an aspect. To this end,

we introduced a post-processing score to order the functions within

BOX 1 Terminology Box.

each aspect such that two conditions were met: (1) functions that

were strong indicators of membership in that aspect were highly

scored (i.e., if that function was present in a genome, then it

was likely that the aspect k was present); (2) genomes that were

identified as being associated with the aspect kwere likely to contain

functions at the top of aspect k’s list (i.e., if genome g was associated

with the aspect k, it was likely to have function A which was at

the top of aspect k’s list). The functions that combined to define

a metabolic functional guild could then be identified based on

high-ranking functions in the aspect lists.

To meet the first condition, we posed the following question:

having observed a function f to be present in a randomly chosen

genome g, how likely was it that the function was present due to

aspect k? We could quantify this likelihood by calculating

rfk =
1

G

G
∑

g=1

P
(

Zgfk = 1
∣

∣ Ygf = 1). (2)

Using Bayes’ rule, we computed the above conditional

probability in terms of the AB parameters:

P
(

Zgfk = 1
∣

∣Ygf = 1
)

=
Ŵgk βkf

Vgf
. (3)

Next, we identified the genomes that were most strongly

associated with each aspect (i.e., having large Ŵ values). We will

hereafter refer to this set of genomes Ak ⊆ {1, . . . ,G} as aspect
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FIGURE 1

Abundances of functions within an example aspect’s probabilistic

representatives, Ak, compared to their score rank before (rfk , cyan)

and after (sfk, orange) applying the score adjustment qfk (step 2).

After the adjustment, a large density of points in the upper left

quadrant is observed indicating that the highest rank functions using

sfk are also found within a large number of probabilistic

representative genomes.

k’s “probabilistic representatives.” We filtered {1, · · · , G} into K

non-overlapping sets A1, · · · ,AK , each set Ak was defined as the

genome g that placed the highest value of Ŵg on k and also had a

large enough Ŵg,k = P
(

Zgfk = 1
)

(specifically, Ŵg,k > 2/K). This

2/K threshold ensured that we excluded genomes that had nearly

uniform Ŵ vectors. For our composite dataset, this threshold did

not exclude any genomes.

From Ak, we calculated qfk:

qfk =

∑

g∈Ak
Ygf

1
F

∑F
f=1

∑

g∈Ak
Ygf

(4)

which is the ratio of the abundance of each function within

Ak and the mean abundance within Ak. Finally, we multiplied the

marginal probability rfk (Equation 1) by the adjustment factor qfk
(Equation 4). This gave us the score metric sfk that we used to

identify our guilds:

sfk = rfk · qfk (5)

In this score, qfk upweights functions f that are more abundant

among probabilistic representatives of aspect k than average

(Figure 1) and makes the score (Equation 5) more comparable

across aspects. Since a function that is highly specific to aspect k

is highly scored, top-scoring functions are attractive candidates for

forming metabolic function guilds from aspects. Next, we describe

how to choose a small set of functions to form such guilds. The

full algorithm for the AB procedure can be found in the extended

methods (Supplementary material S1).

2.5. Guild identification and mapback
genomes

After identifying the probabilistic representatives Ak based

on our pipeline, we further narrowed each aspect down to

metabolic functional guilds Fk according to the scores sfk. Then,

we obtained the mapback genomes Bk (see Box 1) for guild

Fk as the set of genomes possessing all of the functions in

Fk. We used two alternative approaches to identify the set of

functions that comprise metabolic functional guilds: (1) using a

fixed number of functions, five functions in this case (Option

1 in Supplementary material S1) or (2) requiring a minimum

number of genomes in the dataset to be associated with a given

guild (Option 2 in Supplementary material S1). The number of

mapback genomes is an important criterion in our pipeline, as

it quantifies how strongly the original data support the proposed

metabolic functional guilds. For instance, if we found many

mapback genomes for a fixed-size functional guild, we would be

more confident in the validity of that guild.

2.6. Guild specificity

A key objective of the pipeline was to identify functions

co-occurring within individual genomes that were meaningfully

associated. Ideally, for a guild k containing functions A and B,

the presence of function A in a genome would indicate both that

the genome was a member of guild k and that the genome would

also contain function B. To test the association between pairs of

functions within our guilds, we calculated the confidence (Agrawal

et al., 1993) of seeing B given A (A→ B) as

Conf (A,B) =

∑G
g=1 YgAYgB
∑G

g=1 YgA

(6)

where A and B are functions from our dataset and YgA and

YgB are the presence or absence of A and B in genome g. High

confidence values suggested that the presence of function B was

highly conserved with that of function A. We computed the

forward and reverse confidence values for every pair of functions in

the guilds identified from our data. Because of the way we defined

mapback genomes, these confidence values were all 1 within our

mapback genomes and ranged between 0 and 1 for our ‘outgroup’

genomes (i.e., the rest of the dataset).

2.7. Artificial datasets

The number of aspects, K, is a free parameter in the AB

model that determines the maximum number of guilds that can

be identified. The ideal choice of K is dataset specific and is a

function of the underlying structure of the data matrix. To test

the impact of this choice on the resulting guilds identified by our

method, we constructed a large collection of synthetic datasets

comprised of either one or three artificial guilds appended to our

original composite dataset of 3,840 genomes and 212 functions.

These guilds were defined to be “perfect” guilds when genomes
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either had all the artificial guild functions or none of them. For

example, an artificial guild with 5 functions and 2% total abundance

in the dataset would have all 5 functions perfectly co-occurring

in 77 genomes, while the remaining 3,763 genomes would not

possess any of these artificial functions (all zeros). Guild parameters

were drawn from three possible abundances (2%, 5%, or 10% of

the genomes containing the artificial guild) and three possible

sizes (guilds consisting of 5, 7, or 9 functions) with all unique

combinations tested (Supplementary Table 2). Each artificial guild

was inserted in a non-overlapping manner such that each genome

could only belong to a maximum of one artificial guild. For

each combination, we created 100 replicates of our synthetic data.

Additional sensitivity analyses were conducted where we assigned

guilds randomly, allowing some genomes to belong to multiple

artificial guilds (Supplementary material S2).

2.8. Data visualization

All data visualizations in MATLAB were performed using the

Statistics and Machine Learning Toolbox v12.1 from MATLAB

R2021a (The Math Works, 2021). Data visualizations in R v4.2.3

were performed using the ggplot2 v3.4.2 and ggbreak v0.1.1

packages (Wickham, 2009; Xu et al., 2021), as well as the lattice

v0.21.8 package (Sarkar, 2008).

3. Results

3.1. Phylogeny of datasets

The phylogeny of our composite dataset of 3,840 genomes

was assessed using GtoTree and GTDB-Tk. From this large

dataset, 65 genomes (60 archaeal and 5 bacterial) were excluded

due to insufficient marker gene coverage. Another 39 genomes

that were included in the tree were flagged during the quality

assessment step for high redundancy estimates (an average of

16.7% redundancy) but were still highly complete (an average

of 95.7% completeness). Of the 3,775 high-quality genomes,

there were 3,529 bacterial genomes representing 51 unique

bacterial phyla. Among these phyla were the key marine

superphylum Proteobacteria (Yarza et al., 2014) with 1,774

genomic representatives, as well as other notable phyla such as

the Cyanobacteria (108 genomes), Bacteroidota (545 genomes),

Firmicutes (111 genomes), Desulfobacterota (55 genomes), and

the Verrucomicrobiota (91 genomes). In addition, there were

246 archaeal genomes representing 2 unique archaeal phyla,

Thermoplasmatota and Thermoproteota. Supplementary Figure 1

shows the full phylogenomic tree visualized in the iTOL web

application (Letunic and Bork, 2021), which is colored by

individual bacterial phylum identity.

We passed our high-quality SAG dataset of 1,733 genomes

through GtoTree and GTDB-Tk and determined the phylogeny

for 1,415 genomes (Supplementary Figure 2). In total, 318 genomes

(301 bacterial and 17 archaeal) were excluded for insufficient

marker gene coverage while three of the included genomes

were flagged during the quality assessment step for high

redundancy estimates (an average of 14% redundancy). Of the

FIGURE 2

Results of the NMDS run on the composite dataset. Points plotted

are the loadings of the functions in the dataset on MDS axes 1 and 2.

Points are semi-transparent to emphasize points that overlap one

another. The NMDS algorithm did not reach convergence with a

minimum stress value of 0.211.

1,415 high-quality genomes, there were 1,409 bacterial genomes

representing 9 unique bacterial phyla and 6 archaeal genomes

representing 2 unique archaeal phyla. Like the composite dataset,

many of the bacterial genomes were classified in the phylum

Proteobacteria (1,158 genomes). The next two largest phyla were

Bacteroidota (103) and Cyanobacteria (83). Collectively, these

three phyla accounted for 95.4% of all SAGs with an ascribed

bacterial phylogeny.

3.2. Classic methods

We applied two classic statistical methods (NMDS and

clustergram) to our dataset and assessed their ability to extract the

low-dimensional structure of co-occurring functions in the form

of guilds. The results of the NMDS are shown in Figure 2 where

each point in the NMDS represents a function such that clusters

of points could, potentially, indicate guilds. No distinct features

emerge along either axis. The majority of data points group into

a dense cloud of points with no clear separation along an axis

of variance. While approaches for analyzing variance in reduced

dimensions, such as NMDS, can be powerful for identifying clusters

of similarly acting samples, NMDS was unable to identify clusters

that could be interpreted as metabolic guilds when applied to

our dataset.

Next, we present results using a standard clustering approach,

namely hierarchical clustering, as implemented by clustergram.

Here, we clustered both the genomes and functions (rows and

columns) using the Jaccard distance metric with complete linkage

and two different cut heights, 0.9 and 1 (Figure 3). We selected
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FIGURE 3

Resulting clustergram plot on the presence/absence pathway data

for our composite dataset (red = present, black = absent) using a

cut height of 0.9 with rows (genomes) and columns (functions)

clustered based on Jaccard distance.

the Jaccard distance for clustergram because of the binary format

of our data. However, unlike the AB method, Jaccard treats all

presences/absences equally and thus does not provide differential

weights for rare vs. highly abundant functions. We chose to use cut

heights of 0.9 and 1 based on the resulting dendrograms as they

produced clusters among both rare and high abundance functions.

At lower cut heights, we found that a large bulk of the functions

clustered out as singletons, and the clusters that formed were

primarily the core, high abundance functions. Thus, we considered

that 0.9 and 1 were good values for comparing the microbial

metabolic functional guilds identified by clustergram and AB.

Applying clustergram to our data with a cut height of 0.9

yielded 30 distinct clusters of functions that we interpreted as

potential metabolic guilds (Figure 3). These clusters averaged 5.8

functions (ranging from 2 to 42 functions) and 38.8 mapback

genomes (ranging from 3 to 354 genomes). Approximately 20%

of the total functions (N = 42) were in a single guild of highly

abundant core functions. We also tested clustergram with a cut

height of 1 that produced 17 distinct clusters of functions. The

average number of functions in a cluster increased to an average

value of 11.1 (ranging from 2 to 66 functions) but the number

of mapback genomes dropped sharply to an average of just 3.2

mapback genomes (ranging from 0 to 17 genomes) per guild. Seven

of these guilds had no mapback genomes, and the two largest

guilds alone accounted for 46.7% of the total data used for this

clustering procedure.

We identified several disadvantages of the classic statistical

methods. First, large numbers of core metabolisms found in many

genomes (such as housekeeping genes, core carbon metabolism,

etc.) formed huge guilds with few mapback genomes, which

were therefore not informative as metabolic guilds (see Figure 3).

Second, these methods do not permit functions to be part of more

than one guild, which is inconsistent with the high functional

redundancy that has been demonstrated in microbial communities

(Louca et al., 2016, 2017, 2018; Tully et al., 2018a). Finally, these

methods do not provide an intrinsic ranking of the importance of

each function for defining a guild, e.g., the functions that are strong

indicators of membership in the guild. In the following section, we

will compare the guilds from clustergram to that of the AB model

and demonstrate that both methods identify similar guilds but that

clustergram both breaks the AB guilds up into smaller groups (fewer

functions) and results in guilds with fewermapback genomes. Thus,

the AB method can better capture metabolic functional guilds that

contain a meaningful number of functions (>3) with substantial

numbers of mapback genomes.

3.3. AB model

In the following sections, we present an assessment of the

robustness of the AB model for detecting guilds, a summary of

the AB model guilds from the composite dataset, and then a

comparison between the AB model and the classic methods.

3.3.1. Choosing a value for K
The AB model requires the user to define K prior to running

the algorithm. To test the impact of the choice of K on the ability

to detect different-sized guilds (i.e., numbers of functions) and

guilds with different abundances in the dataset (i.e., frequency),

we ran the artificial datasets through the method with a wide

range of K values (K = 5, · · · , 20). This analysis (described in

Supplementary material S2 and summarized below) identified a

clear trade-off between using low K values, which inhibited the

detection of low abundance guilds, and using high K values, which

overfitted the dataset. The values that qualify as “low” vs. “high” K

values will be specific to the dataset. The analysis described below

allows the user to identify a range of reasonable K values for a given

dataset and the type of guilds (e.g., abundance and size) that are

being targeted in the analysis. For this study, we manually assessed

guilds derived from K values within the identified range in order

to select our final value of K (K = 10). We recommend that a

similar analysis be performed prior to applying this method to a

new dataset.

We quantified the ability of our method to identify artificial

guilds in our artificial datasets (see Section 2) over a range of

K values using two metrics: hit rate and extra hits. The hit

rate describes the overall frequency with which we identified our

artificial guilds. In the ideal case, we would observe all of an artificial

guild’s functions present at the top of the score-ordered function

list (top 15) in exactly one aspect. Thus, for a simulation using

three distinct artificial guilds, we would expect to see three hits per

simulated dataset (i.e., each guild showing up at the top of only

one aspect list), which would give us a 100% hit rate, or a hit rate

frequency of 1. Extra hits catalog instances where we observed an

artificial guild occurring at the top of more than one aspect list, i.e.,

an artificial guild being divided across two aspects.

The size of the guild and abundance of the guild in the dataset

impacted the ability of the method to identify artificial guilds at

different K values (Figure 4). As guild size and abundance in the

dataset increased, the hit rate at low K values increased to 1. In

other words, it was easier to identify larger and more abundant
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FIGURE 4

Hit rate and the number of extra hits for 100 simulated datasets with three artificial guilds inserted in a non-overlapping manner across a range of K

values. Results are colored by the guild parameters where #fn denotes the number of functions in each artificial guild. The red (#fn = 5/Abundance

= 0.02) vs. the green (#fn = 5/Abundance = 0.1) lines illustrate the impact of a change in guild abundance. The impact of guild size on hit rate and

extra hits is shown in Supplementary Table 2.

guilds, as one might expect. When K was low, extra hits were

zero. As we increased the value of K, the hit rate remained high,

but we started to see extra hits. When guilds were large and/or

abundant, extra hits increased more quickly and at lower values

of K than for smaller and less abundant guilds. This analysis

demonstrated that when the choice of K was too small, only the

largest and most abundant guilds were identified (under-fitting

system). On the other hand, if K was too large, guilds showed

up in multiple aspects (over-fitting system). We concluded that

a good range for K was around the point where the hit rate

was maximized while extra hits remained zero. A full analysis

of the impact of guild size, guild abundance, and K value on

guild identification, as well as the impact of randomly inserting

guilds and the number of artificial guilds inserted, is presented in

Supplementary material S2.

We also tested various numbers of iterations for the

expectation-maximization (EM) algorithm implemented as

detailed by Bingham et al. (2009) to determine how quickly

the model converged to a local maximum. For each iteration

value (ranging from 10 to 1,500 steps), we initialized and ran 10

random restarts. For our chosen value of K = 10, the likelihood

appeared to plateau at its maximum value after ∼500 iterations

(Supplementary Figure 12). We also assessed the stability of

the AB results and showed that the identification of guilds was

consistent across runs initialized with different random seeds

(Supplementary Figure 13).

3.3.2. Guild identification in the composite
dataset

The AB method successfully identified guilds within the

composite dataset that were found in a substantial number of

genomes in the dataset and contained functions that were specific

to that guild (see Section 2). When defined using the top 5

scoring functions (approach 1), the resulting guilds averaged 116.2

mapback genomes (ranging from 11 to 468 genomes). When guilds

were defined to include functions co-occurring within at least 100

genomes (approach 2), the average guild size was 5.7 functions

per guild (ranging from 2 to 20 functions). Figure 5 shows the

number of mapback genomes present in the dataset as the number

of functions defining each guild is increased from 2 to 20.

Both approaches for defining guilds resulted in guilds

comprised of functions that were specific to that guild. When

looking at the co-occurrence of each pair of functions from the

guild set of functions (guild function pairs), low confidence values

were observed in the outgroup genomes for each guild function pair
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FIGURE 5

The number of genomes that possess all of the functions in a guild

(mapback genomes) as guild size is expanded to include more

functions in decreasing score order (starting at size 2).

as compared to the value of 1 for the guild function pairs in the

mapback genomes (by definition). Guilds identified using approach

1 (top 5 scoring functions) had a 0.455 average confidence value

in the outgroup genomes. However, many pairs of functions were

substantially less conserved in the outgroup genomes (i.e., these

pairs were strongly indicative of membership in the guild). For this,

we looked at the minimum outgroup confidence value across all

pairs of functions in each guild (i.e., the two functions that most

strongly indicated membership in the guild). For approach 1, the

average across all 10 guilds (K = 10) of the minimum confidence

values was 0.09 (ranging from 0.029 to 0.132). In other words,

functions A and B in guild k were found together only ∼10% of

the time in the non-mapback genomes and 100% of the time in

the mapback genomes. Guilds defined using approach 2 (∼100

mapback genomes) had a 0.338 average confidence value in the

outgroup genomes and a 0.029 (ranging from 0 to 0.105) average

minimum confidence value. Figure 6 shows an example heatmap

of both the forward and reverse confidence values for a putative

DMSP guild. Low confidence values for the outgroup genomes

confirm that this method identified functional co-occurrences that

are specific only to a subset of genomes.

3.4. Comparison between the AB model
and clustergram guilds

We compared the guild sizes and mapback genome numbers

of the clustergram guilds to guilds generated using the AB method

approaches 1 and 2. Figure 7 shows the distribution of guild sizes vs.

the number of mapback genomes for each of these three methods.

Based on our simulated data analysis described in Section 3.3, we

determined that K = 10 was an appropriate number of guilds for

the AB method. Overall, we found that the clustergram method

FIGURE 6

Specificity of guild function pairs for a guild related to the

degradation of DMSP. Values are shown for the confidence of the

guild function pairs in the outgroup genomes such that low values

indicate high specificity of the guild function pairs for the DMSP

guild. Note that the colorbar is scaled from 0 to 0.8. The diagonal is

omitted since it is 1 by definition. The axes are non-symmetric

because DmdA → ddd* is fundamentally di�erent from ddd* →

DmdA (see Equation 6).

identified more guilds with fewer functions and fewer mapback

genomes than the AB method. Specifically, with a cut height of 0.9,

clustergram identified three times as many guilds (N = 30) as the

AB method (N = 10). Of these 30 clustergram guilds, the majority

(60% of the guilds) possessed three or fewer functions with 33.3%

of the guilds constituting just a pair of functions. When we used

the conservative criteria of at least 100 mapback genomes per guild

(approach 2), the AB method generated a comparable number of

guilds with 3 or fewer functions (50% of the total guilds). However,

the twomethods differ substantially in terms of number ofmapback

genomes identified for each guild. Clustergram yielded guilds with

an average of 38.8 mapback genomes per guild, substantially less

than the two ABmethods which averaged 116.2 and 142.9 mapback

genomes for approaches 1 and 2, respectively. When we reduced

the threshold for AB approach 2 to the clustergram average of 39

mapback genomes per guild, we found just one guild with three or

fewer functions (10% of the total guilds). To make a more direct

comparison to the clustergram guilds, we re-ran the AB pipeline

with K = 30. Allowing for a higher number of guilds in the AB

method resulted in a similar number of mapback genomes per

guild as the runs with K = 10 with an average of 113 mapback

genomes (ranging from 0 to 1436) for approach 1 and with only

one guild having no mapbacks. However, when K = 30, the AB

method resulted in a high frequency of duplicate guilds, either fully

duplicated or partially duplicated (see Figure 4 and Section 3.3.1).

To test the impact of the cut height on guild size, we increased

the clustergram cut height to 1 (Supplementary Figure 8). This

results in a more similar number of total guilds (17 for clustergram

compared to 10 for AB) between the different methods. A cut

height of 1 reduced the number of small clustergram guilds (3 or

fewer functions) to 41.2%. However, this even further decreased

the number of mapback genomes for each guild (an average of
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FIGURE 7

The distribution of guild sizes (number of functions) and the number

of mapback genomes for guilds generated with clustergram at cut

heights of 0.9 (blue square) and 1 (purple plus sign) as well as for AB.

AB approach 1 (red circle) defined guilds using a fixed size of 5

functions while AB approach 2 (green triangle) defined guilds using

a minimum mapback genome cut-o� of 100. Points were jittered

using the built-in position_jitter function in the ggplot2 package

v3.4.2 with h = 0.1, w = 0.35 using the random seed 123.

3.2 genomes per guild with some guilds having no mapbacks).

For both cut heights, clustergram identified one guild with 42

functions (cut height = 0.9) and 66 functions (cut height = 1),

which correspond to 19.8% and 31.1% of all functions in the

dataset, respectively. This large guild was comprised entirely of

highly abundant functions and was substantially larger than the

largest guild produced by AB approach 2 (28 functions using the

lower threshold of 39 or more mapback genomes). Furthermore,

the large clustergram guild had just 4 and 0 mapback genomes for

cut heights of 0.9 and 1, respectively, while the 28-function AB guild

had 61 mapback genomes. Finally, we attempted using a dynamic

cut height method for clustering functions which improved the

guild sizes and number of mapback genomes over the static height

but still resulted in guilds with fewer mapback genomes than the

AB guilds (see Supplementary material 1.3).

We next assessed the differences in guilds functions identified

by the twomethods using AB approach 1 where guilds were defined

with a static number of functions. We observed several reoccurring

patterns. When using a cut height of 0.9 for clustergram, the five AB

guild functions were typically split between two distinct clustergram

guilds (range split between 1 and 3 guilds) with only two of the

ten AB guilds being contained within a single clustergram cluster.

When we examined the clustergram guilds that contain the AB

guild functions, we found that they average 52.8 mapback genomes

compared to 116.2 for the corresponding AB guilds. This suggests

that the AB method can identify groups of functions that are more

commonly found together in the dataset.

Increasing the cut height to 1 resulted in fewer clustergram

clusters and marginally reduced the fragmentation of AB guilds

between clustergram guilds with AB guilds now being split across

1.7 clustergram guilds on average (ranging from 1 to 3 guilds).

At this linkage, the clustergram guilds which contained the AB

guild functions had on average 30 additional functions (ranging

from 5.5 to 61) and only 0.33 mapback genomes (ranging from 0

to 1) compared to the corresponding AB guilds which had 116.2

mapback genomes (ranging from 11 to 468). There were several

instances (4 of 10), where the AB guild functions clustered fully

or partially into the large clustergram guild with 66 functions

containing the highly abundant functions in the dataset with no

mapback genomes.

This analysis demonstrated that both the AB and clustering

methods can identify functional guilds from our dataset and that

there was an overlap in the functions that were grouped together

into guilds using the two methods. We showed that the AB guilds

both contained more functions and were more highly represented

in the dataset (have substantially more mapback genomes) than the

guilds defined using the clustering method. As with any method,

there are both advantages and disadvantages to the AB method.

One disadvantage of the AB method is the need to choose a

value of the free parameter K, which determines the number of

guilds identified (see discussion above in Section 3.3.1). However,

we demonstrate how a user can use our pipeline to make an

informed decision as to how to choose the best value of K.

Another key distinction between the two methods is that clustering

methods precisely define the functions belonging to each guild.

The AB method provides information both about which functions

are strong indicators of the guild and which genomes have a

high probability of membership in the guild. The user must then

decide which set of functions to define as a guild. We provide

two approaches for making this distinction and highlight how

this additional information generated by the AB method can be

used to generate hypotheses (see discussion below in Section 4.1).

Additional advantages to the AB method are that the AB method

does not require all functions to be members of a guild or a

function to be a member of just one guild and that the AB method

can distinguish between false and true absences/presences in the

dataset. Finally, it is important to note for the AB method that

if there are mapback genomes for a guild then the guild is by

definition meaningful (i.e., found in the dataset). However, the

absence of a guild does not necessitate that that guild does not exist.

The AB method might not have identified a guild for several other

reasons, including other structures in the data matrix which can

make rare guilds difficult to find, or the absence of a key annotation

that is crucial for distinguishing it from the rest of the dataset.

4. Discussion

4.1. Emergent microbial metabolic guilds

Our approach identified several biogeochemically relevant

metabolic functional guilds with numerous genome representatives

in the composite dataset. It is important to note that these guilds

emerged from this analysis without any curation or a priori
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knowledge. As such, the identification of known guilds (e.g.,

photosynthesis) is a strong indication that the method can detect

biologically meaningful phenomena even when these associations

are in low abundance in the dataset. In this study, we highlight three

emergent guilds and draw connections to previously identified co-

occurring biochemical processes. The other seven guilds identified

by the method are also of significance (11–235 mapback genomes)

and are listed in Supplementary Table 4. For example, we identified

a guild associated with phosphorus acquisition (C-P lyase genes, see

Section 4.2) and several associated with different types of carbon

metabolisms (see Guilds 8 and 9 in Supplementary Figure 4).

However, for succinctness, we describe in detail just three guilds

that illustrate the power of the AB method.

The photosynthetic functions served as a good test case of

our method. Our composite dataset was curated in such a way

that photosystems I and II were only present in 2.5% (N =

95) and 2.7% (N = 105) of the genomes, respectively. However,

our method was able to identify a photosynthesis guild with

10 total functions including photosystems I and II, NAD(P)H

quinone oxidoreductase, cytochrome b6f complex, and RuBisCO

(Supplementary Table 4). This 10-function guild had 12 mapback

genomes in the composite dataset. We were also able to identify

this photosynthetic guild in the SAG dataset where photosystems

I and II have abundances of 6.3% and 5.8%, respectively.

The identification of this well-characterized system provided an

excellent “ground truth” validation of our method.

The approach identified a guild related to the consumption of

the organic sulfur compound dimethylsulfoniopropionate (DMSP).

This guild consisted of DMSP demethylation, DMSP lyase, and

sulfite dehydrogenase (quinone), and had 139 mapback genomes.

These three functions were the highest-ranked functions within a

single aspect (Table 1). For this analysis, we assessed the presence

of at least one of 7 different DMSP lyases (DddL, DddQ, DddP,

DddD, DddK, DddY, and DddW). DMSP lyase has been shown

experimentally to co-occur with the enzyme DMSP demethylase

(DmdA), which performs the demethylation reaction for DMSP

(Reisch et al., 2008, 2011), though this association is not obligatory.

These pathways have been characterized in abundant marine

clades, such as Roseobacters (Moran et al., 2007) and SAR11 (Tripp

et al., 2008). Sulfite dehydrogenase has also been implicated as a

potential pathway through which DMSP-derived sulfur is reduced

from sulfite to sulfate (Reisch et al., 2011).

The AB method suggests that there are several additional

functions that might commonly co-occur with these three DMSP-

related functions (Table 1). For example, taurine and glycine

betaine transport, either into the cell to meet metabolic demands

or out of the cell to excrete waste products, could be features of

this guild. In fact, previous work suggests that many Roseobacters

utilize a diverse suite of labile dissolved organic sulfur (DOS)

metabolites to meet their sulfur requirements (Landa et al., 2019).

In a co-culture experiment with R. pomeroyi strain DSS-3 and two

phytoplankton species, Landa et al. (2019) demonstrated enriched

expression patterns of transport and catabolism genes for seven

sulfur-rich phytoplankton exometabolites, including DMSP and

taurine. These findings are consistent with the fact that both

DMSP and taurine are produced in high concentrations by certain

phytoplankton groups (Saltzman and Cooper, 1989; Jackson et al.,

1992). The nitrogen-rich compatible solute glycine betaine is also

produced by certain phytoplankton groups (Keller et al., 1999)

and has been implicated as a nitrogen source for Roseobacters

(Moran et al., 2007). Therefore, the capacity to use these substrates

co-occurring within a single organism is consistent with known

ecological interactions and might indicate that organisms in the

DMSP guild could be associated with the phycosphere. Including

taurine as a 4th function in the guild resulted in 100 mapback

genomes, including glycine betaine as a 4th function resulted in 134

mapback genomes, and including both (5 function guild) resulted

in 98 mapback genomes.

Thiosulfate oxidation also occurs in the top 15 ranked score list

(rank 15). Previous experimental study has shown that this pathway

is involved in DMSP degradation (Reisch et al., 2011). In fact, if we

included thiosulfate oxidation within the DMSP guild, we obtained

a guild of four DMSP functions with 89 mapback genomes in the

composite dataset all co-occurring with a high degree of specificity

(Figure 6).

The last example guild was a large guild related to motile

microbial lifestyles. The key functions in the motility guild were

type II secretion, cbb3-type cytochrome c oxidase, flagellum,

chemotaxis, ubiquinol cytochrome c reductase, a phospholipid SBP,

and the glyoxylate shunt, totaling seven guild functions with 385

mapback genomes (Table 1). These functions are all consistent with

copiotrophic lifestyles where organisms are motile and capable

of responding to signals in the environment through chemotaxis.

Similar to the DMSP guild, a key advantage to our approach

is that it provides a list of functions that co-occur with classic

“copiotrophic” functions (e.g., chemotaxis and flagellum) with high

specificity to the guild mapback genomes. This can allow us to

develop hypotheses related to the ecological and biogeochemical

roles played by this group. For this motility guild, type II secretion

and the Glyoxylate shunt co-occur with both chemotaxis and

flagellum with a high degree of specificity (average outgroup

confidence of 0.35).

4.2. MAG vs. SAG guild comparison

We ran both our MAG and SAG datasets through our

method to investigate the differences in guilds generated by these

two different datasets. These datasets not only used different

methodologies but also sampled different oceanographic regions.

The MAG dataset was comprised of globally distributed samples,

most notably 68 sampling sites from Tara Oceans (Sunagawa

et al., 2015) spanning all major oceanographic regions (except

the Arctic Ocean) and three depths from the surface (5m) to

the mesopelagic zone (600m). The SAG dataset on the other

hand was obtained from samples primarily located in the North

Atlantic and Pacific Oceans at a mean depth of 70.7m and

was prefiltered (Pachiadaki et al., 2019). Thus, the expectation

is that these different datasets will yield different guilds because

they sampled fundamentally different communities. Indeed, while

guilds related to DMSP, the C-P lyase pathway, motility, and

rhodopsins (Supplementary Table 5) were identified in the MAG

dataset, the SAG dataset generated guilds primarily related to the

uptake of substrates (Supplementary Table 6).
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TABLE 1 Top 15 functions based on score (see Section 2) for two aspects related to DMSP degradation and motility.

DMSP aspect Scores Motility aspect Scores

DMSP demethylation 30.908 Type II Secretion 20.603

DMSP lyase (dddLQPDKW) 29.901 Ubiquinol Cytochrome c reductase 18.733

Sulfite dehydrogenase(quinone) 27.231 Cytochrome-c oxidase cbb3-type 17.174

Trimethylamine methyltransferase 22.441 Flagellum 12.752

Dimethylamine/trimethylamine dehydrogenase 17.902 Phospholipid SBP 12.180

Putative simple sugar SBP 16.735 Chemotaxis 11.285

Microcinc SBP 13.544 Glyoxylate shunt 7.971

Ubiquinol cytochrome c reductase 13.391 Thiamin biosynthesis 7.577

Taurine SBP 13.029 Phosphate transporter 7.430

Glycine betaine/proline SBP 12.989 Cytochrome bd complex 7.406

General l-amino acid SBP 12.160 Type I Secretion 7.304

Spermindine/putrescine SBP 11.625 Cationic peptide SBP 7.006

Putative spermidine/putrescine SBP 11.493 Ammonia transporter 6.610

Tungstate SBP 10.723 Sec/SRP 6.484

Thiosulfate oxidation 10.663 TCA cycle 6.458

Functions that constitute the resulting DMSP and motility guilds are highlighted in bold and bold and italics, respectively. SBP is the substrate-binding protein associated with the respective

ABC transporter.

A guild associated with the acquisition of phosphorus was

identified in both datasets. In the SAG dataset, this guild

comprised of four functions and 163 mapback genomes, which

consisted of the C-P lyase complex (PhnGHIJ), CP-lyase operon

(PhnFKLMNOP), CP-lyase cleavage (PhnJ), and a phosphonate

transporter (PhnCED). The C-P lyase pathway has been shown

to break down a variety of phosphonate bonds, including

phosphonates associated with semi-labile high molecular weight

dissolved organic matter (Metcalf and Wanner, 1993; White and

Metcalf, 2004; Sosa et al., 2017). It is unsurprising to see the CP-

lyases grouped together since they are co-located in a single operon.

However, this guild served as another example that our method can

extract well-known functional co-occurrences (our method does

not take into account the co-location of genes within the genome).

These four functions associated with the SAG phosphorus guild

were also found together in one of the MAG guilds with 62

mapback genomes.

The guilds identified by our method were an emergent property

of the dataset itself. This means that the absence of a known or

potential guild in the model output does not necessarily mean that

guild was not present in the dataset. Using a different collection of

annotated genomes could potentially change the abundances of the

functions within the dataset, which could greatly impact whether

the method identified a specific group of functions as a guild or

not. For example, we demonstrated that guilds with abundances

of 2% or lower were difficult to consistently observe. Furthermore,

as discussed above, K is a crucial free parameter that needs to be

selected for each novel dataset to which this method is applied. We

recommend constraining K using a similar heuristic approach to

the one we described above or using other previously suggested

methods such as the Akaike information criterion (deLeeuw, 1992;

Bingham et al., 2009).

5. Conclusion

The co-occurrence of metabolic functions has long been

studied in the field of biochemistry where metabolic pathways are

elucidated. However, these studies are typically very labor-intensive

and require cultured representatives. This can present an issue

since only a small fraction of marine microbes have been cultured

(Rappé and Giovannoni, 2003; Steen et al., 2019). Our method

described in this study presents a way to generate hypotheses about

co-occurring functions across large collections of genomes without

relying on cultured representatives. These hypotheses might aid in

future biochemical studies by providing targeted functions to test.

In addition to generating testable hypotheses, this method

presents several potential future applications. One possibility is

in assisting with genome annotation through the incorporation

of hypothetical gene products that have not yet been functionally

characterized. One recent study (Faure et al., 2021) developed

a large-scale sequence similarity network to identify protein

functional clusters (PFCs) and demonstrated the potential for

characterizing PFCs of previously unannotated proteins and

correlating them with multiple environmental variables. Rather

than focusing on whole community functional composition,

our method identifies collections of ecologically relevant

functions that are found to co-occur within assembled and

isolate genomes. Using our method, one could construct a

dataset composed of a mix of annotated and unannotated

genes/proteins. Any mapback genomes identified for those

hypothetical functions would be excellent culture candidates

for characterizing that hypothetical gene. This method

offers the potential to significantly refine the targeting

of these culturing efforts to make them more nimble and

more cost-effective.
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Understanding microbial metabolic functional guilds is an

essential step in describing microbial communities based on their

metabolic activity, particularly for key heterotrophic communities.

Rather than focusing on the functional composition of the entire

community, our method identifies collections of co-occurring

functions that form the building blocks of a community’s

functional structure. Defining the community as such will

allow us to develop improved numerical ecosystem models that

capture these metabolic capabilities. In addition, it will help

us to better build and validate models, such as the trait-

based ecosystem model GENOME described in Coles et al.

(2017) study, that directly simulated the metagenomes and

metatranscriptomes of communities. Furthermore, because our

approach is phylogenetically independent, it also provides the

ability to disentangle analyses of function and phylogeny when

assessing the structure of a given community. This provides a

window into the level of functional redundancy present both

within a single guild and across the community as a whole.

Additionally, our approach generates hypotheses about potential

co-occurringmetabolic functions that can be tested experimentally.

Furthermore, since we demonstrate that this approach works for

both MAG and SAG genomes, this method offers the ability to

characterize the genomic potential of uncultured organisms from

a wide range of studies.
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