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Burning coal seams, characterized by massive carbon monoxide (CO) emissions, 
the presence of secondary sulfates, and high temperatures, represent suitable 
environments for thermophilic sulfate reduction. The diversity and activity of 
dissimilatory sulfate reducers in these environments remain unexplored. In this 
study, using metagenomic approaches, in situ activity measurements with a 
radioactive tracer, and cultivation we  have shown that members of the genus 
Desulfofundulus are responsible for the extremely high sulfate reduction rate 
(SRR) in burning lignite seams in the Altai Mountains. The maximum SRR reached 
564  ±  21.9  nmol  S  cm−3 day−1 at 60°C and was of the same order of magnitude 
for both thermophilic (60°C) and mesophilic (23°C) incubations. The 16S rRNA 
profiles and the search for dsr gene sequences in the metagenome revealed 
members of the genus Desulfofundulus as the main sulfate reducers. The 
thermophilic Desulfofundulus sp. strain Al36 isolated in pure culture, did not 
grow at temperatures below 50°C, but produced spores that germinated into 
metabolically active cells at 20 and 15°C. Vegetative cells germinating from spores 
produced up to 0.738  ±  0.026  mM H2S at 20°C and up to 0.629  ±  0.007  mM H2S 
at 15°C when CO was used as the sole electron donor. The Al36 strain maintains 
significant production of H2S from sulfate over a wide temperature range from 
15°C to 65°C, which is important in variable temperature biotopes such as lignite 
burning seams. Burning coal seams producing CO are ubiquitous throughout 
the world, and biogenic H2S may represent an overlooked significant flux to the 
atmosphere. The thermophilic spore outgrowth and their metabolic activity at 
temperatures below the growth minimum may be  important for other spore-
forming bacteria of environmental, industrial and clinical importance.
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1. Introduction

Burning coal seams and waste piles are widespread throughout 
the world and are found in China, Russia, United  States, 
South Africa, Australia, Germany, India, Indonesia and many other 
countries (Prakash and Gupta, 1998; Prakash et al., 1999; Stracher 
and Taylor, 2004; Kuenzer et al., 2007; Shan et al., 2019). Coal fires 
have been declared a global catastrophe, not only because of the 
huge loss of coal resources and land desertification, but also because 
of environmental problems such as the uncontrolled release of toxic 
fumes and greenhouse gases (Stracher, 2004). Gaseous compounds 
such as carbon-monoxide (CO), carbon-dioxide (CO2), methane 
(CH4), arsenic, fluorine and mercury have been discussed as the 
main problems associated with coal-burning fumes (Kuenzer et al., 
2007; Pone et al., 2007; Song et al., 2020). So far, less attention has 
been paid to hydrogen sulfide emissions from burning coal seams. 
Garrison et al. (2017) reported a strong positive correlation between 
CO flux and H2S flux in a coal mine fire in Lotts Creek, Kentucky. 
Abnormally high concentrations of hydrogen sulfide have been 
reported in the Fukang mining area in western China (Xie et al., 
2021). Coal contains sulfur in organic and inorganic forms (Calkins, 
1994). Pyrite makes up the bulk of the inorganic sulfur in most coals. 
Sulfates, originated from the oxidation of S-rich coal-fire gases 
followed by subsequent evaporation, are formed in large quantities 
in burning coal piles (Pone et al., 2007; Kruszewski, 2013). The high 
amount of sulfate and the presence of potential electron donors such 
as CO and H2 in the burning seams make coal fire-associated heated 
rocks suitable biotopes for thermophilic sulfate reduction. However, 
the microbial sulfate reduction in burning coal seams or dumps 
remains unexplored.

We previously described a low-diversity microbial community 
dominated by Firmicutes (recently renamed Bacillota) associated with 
the burning lignite seams of the Taldy-Dyurgunskoye coalfield in the 
Altai Mountains (Kadnikov et al., 2018). Presumably, the thermophilic 
Firmicutes spores could have spread from their original thermal habitats 
by air and colonize burning coal seams rich in high-energy substrates 
such as H2 and CO. Subsequent regular site sampling revealed that H2S 
and CO were the main gases emitted from thermal biotopes, suggesting 
that microbial sulfate reduction may occur in the environment. This 
study reports extremely high rates of bacterial sulfate reduction in heated 
rocks associated with burning lignite by members of the thermophilic 
genus Desulfofundulus. Using radioactive tracer, metagenomic analysis 
and cultivation, we found that thermophilic Desulfofundulus spores can 
germinate into vegetative cells at temperatures below 25°C and thus 
support sulfate reduction also under mesophilic conditions.

2. Materials and methods

2.1. Study site, sampling, and 
physicochemical parameters 
measurements

The geographical location of the Chagan-Uzun lignite open pit in 
the Altai Mountains was described earlier (Kadnikov et al., 2018). 
We regularly sampled heated rocks with visible signs of underground 
coal smoldering in period between 2015 and 2021 years. The AL36 

sample used to isolate the pure culture was collected on August 08, 
2019. The heated rock temperature was measured by inserting an 
electrode into the rock/soil with a pH-meter HI 8314 (Hanna 
Instruments, Vöhringen, Germany). On-site measurements of CO, 
H2S, CH4, and H2 were carried out using a portable gas analyser 
OKA-T (Informanalitika, Russia) with an electrochemical sensor with 
a relative error of 25% vol. Sulfate concentrations were measured in 
heated rock or soil extracts prepared as follows: 2.5 g of rock/soil 
sample was dissolved in 25 mL of deionized water and shaken on a 
reciprocating shaker at 75 rpm for 1 h. An aliquot of the rock/soil 
extract was filtered through a 0.22 μm filter and used for ion 
chromatography measurements (Dionex, CA, United  States). The 
mineralogical composition of minerals associated with lignite burning 
was characterised by X-ray diffraction (XRD) using a Shimadzu 
XRD-6000 diffractometer, as described previously (Ikkert et al., 2013).

2.2. Measurement of sulfate reduction rate 
with a radioactive tracer

Radioactive sulfate was used to determine the sulfate reduction 
rate (SRR). Samples of heated rock or soil were placed into sterile 
5 mL syringes closed with butyl rubber stoppers, which received 
aliquots (200 μL) of Na2

35SO4 (4 μCi “Perkin-Elmer”, United States) by 
injection through the butyl rubber stopper. The syringes were 
incubated in the dark at two temperatures, 60°C and 23°C, for 24 h, 
followed by the addition of 1 mL of 2 M KOH to stop microbial 
activity and fix sulfide. Subsequent analytical procedures to measure 
reduced 35S species formed in heated rock/soil samples were carried 
out in the laboratory. Radioactivity was measured in the acid volatile 
sulfide (AVS) fraction, which included H2S and FeS, and the 
chromium-reducible sulfur (CRS) fraction, which included pyrite, 
elemental and organic sulfur, as described previously (Karnachuk 
et al., 2005, 2023). Briefly, in the first step, reduced sulfur in the form 
of monosulfides, including FeS (AVS), was separated by acid 
distillation from other forms of reduced sulfur (CRS) and unreacted 
sulfate. The radioactivity of the AVS fraction and unreacted sulfate 
was determined independently. In the second stage, acid distillation 
in the presence of Cr2+ reduced pyrite (FeS2), elemental sulfur and 
organic sulfur to H2S. The radioactivity of this fraction of reduced 
sulfur species was determined as CRS. The effluent gas stream from 
the acid distillation in both stages was bubbled into traps filled with 
a scintillation cocktail containing 2-phenylethylamine. The reagents 
and conditions for acid distillation have been described previously 
(Karnachuk et  al., 2005, 2023). Radioactivity was measured on a 
TRI-Carb TR 2400 (Packard, United  States) liquid scintillation 
analyzer. The rate of sulfate reduction, v in nmol S cm−3 day−1, was 
calculated as.

 
v t= +( )− − − −
H S SO H S SO
35

4
2 35 35

4
2

/

where H35S− is the concentration of radioactive, reduced sulfur 
(nmol cm−3); 35SO4

2− is the concentration of radioactive unreduced 
sulfate (nmol cm−3); SO4

2− is the in situ concentration of sulfate; and t 
is the incubation time (days). The mean SRR and standard deviation 
were calculated from triplicate incubations.
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2.3. SRB enrichment, pure culture isolation 
and characterization

An initial enrichment from AL36 heated rock sample was 
prepared in modified Widdel and Bak (WB) freshwater medium 
(Widdel and Bak, 1992) that contained (per liter) 0.15 g Na2SO4, 0.2 g 
KH2PO4, 0.25 g NH4Cl, 1 g NaCl, 0.4 g MgCl2·6H2O, 0.5 g KCl, 0.113 g 
CaCl2, 2 mL of vitamin solution, 1 mL of microelement solution, 1 mL 
each of Na2SeO3 (final concentration 23.6 μM) and Na2WO4 (24.2 μM) 
solutions (Widdel and Bak, 1992). The medium was adjusted to pH 
7.2 with NaHCO3 solution pH, and 0.2 mL of Na2S·9H2O stock 
solution was used as a reducing agent. Each cultivation vial received a 
Fe0 wire as previously described (Karnachuk et al., 2019). Lactate 
(18 mM) and formate (7.5 mM) were used as electron donors for 
initial enrichment. The enrichments were incubated at 60°С. A pure 
culture was isolated by repeated serial dilutions and culture exposure 
at 90°C for 20 min. The 16S rRNA gene was amplified using the primer 
pair 27F and 1492R (Lane, 1991) and sequenced commercially by 
Syntol Co. (Moscow, Russia) using the Sanger method.

Growth of the isolated pure culture was analyzed with the 
following electron donors: 7.5 mM formate, 9 mM acetate, 13.5 mM 
propionate, 7 mM butyrate, 7 mM pyruvate, 4.5 mM succinate, 9 mM 
fumarate, 7.5 mM malate, 5 mM fructose, 5 mM glucose, 3 mM 
sucrose, 25 mM ethanol, 11 mM glycerol, and 1 g L−1 peptone (all 
Sigma-Aldrich). Carbohydrate stock solutions were sterilised using 
polyethersulfone 0.22 μm Millex-GP filter units (Merck Millipore, 
Darmstadt). If growth was observed, the culture was subcultured at 
least five times in the presence of each electron donor to confirm 
their utilization.

For experiments with spores, strain Al36 was grown with lactate 
in a liquid medium in sealed, headspace-free 500 mL serum bottles at 
65°С. To remove the iron precipitate formed in the sulfidogenic 
culture, the culture was centrifugated at 1,000 × g for 2 min before cell 
harvesting. Bacteria from a 2.5 L culture in stationary phase (120 h) 
were harvested by centrifugation at 11,000 x g for 40 min and washed 
with 1× PBS buffer. The cells were additionally washed with 1 N HCl 
in order to remove iron sulfide precipitated on the spores. Vegetative 
cells were killed by exposing the culture at 95°C for 1.5 h and rinsing 
with 1× PBS buffer. The spores were suspended in fresh medium with 
CO (5%) as the sole electron donor and incubated at 8°C, 15°C, and 
20°C. Growth was determined by microscopic cell counts using an 
Axio Imager A1 microscope in triplicate samples. Specific growth rate 
was calculated from the cell counts during the exponential phase of 
growth. H2S was measured colorimetrically with the methylene blue 
method (Cline, 1969) in triplicate using a Smart Spec Plus 
spectrophotometer (Bio-Rad Laboratories, Hercules, CA).

Cell morphology and germinating spores were observed by phase 
contrast microscopy using an Axio Imager A1 microscope and by 
transmission electron microscopy (TEM) of ultrathin sections, as 
previously described (Bukhtiyarova et  al., 2019). Briefly, for 
transmission electron microscopy, germinating spores from 500 mL 
culture bottles incubated at 20°С for 27, 144 and 192 h were harvested 
by centrifugation at 11,000 × g for 40 min and washed with 1× PBS 
buffer. Germinated spores incubated at 15°С were harvested for TEM 
after 118 h by centrifugation under the same conditions. Fixation of 
pelletized samples in glutaraldehyde, staining with osmium tetroxide, 
and dehydration with ethanol have been described previously (Ikkert 

et al., 2013). Ultrathin sections (60–100 nm) were prepared with an 
ultramictome (Ultratome III, LKB, Stockholm, Sweden) and viewed 
with a JEM-100 CXII electron microscope (JEOL, Tokyo, Japan) at a 
voltage of 80 kV.

2.4. 16S rRNA-based microbial community 
profiling

PCR amplification of 16S ribosomal RNA gene fragments 
spanning the V3–V4 variable regions was carried out using the 
universal primers 341F (5′-CCTAYGGGDBGCWSCAG-3′) and 806R 
(5′-GGACTACNVGGGTHTCTAAT-3′) (Frey et  al., 2016; 
Wasimuddin et al., 2020). PCR fragments were barcoded using the 
Nextera XT Index Kit v.2 (Illumina, USA) and sequenced on the 
Illumina MiSeq (2 × 300 nt paired-end reads). Paired-end overlapping 
reads were merged using FLASH v.1.2.11 (Magoč and Salzberg, 2011). 
Low-quality reads were filtered, and the remaining sequences were 
clustered into operational taxonomic units (OTUs) at 97% identity 
using the Usearch program (Edgar, 2010). Chimeric sequences and 
singletons were removed during clustering by the Usearch algorithm. 
To calculate OTU abundances, all reads were mapped to OTU 
sequences at 97% global identity threshold by Usearch. OTUs 
composed of only a single read were discarded. The taxonomic 
identification of OTUs was performed by searches against the SILVA 
v.138rRNA sequence database using the VSEARCH sintax algorithm 
(Rognes et al., 2016).

2.5. Strain Al36 genome sequencing

The Al36 strain was grown in modified WB medium with lactate 
(18 mM) as electron donor for genomic DNA isolation. Genomic 
DNA was isolated from strain Al36 using a DNeasy Power Soil DNA 
isolation kit (Mo Bio Laboratories, Carlsbad, CA, United States). The 
shotgun genome library was prepared using the NEBNext Ultra II 
DNA library prep kit (New England Biolabs, Ipswich, MA, 
United States). The sequencing of this library on an Illumina MiSeq 
instrument in a paired reads mode (2 × 300 nt) generated 845,338 read 
pairs. Low quality sequences were trimmed using Sickle v.1.33 
(q = 30).1 Trimmed reads were merged with FLASHv.1.2.11 (Magoč 
and Salzberg, 2011). Resulting reads were de novo assembled using 
SPAdes v. 3.15.4 (Bankevich et  al., 2012) into 101 contigs longer 
than 200 bp.

Gene search and annotation were performed using the RAST 
server 2.0 (Brettin et al., 2015) followed by manual correction of the 
annotation by comparing the predicted protein sequences with the 
National Center for Biotechnology Information (NCBI) databases. 
The presence of specific conserved domains was verified for some 
genes related to sulfate reduction and utilization of organic substrates. 
The search and classification of hydrogenases was carried out using 
HydDB tool (Søndergaard et al., 2016).

Digital DNA:DNA hybridization calculation was performed using 
the Genome-to-Genome Distance Calculator (GGDC) online 

1 https://github.com/najoshi/sickle
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platform.2 The average nucleotide identity (ANI) values were 
calculated using ANI calculator from the Enveomics Collection 
(Rodriguez-R and Konstantinidis, 2016).

2.6. Sequencing of metagenomic DNA and 
identification of dsrABD gene sequences

The metagenomic DNA of sample AL36 was sequenced using the 
Illumina HiSeq2500 platform according to the manufacturer’s 
instructions (Illumina). The sequencing of a paired-end (2 × 150 nt) 
TruSeq DNA library generated 15,336,062 read pairs. Open reading 
frames (ORFs) with a minimum length of 96 nucleotides were 
predicted in all Illumina reads using OrfM v.0.7.1 (Woodcroft et al., 
2016). HMM profiles for dsrA and dsrB from TIGRFAM (Haft et al., 
2003), and for dsrD from Pfam (Finn et  al., 2014) were searched 
against all predicted ORFs using rpsblastv.2.12.0 with 1e−3 E-value 
cutoff. ORFs that had significant identity to the HMM profiles were 
further searched against UniRef100 database using diamond v.0.9 
(Buchfink et al., 2015) with1e−3 E-value cutoff. ORFs that had non-dsr 
genes among top  10 UniRef100 hits were excluded. The NCBI 
taxonomy for every ORF homolog from UniRef100 database was 
identified using NCBI-taxonomist v.1.2.1 program.3

3. Results

3.1. Physicochemical characteristics of the 
sampling site

The Taldy-Dyurgunskoye coalfield is located in the western part 
of the Chuya valley, 5 km to the southwest of the Chagan-Uzun village 
and the famous Chuysky Tract connecting Siberia with Mongolia and 
China (50°4′31.54″N, 88°18′47.4″E). Brown coal seams at an elevation 
of 1910–1770 meters above sea level began to be mined by open pit 
method in the late 1980s. Mining was halted due to poor coal quality 
and spontaneous combustion. We regularly sampled the open pit with 
visible signs of underground coal smouldering (Figure 1) from 2015 
to 2021. The study targeted three sites in the open pit: a mixture of 
heated rocks and lignite near the vent (fumarole) emitting smoke (site 
1) (Figures 1A,B); heated rocks adjacent to a semi-solid bitumen-like 
outcrop (site 2) (Figures  1A,C); soil of the low temperature 
background control site without signs of underground coal burning 
(site 3) (Figure 1C).

The physicochemical characteristics of the sampling sites are 
shown in Table 1. The average H2S concentration at site 1 varied from 
8.5 to 60.0 mg m−3. The CO concentration was measured during three 
sampling sessions and comprised 1.0 mg m−3 in a 10–15 cm layer and 
increased with depth up to 3.0 mg m−3 in August 2021. In November 
2021, CO was not detected. A characteristic feature of heated rocks 
associated with smoldering lignite is constant temperature fluctuations 
due to the intensity of heat steam from underground, ambient air 
temperature, wind, humidity and precipitation. Most of the samples 

2 https://ggdc.dsmz.de/ggdc.php#

3 https://pypi.org/project/ncbi-taxonomist/

were collected at a depth of 10–15 cm below the heated rock surface 
to provide isolation from the surrounding atmosphere. The 
temperature at sampling site 1 at a depth of 10–15 cm was 34.9°C in 
November and 68.8°C in August. The temperature at a depth of 80 cm 
in August 2021 was 70°C.

X-ray diffraction patterns (XRD) showed the presence of gypsum 
(CaSO4), elemental sulfur (S), and chalcopyrite (CuFeS2) in the heated 
rock. Evaporate rose gypsum (CaSO4) crystals were observed all 
around the smoldering areas of the open pit (Figures  1D,E). 
Aluminium sulfate, alunogen, Al2(SO4)317H2O, was also detected in 
most of the samples.

3.2. Sulfate reduction rate

The sulfate reduction rate (SRR) measured with a radioactive 
sulfate tracer was extremely high and varied from 43.9 ± 11.9 (site 2) 
to 564 ± 21.9 nmol S cm−3  day−1 (site 1) (Figure  2). For the SRR 
measurement the heated rock and soil samples were withdrawn with 
syringes and incubated in a thermostat at a temperature of 60°C, a 
value close to the average ambient conditions of the biotope. In 
addition, the parallel syringes were incubated at room temperature 
23°C. Surprisingly, the SRR measured at 23°C was slightly lower than 
at 60°C, but comprised values of the same order of magnitude as the 
thermal samples (Figure 2). This fact implies that there is a mesophilic 
microbial community in the thermal biotope that can reduce sulfates 
at a high rate at lower temperature, which can be  beneficial for 
biotopes characterised by highly variable temperature. SRR 
measurements at the control site 3 with no burning and at an ambient 
air temperature of 23°C at the time of sampling (sample AL58) 
demonstrated that the community was able to reduce sulfate at a high 
rate of 154 ± 45 nmol S cm−3 day−1 at 60°C, and 32.3 nmol S cm−3 day−1 
at 23°C.

3.3. Microbial community composition

Composition of microbial communities of heated rock samples 
AL36 and AL54 (both site 1), as well as control soil AL58 (site 3) was 
characterized by 16S rRNA gene profiling. The pool of reads retrieved 
from the coal burning site 1 was dominated by 16S rRNA gene 
sequences of bacterial origin, and archaeal 16S rRNA gene reads were 
revealed only in samples AL54 (site 1) and AL58 (site 3) and accounted 
for less than 0.04% of the total. Most of the community in two heated 
rock samples was represented by the phylum Firmicutes whose share 
was almost 100% in AL36 (site 1) sample and about 92% in the sample 
AL54 (site 1) (Figure 3). The microbiome of sample AL36 (site 1) was 
dominated by the genera Kyrpidia (31.7% of all 16S rRNA gene 
sequences), Hydrogenibacillus (31.0%), and Brockia (27.4%). All the 
genera comprise thermophilic facultatively chemolitoautotrophic 
bacteria oxidizing molecular hydrogen under aerobic conditions 
(Kyrpidia and Hydrogenibacillus) or anaerobically using elemental 
sulfur as an electron acceptor (Brockia) (Schenk and Aragno, 1979; 
Bonjour and Aragno, 1984; Klenk et al., 2011; Perevalova et al., 2013). 
Members of the genus Thermoanaerobacter, comprising anaerobes 
that can grow organoheterotrophically by fermentation or anaerobic 
respiration with inorganic electron acceptors, in particular sulfur and 
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thiosulfate (Stackebrandt, 2014), accounted for about 5.9% of the 
community. Potential sulfate reducers were represented by the genera 
Desulfofundulus (2.4%) and Thermanaeromonas (0.5%).

Microbial community of the sample, AL54 (site 1), collected from 
the same site 1 in 2 years after sampling AL36 (site 1), was dominated 
by Candidatus Carbobacillus (29.6%), facultatively anaerobic 

FIGURE 1

(A) Lignite strip mining open pit (B) Sampling site 1. Note the ice crystals precipitated around the vent due to the ambient air temperature of −15°C on 
November, 19th, in the time of collection AL61 and AL62 samples. (C) Sampling site 2 and background control sampling site 3 in the same lignite open 
pit without traces of smouldering lignite. (D) Rose gypsum crystal (CaSO4) and (E) its diffractogram showing gypsum as the only crystalline phase of the 
crystal.

TABLE 1 Characteristics of the sites at the time of sampling.

Sample
Date of 

sampling
Depth, cm T pH

H2S, mg 
m−3

CO, mg 
m−3

CO2, mg 
m−3

CH4, mg 
m−3

Site 1 underground coal fire and vents field

AL36 04.08.2019 10–15 68.0 nd nd nd nd nd

AL51 12.08.2020 10–15 68.8 7.42 60.0 nd nd nd

AL54 10.08.2021 10–15 55.0 nd 8.5 1.0 0.47 0.2

AL56 10.08.2021 80 70.0 nd 10.7 3.0 1.4 0

AL61 19.11.2021 40 50.0 nd nd nd nd nd

AL62 19.11.2021 10–15 34.9 nd 7.7 0 0.52 0.36

Site 2 bitumen discharge field

AL37 04.08.2019 10–15 78.0 nd nd nd nd nd

AL52 12.08.2020 10–15 70.1 7.4 nd nd nd nd

Site 3 background control soil, no burning

AL58 10.08.2021 10–15 23.0 nd nd nd nd nd

nd, not determined.
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heterotrophs that can use molecular hydrogen as an energy source 
(Kadnikov et al., 2018). However, most of Firmicutes (33% altogether) 
belonged to uncultured lineages phylogenetically distant form 
cultured groups and could not be classified even at the order level. 
Chemolitoautotrophic hydrogenotrophs of the genera Kyrpidia 
(12.1%), Hydrogenibacillus (2.5%), and Brockia (0.1%) were found in 
lower relative abundances. Members of the Thermoanaerobacter 
accounted for 13.4% of the community; the share of Desulfofundulus 
was 1.15%, while Thermanaeromonas was not detected.

The composition of microbiome at the control site without lignite 
burning, AL58 (site 3), was typical for soils. The most numerous phyla 
were the Proteobacteria (34.1%), Bacteroidota (25.4%) and 
Patescibacteria (13.1%), while Firmicutes accounted for only 0.05% of 
16S rRNA gene sequences. The Firmicutes were represented by 

members of the genera Propionispira (0.02%), Sulfobacillus (0.02%), and 
Brockia (0.01%), among the cultivated representatives of which there 
are no sulfate reducers. Desulfofundulus and Thermanaeromonas were 
not found. Therefore, this sample was not analysed in further details.

3.4. Metagenomic analysis revealed 
possible sulfate reducers

To reveal sulfate-reducing bacteria at the coal burning site, 
we  sequenced the metagenome of the AL36 (site 1) sample and 
searched for genes dsrA, dsrB and dsrD, key markers for the 
dissimilatory sulfate reduction pathway (Müller et al., 2015; Rabus 
et  al., 2015; Anantharaman et  al., 2018). Of about 31 million 
metagenomics reads, 103, 151 and 24 were mapped to the dsrA, dsrB 
and dsrD datasets, respectively (Table 2). Most reads (66 for dsrA, 106 
for dsrB nd all 24 for dsrD) were taxonomically assigned to the genus 
Desulfofundulus, comprising well known dissimilatory sulfate reducers 
(Watanabe et al., 2018). Nearly all other dsrA and dsrB reads represented 
the genus Thermanaeromonas. Cultured members of this genus, 
Thermanaeromonas toyohensis and Thermanaeromonas burensis are 
strictly anaerobic bacteria capable to reduce thiosulfate, but not sulfate 
(Mori et al., 2002; Gam et al., 2016). However, thermophilic sulfate-
reducing strain Thermanaeromonas RL80JIV from a geothermally 
active underground mine was described as well (Kaksonen et al., 2006).

3.5. Desulfofundulus pure culture isolation 
and characterization

The heated rock sample AL36 (site 1) was used for pure culture 
isolation. Considering that 16S rRNA profiling revealed 
Desulfofundulus as a major phylotype with a known ability to sulfate 

FIGURE 2

Sulfate reduction rate (SRR) expressed as the total amount of sulfur in the AVS and CRS fractions, measured in experiments with 35SO4
2− tracer in heated 

rock and soil samples from sites 1, 2 and 3 at an incubation temperature of 60°C and 23°C. The vertical bars show the standard deviation.

FIGURE 3

The relative abundance of taxonomic groups of microorganisms 
according to 16S rRNA gene profiling in heated rock samples AL54 
and AL36 (site 1) and the control site without burning AL58 (site 3). 
Firmicutes accounted for only 0.05% of the 16S rRNA gene 
sequences in AL58 sample from the control site 3 (not shown).
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reduction, lactate and formate were chosen as growth substrates for 
its cultivation. Initial enrichment was set in WB medium with lactate 
(18 mM) and formate (7.5 mM). Enrichments were incubated at 
60°С. No growth was observed with formate, while lactate-emended 
enrichments demonstrated active sulfidogenesis. Multiple serial 
dilutions of the lactate-grown enrichments followed by culture 
exposure at 90°C for 20 min allowed us to obtain a pure culture isolate, 
which was designated strain Al36.

Cells of strain Al36 are immotile rods, 2.0–4.0 μm long, and 
0.5–0.7 μm wide (Supplementary Figure S1). Spherical, centrally 
placed endospores swell the cells. Spores were detected already in the 
exponential growth phase, and almost half of all cells formed spores 
by stationary growth when the strain was grown with pyruvate as an 
electron donor. The 16S rRNA gene sequence of strain Al36 was 
identical to the Desulfofundulus OTU detected in the AL36 (site 1) 
sample in the 16S rRNA gene profiling experiment and 99.18% similar 
to that of Desulfofundulus thermocisternus DSM 10259. The sequence 
similarity was above of 98.7%, the species boundary cutoff, assuming 
that Al36 is a novel strain of D. thermocisternus (Supplementary  
Figure S1C).

The phylogenetic position of strain Al36 was confirmed by its 
genome analysis. The average nucleotide identity (ANI) between Al36 
genome and D. thermocisternus DSM 10259 was 96.58%, a value above 
the species boundary cutoff of 95% (Konstantinidis and Tiedje, 2005; 
Jain et al., 2018). Likewise, digital DNA:DNA hybridization analysis 
estimated a 76% probability that strain Al36 and D. thermocisternus 
DSM 10259 belong to the same species. The second close relative of 
strain Al36 was Desulfofundulus australicus AB33 (DSM 11792), with 
the ANI value of 97.34%. However, a recent publication states that the 
nomenclatural type of the species D. australicus, strain AB33, is no 
longer available in two publicly accessible international collections 
(Tindall, 2019), and thus, the species cannot be considered to have 
valid status. The ANI between the D. thermocisternus and D. australicus 
genomes was 97.43%, indicating that all three strains actually belong 
to the same species (Supplementary Figure S2).

Strain Al36 used a limited number of substrates for sulfate 
reduction, including CO (5%), lactate, pyruvate, and malate. The 
strain did not grow with H2, formate, acetate, propionate, butyrate, 
ethanol, glycerol, butanol, fructose, glucose, sucrose, mannose, 
succinate, fumarate, alanine, cysteine, choline, and peptone as electron 
donors for sulfate reduction. Strain Al36 was able to grow at 
temperatures from 50°C to 65°C with an optimum temperature of 
65°C, when the specific growth rate reached 0.06 h−1 (Figure 4). No 
growth occurred at 45°C or 70°C.

The high SRR measured in samples of heated rocks during their 
incubation at 23°C and the absence of known mesophilic SRB 
phylotypes in the 16S rRNA profiles and metagenome in in situ 

samples raised the question of the agent of the observed process. To 
answer the question, we  carried out a series of experiments with 
spores of strain Al36. Cells were grown to stationary phase (120 h), 
when approximately 70% of all cells formed spores. Vegetative cells 
were killed by exposing the culture at 95°C for 1.5 h. The spores were 
suspended in fresh medium with CO (5%) as the sole electron donor 
and incubated at 8°C, 15°C and 20°C. Visual observation showed that 
spores began to germinate and form vegetative cells as soon as they 
were placed in a fresh medium even at “zero time” point at a 
temperature of 15 and 20°C (Figures 5A–C,E). The number of cells 
outgrown from spores reached 1.9 106 ± 5.1 cell/mL by 27 h of spore 
culture incubation at 20°C and 7.4 104 ± 0.05 cell/mL by 14.5 h at 15°C 
(Figure  6). The number of germinated spores during culture 
incubation at 15°C and 20°C for 192 and 118 h, respectively, did not 
change significantly. Vegetative cells outgrown from spores at 

TABLE 2 Taxonomic assignment of dsr reads.

Lineage

dsrA dsrB dsrD

reads
% of the 

total
reads

% of the 
total

reads
% of the 

total

Desulfofundulus 66 64 107 70 28 100

Thermanaeromonas 36 35 44 29 0 0

Others 1 1 1 1 0 0

Total 103 100 152 100 28 100

FIGURE 4

(A) Growth of strain Al36 with CO as the sole electron donor and 
(B) H2S production during growth with CO at different temperatures: 
▲ 50°С (triangles), ○ 55°С (circles), ♦ 60°С (diamonds), □ 65°С 
(squares). Data are expressed as the means of three replicates, and 
the vertical bars show standard deviation.
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temperatures below the growth range had a “shrunken” damaged 
cytoplasm and produced new spores (Figure  5D; 
Supplementary Figure S3). Subcultivation of cells outgrown at 20°C 
did not succeed, but cells began to divide when transferred to 
50°C. Under normal temperature growth conditions, Al36 cells 
restored the cytoplasm structure.

H2S appeared in a culture of germinating Al36 spores after 48 h of 
incubation at 20°C and increased to 0.738 ± 0.026 mM after 192 h of 
incubation (Figure 6A). Thus, the outgrown cells were metabolically 
active and reduced sulfate, but could not divide. H2S appeared already 
after 21.5 h of incubation at 15°C and its concentration in the medium 
reached 0.629 ± 0.007 mM by 118 h of incubation (Figure 6B). Under 
this temperature condition, the outgrown vegetative cells precipitated 
microsized electron-dense particles (Figure 5F). Elemental mapping 
showed that these electron-dense particles were enriched in S and Fe, 
which confirms sulfide production by cells outgrowing from spores at 
15°C (Supplementary Figure S4). No spore outgrowth was 
detected at 8°C.

To verify the purity of the Al36 isolate and the absence of other 
sulfate reducers whose activity at low temperatures could explain the 
observed production of hydrogen sulfide, we  analyzed the data 
obtained from the sequencing of the culture of strain Al36. In the 
resulting sequences, 502 reads were found representing the dsrABD 
genes, all of which matched Desulfofundulus sp. Al36, which confirms 
the purity of the Al36 culture. We also analyzed the 16S rRNA gene 
from the cells outgrown from spores to confirm the absence of 
mesophilic sulfate reducer contamination during the subculturing. 
Sanger sequencing of 16S rRNA gene fragments amplified with 27F, 
907R, and 1,492 primers showed 100% sequence similarity between 
the 16S rRNA gene from strain Al36 grown at 50°C and the 16S rRNA 
gene from cells outgrown from spores at 20°C 
(Supplementary Figure S5). Our experiments with spores demonstrate 

that the thermophilic Desulfofundulus sp. Al36 produces spores 
capable of germinating at temperatures below their normal 
thermophilic growth range and reduces sulfate to H2S over a wide 
temperature range of 15°C to 65°C.

3.6. Genome analysis

The draft genome sequence of Desulfofundulus sp. strain Al36 
consists of 101 contigs (N50 of 268,081 bp) with a total length of 
2,900,077 bp. Mapping of the metagenomic reads of the AL36 sample 
to the genome of Desulfofundulus sp. Al36 showed that the relative 
abundance of this genotype in the metagenome was 2.1%, which is in 
good agreement with the 2.4% share of Desulfofundulus OTU in the 
16S rRNA gene library.

Genome analysis revealed the presence of a complete set of genes 
for dissimilatory sulfate reduction, including sulfate adenylyl 
transferase (sat), adenylsulfate reductase (aprAB) and dissimilatory 
sulfite reductase (dsrABD and dsrC). Genes for the adenylsulfate 
reductase-associated electron transfer complex QmoABC and sulfite 
reductase-associated electron transport proteins DsrMK were found 
as well. Consistently with the capability of strain Al36 to grow 
autotrophically, its genome contains complete set of genes of the 
Wood–Ljungdahl pathway for carbon fixation.

The genome encodes monomeric ferredoxin-oxidizing [FeFe] 
hydrogenase and two multisubunit confurcating [FeFe] hydrogenases. 
The later enzymes can reversibly couple the evolution of H2 to 
oxidation of reduced ferredoxin and NADH (Greening et al., 2016). 
All hydrogenases lacked membrane subunits and were predicted to 
be localized in the cytoplasm. Genome comparisons of strain Al36 
with D. thermocisternus and D. australicus revealed that these strains 
contain identical sets of hydrogenase genes, that could enable 

FIGURE 5

TEM micrograhs of Al36 strain spores germinating in WB fresh medium with CO as the sole electron donor at the “zero time” point at a temperature of 
20 (A–C) and 15°C (E) and cells with “shrunken” cytoplasm, outgrown from Al36 spores after 192  h exposure at 20°C (D). Note the formation of new 
spores in cells marked with arrows. TEM micrographs revealed electron-dense micro-sized particles of iron sulfide in the periplasm and cytoplasm of 
cells outgrown from spores of strain Al36 after 118  h exposure at 15°C (F).
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hydrogenotrophic growth. Therefore, the inability of Desulfofundulus 
sp. Al36 to use hydrogen as an electron donor for sulfate reduction 
was surprising considering that two other strains can grow 
autotrophically with H2 + CO2 and sulfate (Nilsen et  al., 1996). 
Moreover, the same types of hydrogenases are encoded in the genome 
of well characterized hydrogenotrophic sulfate reducer 
Desulfofundulus (former Desulfotomaculum) kuznetsovii (Visser 
et al., 2013).

Analysis of the Al36 genome revealed the presence of a single 
formate dehydrogenase. Besides the catalytic subunit, this enzyme was 
predicted to comprise the NuoF-like NADH-binding subunit and the 
electron transfer subunit related to NuoE. Such confurcating enzymes, 
also encoded in the genomes of D. thermocisternus, D. australicus and 
D. kuznetsovii, can couple the oxidation of formate to the reduction of 
ferredoxin and NADH (Visser et al., 2013). Formate degydrogenase 
was predicted to be  localized in the cytoplasm and is probably 
involved in the carbon fixation via the Wood–Ljungdahl pathway or 
in the oxidation of formate produced from pyruvate by pyruvate 
formatelyase in course of fermentative growth.

Genome analysis of Desulfofundulus sp. Al36 suggested that the 
ability of this strain for carboxydotrophic growth coupled to sulfate 
reduction is associated with the occurrence of four genes encoding the 
catalytic subunit of anaerobic carbon-monoxide dehydrogenase 
(CODH). However, none of these genes was clustered with 
hydrogenase genes. It was previously shown that clustering of CODH 
and membrane-bound energy-converting hydrogenase genes is a 
characteristic feature of hydrogenogenic carboxydotrophs such as 
Carboxydothermus hydrogenoformans (Wu et  al., 2005) and 

Desulfotomaculum carboxydivorans (Visser et al., 2014). The absence 
of such cluster is consistent with inability of strain Al36 to grow 
hydrogenogenically on CO.

The observed growth on lactate is consistent with the presence of 
lactate permease and two lactate dehydrogenases. Pyruvate and malate 
could be oxidized in the tricarboxylic acids cycle. However, strain 
Al36 substantially differed from D. thermocisternus and D. australicus 
in the range of substrates supporting growth. D. thermocisternus and 
D. australicus can use a broad range of organic acids, alcohols, and 
carboxylic acids (Nilsen et  al., 1996). For instance, both 
D. thermocisternus and D. australicus can use ethanol; 
D. thermocisternus grows with propionate, butyrate, propanol, and 
butanol, while D. australicus uses acetate and benzoate. Analysis of the 
genome of strain Al36 suggested that it has genetic potential for 
utilization of similar organic substrates. All three genomes contain 
multiple alcohol dehydrogenase genes, as well as methanol and 
propionate utilization pathways described in D. kuznetsovii (Visser 
et al., 2013). Genes encoding butyrate kinase, a key enzyme required 
for the utilization of this substrate, was found in the genomes of Al36 
and D. thermocisternus, but not in D. australicus consistently with 
inability of the later to grow on butyrate. Perhaps, the observed 
inability of strain Al36 to utilize hydrogen and above mentioned 
alcohols and organic acids as electron donors for sulfate reduction 
could be related to insufficient expression of the relevan t genes under 
experimental conditions or their non-functionality due to unknown 
point mutations.

4. Discussion

4.1. The importance of bacterial sulfate 
reduction in burning coal seams

Traditionally, marine habitats are considered as biotopes with the 
most active microbial sulfate reduction due to the high concentration 
of sulfate, which exceeds all other electron acceptors by more than an 
order of magnitude (Jørgensen, 1982; Røy et al., 2014; Wasmund et al., 
2017). Typical sulfate reduction rates in coastal surface-sediments are 
in the order of 20 nmol SO4

2−cm−3  day−1 (Jørgensen, 1982). The 
average SRR measured by the radiotracer method in marine, organic 
rich sediments have been reported to be between 5 and 80 nmol SO4

2− 
cm−3 day−1 (Dando et al., 1991, 1995). Microorganisms, including 
SRB, are highly dependent on temperature, and an increase in 
temperature generally increases microbial activity. Reported rates of 
sulfate reduction in marine hydrothermal vents at temperatures 
between 65 and 100°C in the Mid Atlantic Ridge varied between 122 
and 136 nmol SO4

2− cm−3 day−1 (Schauer et al., 2011) and at in situ 
temperatures above 100°C SRR was 19–61 nmol SO4

2− cm−3 day−1 
(Jørgensen et al., 1992). The highest SRR measured in the shallow-sea 
hydrothermal vent system of Milos at 40°C reached 40 nmol SO4

2− 
cm−3  day−1 (Bayraktarov et  al., 2013). Biotopes associated with 
burning coal seams are characterized by both high sulfate 
concentrations and elevated temperatures. Sulfates are abundant 
secondary minerals in burning coalfields (Parafiniuk and Siuda, 
2021). Numerous gypsum roses observed on our sampling sites 1 and 
2 (Figure 1) are evaporites, where crystal formation occurred as a 
result of an influx of water containing dissolved calcium sulfate 
balanced by an outflow of water due to evaporation (Hope et  al., 

FIGURE 6

Changes in the number of cells outgrown from spores and sulfide 
concentration during Al36 spores exposure in fresh WB medium with 
CO as the sole electron donor at 20 (A) and 15°C (B): ▲ −Log10 
number of cells/mL (triangles), □ sulfide concentration in the 
medium (squares). Data are expressed as the mean of three 
replicates, with the vertical bars indicating standard deviation.
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2015). The low-solubility sulfate minerals such as gypsum 
(CaSO4·2H2O), barite (BaSO4), and anglesite (PbSO4) can serve as 
solid phase electron acceptors for SRB (Karnachuk et  al., 2002). 
Members of the Desulfobacterota produced H2S from CaSO4 with the 
same rate and quantity as from soluble sulfate. It remains to 
be elucidated the possibility of using alunogen, Al sulfate, which is 
often found in burning coal fields (Kadnikov et al., 2021), as a feasible 
solid-phase electron acceptor for sulfate reduction.

In our study, the SRR measured in heated rock associated with 
lignite burning seams significantly exceeded the average SRR in 
marine sediments and varied from 43.9 to 564 nmol S cm−3 day−1. The 
high activity of sulfate reducers in organic-rich marine sediments is 
based on the simultaneous presence of electron donors (low weight 
organic compounds or dihydrogen) and electron acceptors (sulfate 
ion). The significant SRR observed in thermal biotopes associated with 
lignite burning seams is based on non-biological electron donor, CO, 
originating from coal fires. Emissions from underground burning coal 
seams can occur not only from vents and cracks on the surface, but 
also by upward diffusion from rocks and soil (Engle et al., 2011), thus 
supplying CO to biotopes at a temperature suitable for microbial 
processes. Thus, the high SRR detected in lignite burning seams is 
based on the abundance of the electron donor (CO) and acceptor 
(sulfates) for SRB. Burning coal seams producing CO are ubiquitous 
throughout the world (Stracher and Taylor, 2004; Kuenzer et al., 2007; 
Shan et al., 2019), and biogenic H2S may represent an overlooked 
significant flux to the atmosphere.

In addition to smoldering coal, another technogenic source of CO 
in the environment is a product of incomplete fossil fuels production - 
syngas (synthetic gas) produced by the chemical industry. An 
enrichment culture containing Desulfofundulus-like SRB utilizing CO 
and closely related to D. australicus was isolated from the syngas 
(Alves et al., 2020). The authors demonstrated the carboxydotrophic 
potential of the genus Desulfofundulus and its ability to use CO as a 
cheap electron donor for sulfate reduction in bioremediation 
processes. The cost and availability of carbon sources and electron 
donors is the greatest challenge among all the limitations in the 
application of SRB-based bioremediation processes (Kaksonen 
et al., 2008).

4.2. Low-temperature germinating spores 
of the thermophilic Desulfofundulus 
contribute to active sulfate reduction 
under fluctuating temperature conditions

A specific feature of the burning coal seams is constant 
temperature fluctuations (Duarte et al., 2017). The intensity of heat 
steam from underground, ambient air temperature, wind, humidity, 
precipitation and light can all cause temperature changes (Wang et al., 
2022). Desulfofundulus, which inhabits heated rocks, can anchor in a 
smoldering coal due to their ability to survive and produce spores 
efficiently over a wide temperature range from 15°C to 
65°C. Uncultivated Desulfofundulus were also found in the 
metagenome of a burning coal site in Gusinoozersk in Transbaikalia, 
located at a distance of 1,300 km from the Chagan-Uzun lignite site 
sampled for this study (Kadnikov et  al., 2023). The metagenome 
assembled genome (MAG) of a close relative of D. australicum, 

designated Bu22-1-69, constituted the most abundant genotype (1.1% 
of the metagenome) among Firmicutes with a known ability for sulfate 
reduction in Gusinoozersk. It is conceivable that Desulfofundulus 
spores can spread over long distances and successfully colonize 
thermal biotopes where CO and sulfate are available. In terms of the 
generalists/specialists concept (Bell and Bell, 2020), Desulfofundulus 
is a typical specialist that confines itself to a narrow temperature range 
of 50°C to 65°C and thus can outperform generalists who tend to 
adapt to a wider temperature range. On the other hand, being a 
specialist organism, the Al36 strain possesses a mechanism to 
disseminate itself at temperatures below its growth range through 
spore germination and production of new spores.

Despite fluctuations in temperature, Desulfofundulus can maintain 
a significant production of H2S through a variety of sulfate respiration 
modes. Vegetative cells can be active at temperatures from 50°C to 
65°C, which is the upper limit for growth, while spores can germinate 
at low temperatures, forming metabolically active vegetative cells. A 
significant SRR of 154 ± 45 nmol S cm−3 day−1 measured in a control 
soil sample (AL58, site 3) when incubated at 60°C implies that 
Desulfofundulus spores may occur in the soil. The soil at site 3 did not 
experience burning during the period of our observations of the 
Chagan-Uzun lignite open pit, but was in close proximity to the gas 
fumarole in the same open pit and contained secondary sulfates 
(Figure 1C). According to 16S rRNA gene profiling, AL58 community 
was a typical soil microbiome, with the most abundant phyla being the 
Proteobacteria, Bacteroidota and Patescibacteria, while Desulfofundulus 
were not found. Due to the resilience of bacterial endospores to many 
lysis buffers and chemicals (Knüpfer et al., 2020), DNA from the spore 
core may not be properly represented in total DNA extracted from an 
AL58 soil sample.

Under low-temperature conditions, Desulfofundulus spores 
germinated into persistent vegetative cells that were metabolically 
active and reduced sulfate but could not divide. The observed 
phenomenon can be considered as an example of growth-arrest of 
thermophilic bacterium. The most studied causes of growth arrest in 
prokaryotes refer to nutrient and energy limitations (Pechter et al., 
2017). Typical growth-arrested cells stay viable for several days to 
years, and are usually able to rapidly resume growth when nutrients 
become available (Bergkessel et  al., 2016), similarly persistent 
Desulfofundulus vegetative cells overgrown at 15 and 20°C resumed 
growth after being transferred to 50°C in this study. The molecular 
mechanisms of temperature-triggered spore germination into 
persistent vegetative cells warrants further research.

The thermophilic spore outgrowth and their metabolic activity at 
temperatures below the growth minimum may have implications for 
other spore-forming bacteria of environmental, industrial and clinical 
relevance. For instance, the presence of spores of the thermophilic 
Desulfotomaculum in the permanently cold marine sediments of 
Svalbard (Hubert et al., 2009) and Aarhus Bay (de Rezende et al., 
2013) was attributed to passive dispersal from an enigmatic 
hydrothermal source. Endospores detected in cold marine sediments 
were thought to remain inactive under in situ temperature conditions. 
One of the dominant phylotypes, whose spores were observed in the 
Aarhus Bay sediment, was a close relative of D. australicus (de Rezende 
et al., 2013) and strain Al36 isolated in this study. It is conceivable that 
endospores of the thermophilic Desulfofundulus can outgrow, produce 
new spores, and even reduce sulfate to H2S at low temperatures in 
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marine sediments, just as was observed in our study of the burning 
lignite seam.

Apart from deep-sea sediments, thermophiles, mostly spore-
forming Firmicutes, have been discovered in many cold and temperate 
systems (DePoy and King, 2023). Our findings of metabolically active 
thermophilic spores at temperatures below their growth range 
challenge the notion that many thermophiles can be  inactive in 
mesothermic environments and simply maintained by a continuous 
input from geothermal sources (Marchant et al., 2008; Zeigler, 2014). 
It is conceivable that other thermophiles may produce spores capable 
of outgrowing into metabolizing cells at ambient temperatures below 
their minimum growth requirements. Further experiments with 
spores may shed light on the possible involvement of spore outgrowth 
in the well-known paradox of the ubiquitous thermopile distribution 
in a predominantly mesothermic world.
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