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Promoters are the basic functional cis-elements to which RNA polymerase binds 
to initiate the process of gene transcription. Comprehensive understanding gene 
expression and regulation depends on the precise identification of promoters, as 
they are the most important component of gene expression. This study aimed 
to develop a machine learning-based model to predict promoters in Klebsiella 
aerogenes (K. aerogenes). In the prediction model, the promoter sequences in 
K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition 
(PseKNC) and position-correlation scoring function (PCSF). Numerical features 
were obtained and then optimized using mRMR by combining with support vector 
machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized 
features were inputted into SVM-based classifier to discriminate promoter 
sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV 
showed that the model could yield the overall accuracy of 96.0% and the area 
under the ROC curve (AUC) of 0.990. We hope that this model will provide help 
for the study of promoter and gene regulation in K. aerogenes.
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1. Introduction

Klebsiella aerogenes (K. aerogenes) is a ubiquitous Gram-negative bacterium found in a 
variety of environments, such as soil, sewage, mammalian gastrointestinal tract et  al. The 
K. aerogenes can also colonize in human gut and most community-or hospital-acquired 
bloodstream infections are caused by this common multi-drug resistant pathogen, which is a 
source of opportunistic infections. Although most of these bacteria are sensitive to the antibiotics 
targeting them, the drug resistance still exists, and the induced resistance mechanisms are 
complex (Price and Sleigh, 1970). Promoters are the genomic regions upstream of genes, where 
RNA polymerase and other transcription factors bind together to initiate genes transcription 
(Sawadogo and Roeder, 1985). Thus, promoter identification is the first step to understand gene 
expression mechanism. Thus, a precise identification of promoter sequence could generate 
dynamic signs for understanding its mechanism of regulation (Zuo and Li, 2010).
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In fact, several experimental methods, such as mass spectrometry 
(Flusberg et al., 2010), reduced-representation bisulfite sequencing 
(Doherty and Couldrey, 2014), and single-molecule real-time 
sequencing (Boch and Bonas, 2010), have been developed to recognize 
promoters. Although these methods are relatively helpful in the 
identification of promoters, they are exorbitant when implemented to 
large sequencing data (Hu et al., 2022a). Therefore, a bioinformatics 
tool to identify promoter sequence is instantly needed.

At present, some machine learning-based methods have been 
presented to predict promoters in multiple species (Ao et al., 2022). Li 
and Lin have ever designed a position weight matrix (PWM) method 
to identify sigma70 promoters in Escherichia coli (E. coli) (Li and Lin, 
2006). Subsequently, they developed a hybrid approach (called IPMD) 
to identify eukaryotic and prokaryotic promoters (Lin and Li, 2011). 
PePPER is another webserver for recognizing prokaryote promoter 
elements and regulons (de Jong et  al., 2012). In 2014, Lin et  al. 
proposed a first model called iPro54-PseKNC to predict sigma54 
promoters in prokaryotes (Lin et al., 2014). Liu et al. established a 
friendly tool called iPromoter-2 l for the prediction of bacterial 
promotors. These works mainly used sequence composition to 
perform prediction. By using Z-curve theory, the bacterial promoters 
could also be formulated and predicted (Song, 2012; Lin et al., 2019). 
Combining various of sequence information, Lai et al. built a powerful 
model named iProEP for the identification of promoters in three kinds 
of eukaryotes and two kinds of bacteria (Lai et al., 2019). Chevez-
Guardado designed a general tool (Promotech) for bacterial promoter 
recognition (Chevez-Guardado and Peña-Castillo, 2021). Recently, 
the promoters in two prokaryotes: Corynebacterium glutamicum and 
Agrobacterium Tumefaciens Strain C58 were studied by using 
machine learning based models (Zulfiqar et al., 1011; Li et al., 2023). 
Among them, the sigma70 promoter is the most extensively studied 
in prokaryotes (Patiyal et al., 2022). iProm-phage is a two-layer model 
for phage promoters and their types prediction (Shujaat et al., 2022).

Although there are already many prediction models for 
prokaryotic promoters, due to species specificity and prediction 
performance limitations, there is a need for trainning more specific 
promoter prediction models for K. aerogenes (Hu et al., 2022b). Thus, 
in this paper, we  designed a SVM-based model to predict the 
promoters of K. aerogenes. The Figure 1 illustrates the workflow of this 
project, mainly including the core content and key steps. Thereinto, 
two feature extraction methods, namely PseKNC and PCSF, were 
employed to convert DNA sequences into numerical features. And 
then these features were optimized by using mRMR feature selection 
algorithm based on SVM machine learning model and 5-fold 
CV. Moreover, the selected optimal feature subset was applied to train 
a SVM classifier for identifying K. aerogenes promoter sequences on 
the basis of 10-fold CV. As a result, an ideal model with prediction 
accuracy and AUC of 96.0% and 0.990 was attained.

2. Materials and methods

2.1. Data collection and preprocessing

The construction of a prokaryotic promoter dataset is crucial for 
obtaining a good promoter model. Prokaryotic Promoter Database 
(PDD, http://lin-group.cn/database/ppd/) developed by Lin et  al. 
contains comprehensive information on experimentally verified 
promoters of numerous prokaryotic species and can be freely accessed 

(Su et al., 2021). The sequence data of 763 K. aerogenes promoters 
were downloaded from the database and defined as positive dataset. 
Each promoter sequence was composed of 81 nucleotides, including 
transcription start site (TSS) (namely the 0-th site), upstream 20 bp 
and downstream 60 bp regions of TSS. In order to generate a reliable 
negative dataset, we firstly extracted the convergent intergenic (length 
greater than 81 bp) and coding (length greater than 2000 bp) regions 
from K. aerogenes genome. Secondly, sliding window method with 
step of 1 bp was applied to generate convergent intergenic and coding 
sequences, with length of 81 bp. Then, we used CD-HIT program to 
estimate the sequence similarity of convergent intergenic and coding 
sequences, and filtered highly similar sequences by setting cutoff value 
as 0.8. Finally, 763 convergent intergenic sequences and 763 coding 
sequences were randomly picked out and regarded as negative dataset.

2.2. Feature extraction

Referring to the well-designed eukaryotic and prokaryotic promoter 
identification tool, iProEP,1 we also adopted two algorithms, including 
pseudo k-tuple nucleotide composition (PseKNC) and position-
correlation scoring function (PCSF), to transform raw promoter/
non-promoter sequence data into suitable numeric features 
for modeling.

1 http://lin-group.cn/server/iProEP/

FIGURE 1

The overall workflow of this study.
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In this study, the type II PseKNC method was used to transform 
each nucleotide sequence into a feature vector of 4k +λΛ  dimensions 
(Tang et al., 2021),

 
D d d d d d d dpseKNC

T
k k k k k= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ + + + + +1 2 4 4 1 4 4 1 4λ λ λΛ  (1)

where k  means k -tuple nucleotide component, λ  is an integer 
less than L k−  ( L  denotes the length of a DNA sequence). And Λ  
is the number of physicochemical properties, the value of which is 6 
corresponding to the six types of DNA local structural properties 
included in this work. Each element in DpseKNC  is defines as:
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The former 4k elements are nucleotide composition features, 
which can reflect local or short-range sequence-order information. 
The latter λΛ  factors are pseudo nucleotide composition features 
corresponding to global or long-range effect. In equation (2), fi

k tuple−
 

represents the normalized frequency of occurrence of the i -th k
-tuple nucleotides in the sample sequence. The weight factor ω  can 
adjust the effects of nucleotide composition and local structural 
properties of DNA. And τ j  indicates the m -tier correlation factor 
and is formulated with the form of equation (3), the value of which 
corresponds to the sequence-order correlation between all the m -tier 
contiguous k -tuple nucleotide component along a promoter/
non-promoter sequence.
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(4)

where H R Ri iξ +( )1  is the standardized value of the ξ -th DNA 
local structural properties for the dinucleotide R Ri i+1  at position i . 

The original values of these physicochemical properties are provided 
by Goñi et al. (2008) and the standardization approach are the same 
as previously described in iProEP. In addition, the processes of 
Position-Correlation Scoring Matrix (PCSM) construction and PCSF 
feature transformation and selection are directly referring to the E. coli 
model in iProEP.

2.3. mRMR

mRMR is a well-known feature selection method and has been 
used in many computational and biological applications (Zulfiqar 
et al., 2021; Su et al., 2023). The density functions are described as ‘i’ 
and ‘y’ and their corresponding probabilities are P i( )  and P y( ) . The 
common information between these two functions can 
be demarcated as
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If the target is Ji then calculating the mutual information in 
relation to the target and can be defined as
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So, calculating the mRMR as Mi( )
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2.4. Machine learning classifiers

SVM is a well-known classifier and has been utilized in many 
bioinformatics and computational biology related tools (Basith 
et al., 2021; Arif et al., 2022; Basith et al., 2022; Bupi et al., 2023; Dao 
et al., 2023). It is typically used to perform binary classification. Ada 
boost (AB) is another famous classifier (Wang et al., 2021). The 
main idea of AB is to set the classifiers weights and trained the data 
in each and every iteration. Naïve Bayes (NB) classifier has been 
widely used in bioinformatics due to its simplicity (Naseer et al., 
2022; Zulfiqar et  al., 2022). This classification method totally 
depends on the Bayes theorems. Random Forest (RF) is a collective 
knowledge algorithm and broadly used in bioinformatics (Zhu 
et al., 2022; Zhang et al., 2023). The main idea of this is to unite 
multiple weak classifiers and outcome generated on the basis of 
voting (Zulfiqar et  al., 2023). The brief description is clearly 
described in (Zulfiqar et al., 2021). The k-nearest neighbor (KNN) 
is a non-parametric and supervised learning classifier, which uses 
vicinity to make classifications about the grouping of an individual 
data point. Logistic Regression (LR) is a classification algorithm and 
used when the value of the target variable is categorical in nature 
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FIGURE 2

The prediction accuracies of SVM models constructed with different numbers of features. (A) IFS process for feature selection and (B) ROC curve 
based on the optimal features.

(Yang et al., 2021). We have executed these algorithms in Weka 
version 3.8.4. by using the default values.

2.5. Evaluation metrics

Accuracy, sensitivity, specificity (Cao et al., 2017; Tang et al., 
2022; Yang et al., 2022; Zhang et al., 2022; Chen et al., 2023) were 
utilized to evaluate the performance of the prediction model and 
termed as
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where ‘tp’ represents the correctly predicted promoter sequences 
and ‘fp’ shows the non-promoter sequences classified as promoter 
sequence. And the other hand, ‘tn’ characterizes the correctly 
recognized non-promotor sequences and ‘fn’ exhibit the promoter 
sequences which were classified as non-promoter sequence.

3. Results and discussion

In the fields of statistical analysis and machine learning (ML) 
prediction, cross-validation (CV) strategy has been widely utilized 
to evaluate the prediction performance of ML models (Hasan et al., 
2022; Shoombuatong et al., 2022; Xiao et al., 2022; Yu et al., 2022; 
Zhang et al., 2022). In this work, 5-fold CV technique was used in 
the processes of PseKNC parameter optimization and optimal 
feature subset selection and 10-fold CV technique was used to 
assess the performance of the six machine learning methods. In 
n-fold CV, the benchmark dataset was randomly divided into n 

groups with equal size. Each group was individually tested on the 
model which was trained with the remaining n-1 groups. According 
to this, the n-fold CV method was performed n times, and the final 
evaluation result was the average prediction performance of the 
n models.

We constructed a computational model on the basis of sequence 
features to recognize promoter sequences in K. aerogenes. Based on 
the definition of pseudo nucleotide characteristics, we debugged the 
parameters k ， λ ，and ω  according to the following range to 
determine the optimal combination of k-mer nucleotide 
composition information and long-range sequence 
order information.,
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Based on the feature set generated by each combination and the 
LIBSVM algorithm, we can construct promoter prediction models 
and evaluate their accuracies using a 5-fold CV method. The final 
determined values of k, λ, and ω were 5, 29, and 0.1, respective. The 
original vector contains 1,198 features which could produce the 
prediction accuracy of 88.0%. Then, 17 positional correlation 
scoring features were calculated based on the most conserved sites 
in the promoter sequence of the 3-mer nucleotide fragment. After 
integrating two types of features, the mRMR algorithm was applied 
to sort all features, and an incremental feature selection (IFS) 
method was applied to eliminate redundant information to obtain 
the optimal feature subset for improving the accuracy of the 
promoter classifier. In the process of IFS, we also used a 5-fold CV 
method to evaluate the promoter prediction accuracy of each 
classifier, as shown in Figure 2A. As shown in the figure, the model 
constructed based on the first 586 features has the highest 
prediction accuracy of 95.9%.

After determining the optimal subset of features, we  further 
evaluated its promoter prediction ability using a 10-fold CV method 
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for determining the parameters c and γ in SVM, where c ∈ [2−5, 215] 
with a step of 2, γ∈ [23,2−15] with a step size of 2−1. The final optimal 
values of c and γ are 2 and 2−3, respectively. The optimal SVM model 
could produce the best performance with the accuracy of 96.0%, 
sensitivity of 95.7%, and specificity of 96.2%. The area under the ROC 
curve (AUC) was 0.990 with 95% confidence interval (CI): 0.987–
0.993 (as shown in Figure 2B).

In order to evaluate the performance of this SVM prediction 
model, we also constructed five models based on LR, KNN, RF, AB 
and NB for K. aerogenes promoter recognition by using the same 
optimal features. The 10-fold CV results showed that the AUC 
values of the LR, KNN, RF, and AB models were 0.960, 0.941, 0.939, 
and 0.959, respectively, as shown in Figure 3. We observed that the 
sensitivity of the RF model was poor (68.8%), while the overall 
predictive performance of the NB model was the weakest, with 
accuracy and AUC values of 81.3% and 0.882 (Table  1). The 
accuracy of SVM-based model was 96.0% which was 5.6–14.7% 
higher than the other five classifiers. Overall, identifying 
K. aerogenes promoter sequences based on optimal pseudo 
nucleotide features and positional correlation scoring features is 
effective, and the model constructed based on SVM algorithm has 
the best predictive performance.

4. Conclusion

Promoters play an important role in the initiation of 
transcription, because they are located upstream of genes. RNA 
polymerase and a quantity of transcription factors bind to promoter 
to start the transcription. Therefore, studying promoters is crucial 
for studying gene expression regulation. In this study, we proposed 
an SVM-based model to identify promoter sequences in 
K. aerogenes. In the proposed model, sequences were encoded using 
PseKNC and PCSF and then optimized with mRMR and 
SVM-based algorithm on 5-fold CV. Then, these optimized features 
were inputted into SVM-based classifier using 10-fold CV and 
achieved the best model. The results show that our model can 
predict promoters accurately, suggesting that our feature extraction 
and selection methods are able to capture the important sequence 
features. In the future, we will develop more suitable and robust 
models for more prokaryotic species.
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FIGURE 3

The ROC curves for different machine learning models.

TABLE 1 The prediction performance of different machine learning 
models based on 10-fold cross-validation.

Method Sn (%) Sp (%) Acc (%) AUC

LR 85.1 93.1 90.4 0.960

KNN 85.7 92.7 90.4 0.941

RF 68.8 96.2 87.1 0.939

AB 84 92.9 89.9 0.959

NB 83.9 79.9 81.3 0.882

SVM 95.7 96.2 96.0 0.990

Note: The K. aerogenes promoter prediction model constructed with SVM classifier produces 
the highest accuracy, sensitivity, specificity and AUC,which is the finally determined model.
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