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This study investigated the chemical composition and biosynthesis pathway of

compounds produced by Streptomyces sulphureus DSM 40104. With the guild of

molecular networking analysis, we isolated and identified six uncommon structural

characteristics of compounds, including four newly discovered pyridinopyrones.

Based on genomic analysis, we proposed a possible hybrid NRPS-PKS biosynthesis

pathway for pyridinopyrones. Notably, this pathway starts with the use of

nicotinic acid as the starting unit, which is a unique feature. Compounds 1–3

exhibited moderate anti-neuroinflammatory activity against LPS-induced BV-

2 cell inflammation. Our study demonstrates the diversity of polyene pyrone

compounds regarding their chemical structure and bioactivity while providing

new insights into their biosynthesis pathway. These findings may lead to the

development of new treatments for inflammation-related diseases.
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1. Introduction

Pyridinopyrones were a class of natural products containing a pyrone ring and a pyridine

ring linked by polyene chains. They were initially isolated frommarine-derived streptomyces

by the Fenical group (Fukuda et al., 2011). The structure of pyridinopyrones bears a

substantial similarity to the aromatic polyene pyrones, which exhibit remarkable biological

properties, including cytotoxicity (Clark et al., 2006; Hua et al., 2013b), anti-inflammatory

effects (Hua et al., 2013a), mitochondrial oxidative phosphorylation inhibition (Lin et al.,

2016) among others. The biosynthesis studies of aromatic polyene showed that it is produced

by a modular type 1 PKS pathway (Peng et al., 2019). The broad range of bioactivities and the

interesting biosynthesis studies associated with these compounds has sparked considerable

interest in exploring new aromatic polyene pyrones.

Molecular networking has emerged as an efficient tool in natural product discovery to

identify typically clustered compounds (Yang et al., 2013; Quinn et al., 2017). It involves

using mass spectrometry to identify molecules in complex biological systems, especially in

microbes (Watrous et al., 2012). In this process, compounds with similar structural features
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are grouped into a network based on the mass-to-charge ratio of

their ionized forms (Schmid et al., 2021). Consequently, compound

clusters are identified within the network, and these groups can

then be further investigated to determine their chemical structures

and biological activities. The approach has been used to discover

bioactive compounds, such as antibiotics, from microbial sources

(Nothias et al., 2018). Moreover, this technique has shown great

promise in improving the efficiency of natural product discovery.

Its application is expected to lead to the discovery of numerous

bioactive compounds.

Through our ongoing effort to explore new compounds from

Streptomyces (Tang et al., 2018; Liu et al., 2019, 2020; She

et al., 2021), our research group has investigated the secondary

metabolisms of the strain Streptomyces sulphureus DSM 40104 and

uncovered four new pyridinopyrones with the guild of molecular

networking analysis. Furthermore, we have investigated the anti-

neuroinflammatory potential of the new pyridinopyrones.

2. Materials and methods

2.1. General experimental procedures

An ultra-high-performance liquid chromatography-mass

spectrometry (UPLC-MS) analysis of metabolites was performed

on an AB SCIEX LC-30A-Triple TOF 5600+ ESI MS system (AB

SCIEX, Boston, MA, USA) equipped with a Shim-Pack Velox C18

column (2.7µm, 150mm × 2.1mm, SHIMADZU, Japan), and a

ThermoQE Focus instrument (Thermo Fisher Scientific,Waltham,

MA, USA) with an Accucore AQ C18 column (2.6µm, 150mm

× 2.1mm, Thermo Fisher Scientific, Waltham, MA, USA). High-

resolution electrospray ionization mass spectrometry (HRESIMS)

data of novel metabolites were acquired by a Thermo Scientific

Q Exactive mass spectrometer. Analytical high-performance

liquid chromatography (HPLC) and semipreparative HPLC were

carried out on an Agilent 1100 series system (Agilent Technologies

Inc., Santa Clara, CA, USA) with a YMC-Pack ODS-A column

(5µm, 250mm × 4.6mm; 5µm, 250mm × 10mm, YMC

CO., LTD., Japan). Medium-pressure liquid chromatography

(MPLC) was performed on a Buchi Medium pressure preparative

chromatography (BUCHI Labor Technik AG, Switzerland)

equipped with a medium-pressure column containing YMC

reversed-phase (RP)-C18 silica gel. Gel chromatography was

carried out on a gel column with Sephadex LH-20 (40–70µm;

Amersham Pharmacia Biotech AB, Sweden). 1H, 13C, and 2DNMR

data were acquired on a Bruker Avance Neo 400 MHz apparatus

(Bruker Corporation, Faellanden, Switzerland).

2.2. Bacterial material

The strain S. sulphureus DSM 40104 was purchased from

Germany Leibniz-Institute DSMZ-German Collection of

Microorganisms and Cell Cultures GmbH. The strain was

stored in a 20% glycerol/water frozen tube at −80◦C. The genome

data were assembled by scaffold level and publication in GenBank

with the accession number NZ_ARLC00000000.

2.3. Fermentation, extraction, and isolation

Strain DSM 40104 was activated and cultured by a Trypticase

Soy Broth (TSB) medium in a thermostatic shaker (120 rpm) at

28◦C for 1 week. We inoculated the DSM 40104 seed (20ml) into a

1 L culture vessel containing 400ml of SPY liquid mediumwith 100

× trace element and continued to culture in a rotatory shaker (120

rpm) at 28◦C for 9 days. The SPY liquid medium included soluble

starch (1%), peptone (0.2%), yeast extract (0.4%), and sodium

chloride (0.5%). The trace elements were as follows: 49.8mg FeCl3
in 100ml + 1ml of 0.1M ZnCl2 +76.5 µl of 0.1M CuCl2 + 21 µl

of 0.2M CoCl2 + 8.1 µl of 1M MnCl2. After fermentation, 115 L

of fermentation broth was filtered with gauze to obtain the mycelia

and supernatant. The supernatant was extracted five times with an

equal amount of ethyl acetate and evaporated under a vacuum to

get the crude extract (20 g).

The crude extract (20 g) was segregated by MPLC equipped

with an RP-18 column, and 13 components (fractions A–M)

were obtained with a gradient elution of MeOH–H2O (30:70→

100:0, v/v). Fractions E (342mg), F (264mg), and G (299mg)

were separated by using a Sephadex LH-20 column (MeOH) to

get fractions E1–8, F1–6, and G1–7, respectively. Among these

sub-fractions, six of them (fractions A, B, E5, F4, G5, G6) were

submitted to the molecular networking analysis to guild for further

purification. Through further purification by RP-C18 HPLC with

a semipreparative column (40%, MeCN–H2O, 2 ml/min), 1 (tR
= 51.0min, 2.4mg) was isolated from fraction E5. Then, fraction

F4 was subjected to RP-C18 HPLC (45%, MeCN–H2O, 2 ml/min)

to obtain 2 (tR = 52.4min, 3.3mg) and 6 (tR = 58.6min,

7mg). Fraction G5 was further purified by RP-C18 HPLC with an

analytical column (45%, MeCN–H2O, 1 ml/min) to obtain 3 (tR
= 34.9min, 3.8mg), and fraction G6 was further purified by RP-

C18 HPLC (50%, MeCN–H2O, 2 ml/min) to obtain 4 (tR = 37min,

11.7mg) and 5 (tR = 45.7min, 13.9 mg).

Pyridinopyrone E (1): amorphous yellow solid; UV

(MeOH) λmax 380 nm, 290 nm, 240 nm; 1H and 13C NMR,

see Table 1; HRESIMS [M + H]+ m/z 296.1273 (calculated for

C18H17NO3, 296.1287).

Pyridinopyrone F (2): amorphous yellow solid; UV (MeOH)

λmax 430 nm, 400 nm, 320 nm, 255 nm; 1H and 13C NMR,

see Table 1; HRESIMS [M+H]+ m/z 322.1440 (calculated for

C20H19NO3, 322.1443).

Pyridinopyrone G (3): amorphous yellow solid; UV (MeOH)

λmax 430 nm, 400 nm, 320 nm, 260 nm; 1H and 13C NMR,

see Table 2; HRESIMS [M+H]+ m/z 336.1595 (calculated for

C21H21NO3, 336.1600).

Pyridinopyrone H (4): amorphous yellow solid; UV (MeOH)

λmax 430 nm, 400 nm, 320 nm, 255 nm; 1H and 13C NMR,

see Table 2; HRESIMS [M+H]+ m/z 322.1440 (calculated for

C20H19NO3, 322.1443).

2.4. Molecular networking construction

After separation by MPLC and Sephadex LH-20 column, six

parts with enough amount for further purification were selected

for further molecular networking construction based on HPLC
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TABLE 1 NMR spectroscopic data for the pyridinopyrone E (1), F (2) (400 MHz for 1H, 100 MHz for 13C in DMSO-d6).

No. 1 2

δC δH mult (J in Hz) δC δH mult (J in Hz)

1 162.6, C 163.4, C

2 88.6, CH 5.65, s 100.8, C

3 171.0, C 165.9, C

4 99.0, CH 6.33, s 97.0, CH 6.68, s

5 159.9, C 156.8, C

6 126.9, C 123.0, CH 6.39, d (15.2)

7 130.9, CH 7.07, d (11.4) 134.2, CH 7.08, dd (15.2, 11.2)

8 129.8, CH 6.9, m 132.4, CH 6.57, m

9 138.2, CH 6.87, m 138.1, CH 6.78, m

10 131.2, CH 7.27, dd (15.8, 9.7) 134.3, CH 6.61, m

11 130.9, CH 6.79, d (15.8) 135.7, CH 6.63, m

12 N/A N/A 131.1, CH 7.17, dd (15.8, 9.9)

13 N/A N/A 130.1, CH 6.74, d (15.8)

2
′

148.3, CH 8.69, s 148.3, CH 8.67, s

3
′

132.6, C 133.2, C

4
′

132.7, CH 7.95, d (8.0) 132.7, CH 7.94, dt (8.0, 2.0)

5
′

123.9, CH 7.39, dd (8.0, 4.8) 123.8, CH 7.37, dd (8.0, 4.7)

6
′

148.7, CH 8.44, d (4.8) 148.5, CH 8.42, d (4.7)

3-OCH3 56.5, CH3 3.84, s 56.8, CH3 3.9, s

2-CH3 N/A N/A 8.9, CH3 1.81, s

6-CH3 12.4, CH3 2.01, s N/A N/A

N/A, not available.

analysis and UPLC-MS data results. The six parts were fractions

A, B, E5, F4, G5, and G6.

The samples were handled by dissolving them in methanol to

a concentration of 1 mg/ml. Two methods were used for UPLC-

MS analysis. The fraction A, B, and E were analysis base on the

following gradient: 0–2min, 2% B; 3–8min, 2%−50% B; 8–18min,

50%−100% B; 18–20min, 100% B; 20–22min, 100%-2% B; 22–

27min, 2% B, in which mobile phase A was water and mobile phase

B was acetonitrile. The gradient elution approach of fractions F4,

G5, and G6 was the water (A)–methanol (B) system, and the details

were as follows: 0–5min, 5% B; 5–15min, 100% B; 15–18min,

100% B; 18–19min, 5% B. The flow rate was set at 0.3 ml/min

with an injection volume of 1 µl. The MS detector was set to a

positive mode.

By using the UPLC-MS data of fractions A, B, E5, F4, G5, and

G6, the molecular networking of the six fractions was constructed

on the Global Natural Products Social Molecular Networking

(GNPS) platform (gnps.ucsd.edu) based on a previously reported

method (Liu et al., 2020). Specifically, the raw data files were

converted from .wiff standard data format into .mzML format files

by MSConvert software to support uploading the files to GNPS.

Then, the converted files were submitted to the GNPS platform by

8UFTP software. The molecular networking was constructed using

the online workflow at GNPS with a fragment ion mass tolerance

of 0.5 Da. Cytoscape 3.9.0 was used to visualize and analyze the

molecular network.

2.5. Antibacterial bioassay

The six compounds were estimated in vitro for their

antibacterial activity against Escherichia coli (Gram-negative

bacteria) and methicillin-resistant Staphylococcus aureus

(MRSA, Gram-positive bacteria). The minimum inhibitory

concentration (MIC) was used to evaluate the antibacterial activity

of these compounds.

The double dilution method determined the inhibitory activity

of compounds against the tested bacteria according to a previously

reported method (Su et al., 2017; Lin et al., 2021a). Briefly, the

six samples were configured with DMSO into a solution with

a concentration of 25mM. There were two kinds of antibiotics,

vancomycin, and kanamycin, used as a positive control for MRSA

and E. coli, respectively. Approximately 0.5% of DMSO worked as

a negative control. MRSA and E. coli stored in a 20% glycerol/water

frozen tube at −80◦C were activated with MHB medium in a

shaker at 180 rpm/min and 37◦C until the strain entered the

logarithmic growth phase. The bacteria in the logarithmic growth
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TABLE 2 NMR spectroscopic data for the pyridinopyrone G (3), H (4) (400 MHz for 1H, 100 MHz for 13C in DMSO-d6).

No. 3 4

δC δH mult (J in Hz) δC δH mult (J in Hz)

1 163.4, C 162.6, C

2 100.6, C 88.5, CH 5.62, s

3 166.0, C 170.9, C

4 94.1, CH 6.6, s 98.7, CH 6.30, s

5 158.7, C 160.0, C

6 126.9, C 126.5, C

7 130.8, C 7.07, d (11.6) 131.2, CH 7.04, d (11.4)

8 129.4, CH 6.84, m 129.3, CH 6.81, m

9 138.1, CH 6.78, m 138.4, CH 6.79, m

10 134.6, CH 6.64, m 134.5, CH 6.65, m

11 135.3, CH 6.64, m 135.5, CH 6.65, m

12 131.1, CH 7.18, m 131.0, CH 7.17, m

13 129.9, CH 6.73, d (15.6) 130.0, CH 6.74, d (15.6)

2
′

148.3, CH 8.67, s 148.3, CH 8.67, s

3
′

133.6, C 133.5, C

4
′

132.6, CH 7.95, dt (8.0, 2.0) 132.7, CH 7.95, dt (7.9, 2.0)

5
′

123.8, CH 7.36, dd (8.0, 4.6) 123.8, CH 7.36, dd (7.9, 4.7)

6
′

148.4, CH 8.42, d (4.6) 148.5, CH 8.42, d (4.7)

3-OCH3 56.8, CH3 3.96, s 56.4, CH3 3.81, s

2-CH3 8.8, CH3 1.81, s N/A N/A

6-CH3 12.5, CH3 2.07, s 12.4, CH3 2.00, s

N/A, not available.

stage were diluted with MHB medium into 2 × 106 CFU/ml

and added into a 96-well plate, 100 µl/well. Approximately 100

µl of sample solution with different concentrations (100µM,

50.0µM, 25.0µM, 12.5µM, 6.25µM, and 3.12µM) diluted by

MHBmediumwas added into a 96-well plate, and each sample with

diverse concentration and each control consisted of three replicates.

Then, the 96-well plates were placed in a 37◦C incubator for 16 h.

If the bacteria grew up, the bacterial solution would become turbid,

and the compound concentration inhibiting the growth of bacteria

was the MIC of the compound. Meanwhile, the bacterial solution

was determined by the absorbance at 600 nm with a microplate

recorder (BioTek Epoch, BioTek Instruments. Inc., Winooski, VT,

USA) to verify the correctness of the MIC.

2.6. Anti-neuroinflammatory activities

According to the previously reported literature, the anti-

neuroinflammatory activities of compounds were evaluated by

nitric oxide (NO) production inhibitory assays using BV-2 murine

microglial cells (Tang et al., 2019; Lin et al., 2021b; Xu et al., 2022).

The BV-2 cells should be resuscitated, cultured in DMEMmedium

with 10% FBS and 1% penicillin–streptomycin solution, and placed

in an incubator with 5% CO2 at 37◦C. In the logarithmic growth

period, 100 µl of BV-2 cells were seeded into a 96-well plate with a

2 × 105 cells/ml concentration. After 24 hours incubation at 37◦C,

removing the supernatant, the prepared compounds with different

concentrations (50µM, 25µM, 12.5µM, 6.25µM, 3.125µM) and

LPS (1µg/ml) were added into 96-well plate, respectively and

continued to culture for 24 h at 37◦C. LPS and dexamethasone were

regarded as positive controls, and LPS and DMSO were worked as

negative controls. Each concentration and control were treated with

three sets of repetitions.

The production of NO in BV-2 cells culture medium was

measured with a NO assay kit, Griess kit. Specifically, 50 µl

of BV-2 cells culture medium supernatant was transferred to

a new 96-well plate. Then, 50 µl of Griess reagent I and II

were added sequentially to the above supernatant. Then, the

absorbance of the mixture at 540 nm was measured with a

microplate reader. The standard curve of a series of sodium

nitrite standard solutions calculated the nitrite concentration

in the cell culture solution. IC50 values of each compound

referred to the concentration of the compound, which reduced

50% of NO production and was calculated according to the

standard curve.
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FIGURE 1

Molecular networking analysis guiding the isolation of pyridinopyrones.

3. Results and discussion

Based on the six fractions (A, B, E5, F4, G5, and G6),

we have constructed a molecular network with hundreds of

grouped compounds (Supplementary Figure S1). Among these,

one of the groups with a molecular weight of approximately

322 attracted our attention. Further analysis of the molecular

weight of these compounds, we have identified a rare kind

of compound named pyridinopyrones (Figure 1). Until now,

only four of these compounds have been reported (Fukuda

et al., 2011; Hou et al., 2012). The chemical structure of this

compound is characterized by a combination of a pyrone ring

and a pyridine ring, with a polyene chain connecting the

two rings. Compared with HRMS data from the previously

published references, the molecular network exhibits more

pyridinopyrones analogously connected to the same cluster.

With the guide of molecular networking, we investigated the

fractions that may possess new pyridinopyrones and identified

six compounds.

Pyridinopyrone E (1) was isolated by semi-preparation HPLC

as an amorphous yellow solid. The molecular formula was

determined to be C18H17NO3 ([M+H]+ m/z 296.1273) based

on high-resolution ESIMS, indicating 11 degrees of unsaturation.

The UV absorption of 380 nm indicated that the high degree of

unsaturation might be due to the extended conjugated group. The
1H NMR spectrum of 1 showed one methyl (δH 2.01, s), one

methoxy (δH 3.84, s), and 11 olefinic/aromatic methine signals.

The 13C NMR spectrum displayed 18 resolved signals, which were

classified as one methyl (δC 12.4), one methoxy (δC 56.5), 11 sp2

methine, and five quaternary carbons, including two oxygenated

carbons and one ester carbonyl (Table 1).

The 1H–1H COSY NMR data assigned two partial structures,

H-7/H-8/H-9/H-10/H-11 and H-4
′

/H-5
′

/H-6
′

. Considering the

chemical shifts and vicinal coupling information, the moiety of H-

7/H-8/H-9/H-10/H-11 was established as a triene unit. Analysis of

HMBC spectrum data gave further connected information about

these two moieties. The correlation of H-6
′

(δH 8.44) to C-2
′

(δC
148.3), H-5

′

(δH 7.39) to C-3
′

(δC 132.6), and H-2
′

(δH 8.69) to

C-4
′

(δC 132.7) indicated the existence of a pyridine ring. The cross-

peaks from H-4
′

(δH 7.95) to C-11 (δC 130.9), H-11 (δH 6.79) to

C-2
′

, and H-10 (δH 7.27) to C-3
′

revealed the connection of triene

moiety to the pyridine ring at position 3
′

. The HMBC correlations

from H-2 (δH 5.65) to C-1 (δC 162.6), C-3 (δC 171.0), and C-4 (δC
99.0), from H-4 (δH 6.33) to C-3, and C-5 (δC 159.9) suggested the

connective of C-1 to C-5 (Figure 2). The downfield chemical shift of

C-5 indicated the connection of oxygen atoms. Thus, the existence

of a pyrone unit in 1 was confirmed. The HMBC correlation from

the 3-OCH3 protons to C-3 supported the connective of a methoxy

group to pyrone at C-3. Further HMBC correlations from H-7 (δH
7.07) to C-5, H-4 (δH 6.33) to C-6, and 6-CH3 (δH 2.01) to C-5, C-6,

and C-7 indicated the triene unit was linked at the C-5 position of

the pyrone ring and the methyl group was connected at C-6. The

triene unit was assigned all E geometrical configurations from the

coupling constants (J10, 11 = 15.8) and by comparison with similar

compounds. Overall, the chemical structure of compound 1 was

determined, as shown in Figure 3.
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FIGURE 2
1H–1H COSY correlations and key HMBC correlations used to establish the structures of compounds (1–4).

FIGURE 3

Chemical structure of compounds (1–6).

FIGURE 4

Gene organization of the pyridinopyrones (pyi) BGC (1–6).
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FIGURE 5

Proposed biosynthesis pathway of pyridinopyrones (1–6). Pyi PKS organization and deduced assembly of 1–6 (A). The formation of pyrone ring in

compound 1 (B).

Pyridinopyrone F (2) was obtained as an amorphous yellow

solid. Based on HRESIMS data, the molecular weight of 2 was

322.1440, and molecular formula was characterized as C20H19NO3,

which was exactly the same as the pyridinopyrone A. By

comparison of all 1D NMR data of compound 2 with that from

pyridinopyrone A, the difference between these two compounds

was the methyl group location. The 2D NMR spectra data of 2

showed the existence of pyridine and an α-pyrone ring. The cross-

peak of H-6/H-7/H-8/H-9/H-10/H-11/H-12/H-13 observed in the
1H–1H COSY spectrum indicated the existence of a tetraene group

(Figure 2). The HMBC correlations of H-2
′

(δH 8.67) to C-4
′

(δC
132.7) and C-13 (δC 130.1), H-4

′

(δH 7.94) to C-13, and H-12 (δH
7.17) to C-3

′

(δC 133.2) demonstrated the connection of tetraene

moiety via C-3
′

of the pyridine ring. The HMBC correlations of
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FIGURE 6

Inhibitory activity of compounds 1–3 with di�erent concentrations on NO production in LPS-induced BV-2 cells.

H-7 (δH 7.08) to C-5 (δC 156.8), H-4 (δH 6.68) to C-5, and C-6 (δC
123.0) allowed the assembly of the tetraene group and the α-pyrone

rings through C-5. The attachment of methyl groups at C-2 was

confirmed by the HMBC correlations of 2-CH3 (δH 1.81) protons

to C-1 (δC 163.4), C-2 (δC 100.8), and C-3 (δC 165.9). The 3-OCH3

(δH 3.90) protons to C-3 (δC 56.8) indicated the linkage of the

methoxy group at the C-3 position. The tetraene unit was assigned

all E geometrical configurations base on the coupling constants (J6,7
= 15.2, J12,13 = 15.8) and the comparison with similar compounds.

Pyridinopyrone G (3) was obtained as an amorphous yellow

solid with the HRESIMS [M+H]+ m/z 336.1595 (calculated for

C21H21NO3, 336.1600). The molecular weight of 3 was exactly the

same as pyridinopyrone C. By comparison of the 1D and 2D NMR

data, we found that the difference between 3 and pyridinopyrone

C was the position of one methyl group. The HMBC correlations

of 6-CH3 (δH 2.07) protons to C-5 (δC 158.7) and C-7 (δC 130.8)

confirmed the attachment of methyl at the C-6 position (Figure 2).

Thus, the structure of 3 was determined, as shown in Figure 3.

Pyridinopyrone H (4) was isolated as an amorphous yellow

solid. The molecular formula was determined as C20H19NO3

based on the HRESIMS of [M+H]+ m/z 322.1440. The 1D and

2D NMR spectra data showed that the structure of 3 was the

same as compound 2 except for the methyl group’s position. The

olefinic methine signal at δ 5.62 and the HMBC correlations of

H-2 (δH 5.62) to C-1 (δC 162.6) and C-3 (δC 170.9) indicated

the absence of the methyl group at C-2 (Figure 2). The HMBC

correlation of 6-CH3 (δH 2.00) to the C-5 (δC 160.0) and C-

6 (δC 126.5) confirmed the position of the methyl group at

C-6. Overall, the structure of 4 was determined, as shown

in Figure 3.

Compounds 5 and 6 were determined to be pyridinopyrones C

and D (Fukuda et al., 2011; Hou et al., 2012), respectively, based on

the analysis of NMR spectra and comparison of literature.

The structure of pyridinopyrones showed substantial similarity

to polyene pyrones which are rare in bacteria rather than

fungi (Clark et al., 2006; Liu et al., 2011; Lin et al., 2016).

In the case of these polyenylpyrroles, the end of the group

is pyrrole or furan rather than pyridine. The biosynthesis

pathway of the pyridinopyrones was studied by the Fenical

group through initial labeling studies. The result showed

that the pyridinopyrones were derived from acetate-extended

nicotinic acid and produced by an iterative PKS (Fukuda

et al., 2011; Woerly et al., 2014). We have examined the draft

genome data of strain DSM 40104 and gotten 27 gene clusters

(Supplementary Table S1). Among these gene clusters, a hybrid

modular type 1 polyketide synthases (PKSs) and non-ribosomal

peptide synthetase (NRPs) gene cluster attracted our attention.

There are 36 open reading frames (ORFs) in this gene cluster,

including five PKS genes, a non-ribosomal peptides (NRPS) gene,

four regulators, two transporters, and 24 dispersed genes (Figure 4

and Supplementary Table S2).

The biosynthesis pathway of pyridinopyrones was proposed

based on the bioinformatic analysis and the literature comparison.

The hybrid gene cluster pyi was proposed to be responsible for

the production of pyridinopyrones. The adenylation (A-) domain

was unique, and there were no specific amino acid residues can

be recognized by this A-domain base on the blasted analysis

(Supplementary Figure S5). We proposed that the nicotinic acid

might be activated by the A-domain as a starter unit and loaded

onto the peptidyl carrier (PCP-) domain. The activated nicotinic

acid was propagated by five PKS modules with acyltransferase

(AT) domain selecting and loading the malonyl extender unit.

The polyketide chain is passed from one module to another until

it is released by the thioesterase (TE) domain (Figure 5A). The

isolated pyridinopyrones possess different chain lengths indicating

the different number of modules adopted during the process.

Compound 1 was released from modular five, and compounds

2–6 were released from modular six by forming the pyrone ring

(Figure 5B). The following oxidation and methylation lead to the

final production of 1–6.

The proposed biosynthesis pathway showed low similarity

with the known gene clusters. The A-domain is responsible for

recruiting the amino acid monomers, which could be used to

predict the putative substrates (Niquille et al., 2018). The nicotinic

acid as a start unit in the NRPS module is interesting. The loss of

single-domain function in modular 4 and 5 alter the final chemical

structure of the products (Peng et al., 2019). The function of

ketoreductase (KR) in module 4 and the dehydrogenase (DH) in

module 5 were inactive (Supplementary Figures S3, S4), influencing

the degree of β-keto processing.
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The pyridinopyrones bear a substantial similarity to the

polyenylpyrroles and the polyenylfurans, which have been reported

to possess anti-HIV activity (Zhong et al., 2022), cytotoxic

activity (Clark et al., 2006), and cytoprotective activity (Yamagishi

et al., 1993). Given these literature reports, we have tested the

antibacterial activity, taking vancomycin as a positive control.

However, all test compounds showed no antibacterial activity in

gram-positive and gram-negative bacteria.

In addition, we have conducted the anti-neuroinflammatory

activity of compounds 1–3. The result showed that compounds

1–3 exhibited significant anti-neuroinflammatory activity against

the lipopolysaccharide (LPS) induced BV-2 cell inflammation

at a concentration of 50µM (Supplementary Figure S6). We

further detected the inhibition of the NO production of all

three new pyridinopyrones at different concentrations. The

IC50 value of compounds 1–3 was 8.384µM, 7.739µM, and

10.28µM, respectively (Figure 6). The dexamethasone (DXMS)

was considered a positive control with an IC50 value of 6.854µM

(Supplementary Figure S7).

In conclusion, our study examined the chemical composition

of compounds produced by S. sulphureus DSM 40104. With the

assistance of molecular networking analysis, we were able to isolate

and identify six unique structural characteristics of compounds.

Among these were four newly discovered pyridinopyrones.We also

conducted a genomic analysis to propose the possible biosynthesis

pathway for pyridinopyrones. This hybrid NRPS-PKS pathway

was found to have an unusual A-domain that can recognize

nicotinic acid. Furthermore, we discovered that compounds 1–

3 exhibited significant anti-neuroinflammatory activity against

the LPS-induced BV-2 cell inflammation. Overall, our findings

demonstrate the diversity of polyene pyrone compounds regarding

the chemical structure and bioactivity while providing new insights

into their biosynthesis pathway.
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