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Fungal extracellular 
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Invasive fungal disease (IFD) poses a significant threat to immunocompromised 
patients and remains a global challenge due to limited treatment options, high 
mortality and morbidity rates, and the emergence of drug-resistant strains. 
Despite advancements in antifungal agents and diagnostic techniques, the lack 
of effective vaccines, standardized diagnostic tools, and efficient antifungal drugs 
contributes to the ongoing impact of invasive fungal infections (IFI). Recent 
studies have highlighted the presence of extracellular vesicles (EVs) released 
by fungi carrying various components such as enzymes, lipids, nucleic acids, 
and virulence proteins, which play roles in both physiological and pathological 
processes. These fungal EVs have been shown to interact with the host immune 
system during the development of fungal infections whereas their functional role 
and potential application in patients are not yet fully understood. This review 
summarizes the current understanding of the biologically relevant findings 
regarding EV in host-pathogen interaction, and aim to describe our knowledge 
of the roles of EV as diagnostic tools and vaccine vehicles, offering promising 
prospects for the treatment of IFI patients.
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1. Introduction

Invasive fungal disease (IFD) is a severe and life-threatening condition caused by fungal 
infections. Recent reports indicate that fungal infections cause over 1.5 million deaths worldwide 
each year (GAFFI1), surpassing malaria (WHO2) and similar to tuberculosis (WHO3) in terms 
of mortality rates. This highlights the global significance of fungal infections, with an increasing 
number of high-risk groups being exposed to invasive fungal infections (IFIs), including 
individuals with hematologic malignancies and those affected by HIV/AIDS. Unfortunately, 
therapeutic options for IFD are severely limited by challenges such as incomplete drug efficacy, 
cytotoxicity, and the emergence of drug-resistant strains (Odds, 2003). This is further 
exacerbated by the growing population of immunocompromised patients, including individuals 
with HIV infection, leukemia, or cancer undergoing immunosuppressive therapy or 

1 http://www.gaffi.org/

2 http://www.who.int/mediacentre/factsheets/fs094/en/

3 http://www.who.int/mediacentre/factsheets/fs104/en/
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chemotherapy (Mossad, 2018; Rawson et al., 2021). Given the global 
prevalence of fungal disease and the limitations in its treatment, it is 
essential to research the interaction between fungi and the host 
immune system during the development of fungal infections and to 
explore novel therapeutic strategies.

Extracellular vesicle (EV), including exosome, microvesicle, and 
apoptotic vesicle, is a lipid-bilayer-enclosed particle that is secreted by 
both prokaryotic and eukaryotic cells (Lotvall et al., 2014). Exosome 
is nanosized vesicle (30–100 nm) and its biogenesis encompasses a 
series of intricate steps including endosome formation, multivesicular 
bodies (MVBs) generation, and cargo sorting. The initiation of 
exosome biogenesis arises with the budding of an endosomal vesicle 
from the plasma membrane. There are three distinct mechanisms 
underlie the formation of endocytic vesicles including clathrin-
mediated endocytosis (CME), caveolin-dependent endocytosis 
(CDE), and clathrin- and caveolin-independent endocytosis (Mayor 
et al., 2014). Fusion of endocytic vesicles results in the creation of 
intraluminal vesicles (ILVs) within early endosomes, a process 
governed by ESCRT-dependent and ESCRT-independent pathways 
that subsequently culminate in the formation of MVBs. Exosomes 
take shape within these ILVs, which originate within the framework 
of late endosomes, an essential facet of the endocytic apparatus. The 
sorting of cargoes into ILVs draws upon diverse organelles including 
the trans-Golgi network (TGN), endoplasmic reticulum (ER), and 
mitochondria. MVBs exhibit the capability to fuse with lysosomes, 
thereby undergoing lysosomal degradation (Kwon et  al., 2016). 
Alternatively, MVBs undertake trafficking toward the plasma 
membrane, where membrane fusion facilitates the extracellular release 
of ILVs in the form of exosomes. Unlike exosomes, microvesicles 
(MVs) (100 nm to 1 μm) have a direct origin from the plasma 
membrane and are commonly categorized as ectosomes (Heijnen 
et al., 1999). The process governing MV formation initiates with the 
development of outward buds at specific membrane sites, followed by 
fission and eventual liberation of the vesicle into the extracellular 
milieu (Ratajczak et al., 2006). Molecular rearrangements within the 
plasma membrane transpire at the points of MV origination, leading 
to membrane budding. These rearrangements encompass alterations 
in lipid and protein composition as well as changes in Ca2+ levels. The 
perturbed Ca2+ levels trigger the recruitment and activation of 
calcium-dependent enzymes, such as scramblase and floppase, 
inducing subsequent modifications in the lipid composition of the 
plasma membrane. Notably, one of the principal attributes of MVs is 
the externalization of phosphatidylserine (PS) (Barteneva et al., 2013). 
The generation of microvesicles requires cytoskeleton components, 
such as actin and microtubules, along with molecular motors (kinesins 
and myosins), and fusion machinery (SNAREs and tethering factors), 
However, the precise route of MV formation is unclear.

EVs derived from fungi have generated increased attention and 
emerged as a promising field in recent years. Research has revealed 
that fungal EVs carry a range of components, including proteins, 
enzymes, lipids, nucleic acids, and carbohydrates, which enable them 
to facilitate biofilm formation, virulence factor transportation, and 
modulate of the host immune response (Rutter et al., 2022). Fungi 
release EVs that transport enzymes and metabolites involved in the 
infection process, thus being considered as virulence factors. Recent 
years have witnessed notable advancements in fungal EV research, 
unveiling their potential applications as immunomodulatory agents 
and therapeutic strategies that actively participate in biological 

processes, diagnosis, and therapy. However, the interaction between 
fungi and the host immune system remains poorly understood, and 
there is limited research investigating the potential clinical applications 
of fungal EVs. Therefore, it is imperative to summary the immune 
response triggered by fungal EVs in the host to facilitate their potential 
role in diagnosis and therapy.

2. Fungal EVs and virulence factors

2.1. Fungi infection

Fungal infections occur through two pathways: extrinsic and 
intrinsic. Extrinsic infections are mainly caused by environmental 
fungi, while intrinsic infections are promoted by the patient’s gut flora 
(Dimitriu et  al., 2019; Podder et  al., 2019). While infectivity, 
pathogenicity, and virulence are the three main variables that 
determine the outcome in patients exposed to fungi, the course of the 
infection is also influenced by fungal cell wall (Rodrigues et al., 2007). 
The fungal cell wall, consisting of β-1,3-glucan, chitin, chitosan, and 
glycosylated proteins, mediates the innate immune response against 
fungal infection. Targeting the fungal cell wall has emerged as a 
promising strategy for antifungal drugs due to its specificity for fungi 
and the ability to induce cell lysis. Studies have shown that Candida 
albicans β-glucan can invade uninfected monocytes, exacerbating 
immunodeficiency and increasing susceptibility to systemic fungal 
infection (Nisini et al., 2007). Similarly, caspofungin has been found 
to enhance the immune system’s ability to destroy mold hyphae 
mediated by human polymorphonuclear neutrophils (Lamaris et al., 
2008). Conversely, Maligie and Selitrennikoff (2005) found that 
Cryptococcus neoformans develop resistance to caspofungin and 
cilofungin through a mechanism unrelated to β-1,3-glucan synthase 
resistance. The structure of fungal cell wall and virulence factors are 
summarized in Figure 1.

Fungal pathogens have developed various strategies to evade 
immune recognition and cause systemic infections. Luo et  al. 
demonstrated that Candida albicans, through sequence 
polymorphisms and differences in the expression levels of Gpm1 
(phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1), 
essential complement evasion proteins, increases its virulence by 
modulating immune fitness (Luo et al., 2015). Dasari et al. investigated 
the central immune evasion protein Aspf2 in Aspergillus fumigatus 
and found that it facilitates early infection stages by preventing host 
innate immune attacks and disrupting lung epithelial cell layers 
(Dasari et  al., 2018). Aspergillus fumigatus also employs 
Dihydroxynaphthalene melanin (DHN-melanin) to inhibit 
acidification in the phagolysosome, interfering with the endocytic 
process and evading immune cell absorption (Thywissen et al., 2011; 
Akoumianaki et al., 2016). Furthermore, Taborda et al. discovered that 
the opsonic receptor CR3 plays a crucial role in antibody-mediated 
complement-independent phagocytosis of Cryptococcus neoformans, 
connecting the innate and adaptive immune systems (Taborda and 
Casadevall, 2002). These studies highlight the mechanisms by which 
fungal pathogens manipulate the immune response for their survival 
and dissemination.

Fungal pathogens employ various mechanisms to evade host 
defense and immune responses, including the detoxification of 
oxidative death mechanisms. Candida albicans, for example, utilizes 
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the glyoxylate cycle to resist neutrophils and evade oxidative stress 
responses, enhancing its survival (Miramon et al., 2012). Despite their 
presence in the human microbiome, certain fungi can cause severe 
and fatal systemic infections, particularly in patients with 
haematologic malignancies like leukemia (Bhatt et al., 2011). Fungal 
dissemination into the bloodstream is a critical step in triggering 
invasive fungal infections (IFIs), leading to skin, bone, and central 
nervous system (CNS) involvement (Maphanga et  al., 2020). 
Cryptococcus neoformans, by evading mucociliary clearance, enters 
deep alveolar spaces and subsequently targets the CNS after 
disseminating through the bloodstream (Rajasingham et al., 2017). 
The resistance of fungi to antifungal agents is also a concern, with 
specific mutations identified in Candida albicans that increase 
resistance without causing tissue damage or excessive inflammation. 

These mutations affect genes involved in cell signaling pathways, 
including those regulating pathogen recognition (Naseem et al., 2015; 
Wirnsberger et al., 2016; Xiao et al., 2016; Zhao et al., 2017).

2.2. Fungal EVs as virulence factors

The mechanisms of biogenesis and release of fungal EVs are not 
as well elucidated as in mammals. Genetic studies have implicated at 
least three different pathways in the release of EVs in fungi, including 
the conventional post-Golgi secretory pathway, ESCRT-mediated 
release of exosomes via MVBs, and an unconventional secretory 
pathway involving Golgi reassembly stacking proteins (GRASP). 
Fungal microvesicle biogenesis occurs via the direct outward budding 

FIGURE 1

The structure of fungal cell wall and virulence factors. (A) The fungal cell wall is a complex structure composed of polysaccharides, proteins, and lipids 
that provide structural integrity and protection to fungal cells. (B) Exosomes, being larger vesicles, do not directly pass through the fungal cell wall but 
can indirectly influence it through the secretion of enzymes and other molecules involved in cell wall modification and remodeling.
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and pinching of the plasma membrane releasing the nascent 
microvesicle into the extracellular space. Figure 2 summarizes the 
structure and generation of fungal EVs. Fungal EVs contain various 
native substances, including nucleic acids, pigments, proteins, lipids, 
carbohydrates, polysaccharides, and prions, which play roles in 
pathophysiological processes. Genetic and molecular evidence 
indicates similarities between fungal EVs and mammalian EVs 
(TerBush et  al., 1996). Transmembrane proteins (annexins and 
tetraspanins), vesicle trafficking proteins (ESCRT proteins and Rab 
GTPases), cytoskeletal proteins, heat-shock proteins, metabolic 
enzymes, integrins, 14-3-3 proteins, and ribosomal subunits are all 
connected with mammalian EVs (Bonsergent et al., 2021). Similarly, 
fungal EVs were frequently abundant the same proteins involved in 

the plasma membrane, pathogenicity, stress responses, transport, 
signaling, and fundamental cellular metabolism (Zarnowski et al., 
2021). Fungal EVs carry enzymes involved in metabolic pathway, such 
as amino acid biosynthesis and fatty acid metabolism, although their 
specific biological functions are yet to be fully understood (Rodrigues 
et al., 2007; Albuquerque et al., 2008; Vallejo et al., 2012b; Vargas et al., 
2015). Comparable to EVs derived from tumors, fungal EV biogenesis 
and cargo loading involve the ESCRT-mediated MVB pathway and 
the conventional secretory pathway via the endoplasmic reticulum 
(ER)-Golgi Apparatus (GA)-exocyst-plasma membrane axis, with 
potential alternative pathways (Wenzel, 1995). Fungal EVs and 
mammalian EVs also show strong similarities in molecular content, 
such as both EVs transport several RNAs belonging to broad 

FIGURE 2

The structure and biogenesis of fungal EVs. Fungal EVs carry a variety of biologically native substances, such as nucleic acids, pigments, proteins, lipids, 
carbohydrates, polysaccharides, and prions, which are involved in pathophysiological processes. Fungal EVs biogenesis occurs in MVB endosomes, 
giving rise to secreted exosomes, and at the plasma membrane, resulting in the generation of MVs. Fungal microvesicle biogenesis occurs via the direct 
outward budding and pinching of the plasma membrane releasing the nascent microvesicle into the extracellular space.
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functional classes, including various functional classes of RNAs, such 
as messenger RNA (mRNA) (Lasser et al., 2017), which contribute to 
their biological functions. Table 1 summarizes early evidence and 
recent findings in the field of fungal EVs.

Many virulence factors are transported from fungal cells via EVs 
(Schrettl et al., 2007; Silva et al., 2014; Bleackley et al., 2020; Garcia-
Ceron et al., 2021), including those that lack signal peptides (Liu et al., 
2020). Studies have focused on profiling EVs-associated RNAs in 
fungi and host cells, investigating their accumulation during infection 
and identifying potential target genes. RNA content in EVs has been 
found to contribute significantly to gene regulation (Yanez-Mo et al., 
2015). In invasive fungi like Candida albicans, Aspergillus fumigatus, 
and Paracoccidioides brasiliensis, different intraspecific cells exhibit 
varied gene regulation induced by EVs. Goncalves et al. identified 10 
up-regulated lncRNAs, including 1200007C13Rik, 4833418N02Rik, 
Gm12840, Gm15832, Gm20186, Gm38037, Gm45774, Gm4610, 
Mir22hg, and Mirt1, associated with biological processes during 
Candida albicans infection, particularly the response to injury 
(Goncalves et al., 2023). In addition, Rosenblad et al. discovered three 
novel ncRNA genes, namely nuclear RNase P RNA, RNase MRP RNA, 
and a potential snoRNA U14, originating from the ribosomal region 
of fungi, highlighting the important role of ncRNA genes in fungal 
EVs genetics (Rosenblad et al., 2022). The emergence of an increasing 
number of fungi suggests that the diversity of fungal species is 
generally underestimated. EVs derived from different fungal species 
exhibit different virulence characteristics when infecting hosts.

Fungal EVs are considered crucial for microorganisms-host 
interactions. Candida albicans, a major cause of lethal fungal 
infections in immunocompromised individuals, employs adhesins, 
invasins, and hydrolases as virulence factors to breach physical 
barriers and invade host tissues (Saville et al., 2003). EVs have been 
successfully isolated from various Candida spp., including Candida 
glabrata, Candida parapsilosis, and Candida tropicalis (Wellington 
et al., 2009; Gil-Bona et al., 2015; Karkowska-Kuleta et al., 2020). The 
endosomal sorting complex required for transport (ESCRT) pathway, 
specifically subunits Hse1 and Vps27, is involved in Candida albicans 
biofilm EV production. Mutants deficient in ESCRT subunits show 
decreased EVs production (Zarnowski et al., 2018). Dawson et al. 
performed the novo identification of EV protein for Candida albicans, 
which found that claudin-like Sur7 family (Pfam: PF06687) proteins 
Sur7 and Evp1 (orf19.671) had the correlation with the fungal 
infection (Dawson et al., 2020). Additionally, differences in cytokine 
release were observed among Candida species, with Candida glabrata 
producing the highest levels (Kulig et al., 2022). Moreover, Candida 
auris, a chronic infectious disease, can be resistant to antifungal drugs. 
EVs purified from Candida auris improved antifungal resistance to 
amphotericin B formulations (Chan et al., 2022). The biological phases 
of Candida albicans are yeast and hyphae. Hyphae can damage tissue 
by infiltrating mucosal epithelial cells, which eventually causes a blood 
infection and hyphal EVs derived from Candida albicans differ from 
yeast vesicles due to containing a greater number of virulence-related 
proteins despite both kinds of EVs showed immune reactively with 
human sera from invasive candidiasis patients (Martinez-Lopez 
et al., 2022).

In addition to Candida spp., Aspergillus fumigatus also secretes 
EVs, leading to alterations in fungal cell wall morphology and exerting 
antifungal effects. This indicates the involvement of Aspergillus 
fumigatus EVs in inhibiting mycelial growth within the fungal 

cytoplasm, possibly due to the presence of an antimicrobial protein 
(Shopova et al., 2020). Aspergillus fumigatus possesses membrane-
delimited organelles involved in melanization and is recruited to the 
endosome through an unconventional secretion pathway, utilizing 
various factors. This pathway allows for the sequential concentration 
and utilization of substrates, galactomannan-anchor precursors, anti-
reactive oxygen species (ROS), and P450 (CYP450) enzymes 
(Upadhyay et al., 2016). Additionally, the endosomal system facilitates 
the export of negatively charged macromolecules across the plasma 
membrane, which helps sequester toxic intermediates and minimizes 
the risk of damage to other cytoplasmic machinery (Upadhyay et al., 
2016). Souza et al. purified EVs from Aspergillus fumigatus, showing 
that the presence of glucanosyltransferases (Gel1, Gel4, and Bgt1), 
Ecm33, and EglC among proteins involved in cell wall remodeling in 
Aspergillus fumigatus, which resulted in the elongation of the cell wall 
glucan chain and resulting in the maintenance and resistance of the 
cell wall, indicating that these proteins in the EVs participate of 
mechanisms of fungal virulence (Souza et al., 2019).

Rodrigues et al. found that approximately 76 different proteins 
have been detected in Cryptococcus neoformans EVs and implied that 
Cryptococcus neoformans secretes pathogenesis-related chemicals in 
an effective and widespread manner, and that EVs serve as “virulence 
bags” that transport a concentrated payload of fungi to host effector 
cells and tissues. However, there is minimal overlap and no analysis of 
their abundance or enrichment (Rodrigues et al., 2008b). Among 
these proteins, the immunogenic properties of three Cryptococcal 
proteins (Cda2, Fpd1, and MP88) have been previously confirmed 
(Levitz et al., 2001; Biondo et al., 2003). Recent studies have identified 
key virulence factors in Cryptococcus neoformans EVs, including 
superoxide dismutase, phospholipase B, urease, and 
glucuronoxylomannan (GXM), a high-molecular-weight 
polysaccharide. Specifically, GXM is produced intracellularly and 
transported through the cell wall within these secretory vesicles 
(Mariano Andrade et al., 2003; Monari et al., 2005; Yauch et al., 2006; 
Rodrigues et al., 2007; Monari et al., 2009). Cryptococcus EVs play a 
crucial role in the pathophysiology of fungal infection processes by 
acting as virulence factors by regulating prion transmission, virulence 
transfer, and antifungal drug resistance. Furthermore, applying an 
innovative protocol for the new isolation of Cryptococcus gattii EVs, 
Reis et al. studied Cryptococcus gattii and revealed the involvement of 
scrablase a phospholipid translocase, as a virulence factor in 
Cryptococcus gattii secretion (Reis et al., 2019). EVs have also been 
observed in fungal culture supernatants and body fluids of various 
human pathogenic fungi, including Histoplasma capsulatum 
(Albuquerque et al., 2008), Sporothrix brasiliensis (Ikeda et al., 2018), 
Sporothrix schenckii (Albuquerque et al., 2008), Malassezia sympodialis 
(Gehrmann et al., 2011), and Trichophyton interdigitale (Bitencourt 
et  al., 2018). Zhao et  al. demonstrated that EVs enriched with 
Saccharomyces cerevisiae Fks1 and Chs3 protected yeast cells from cell 
wall disruption, suggesting that EVs prevent the host immune system 
from killing fungal organisms through a potential role in intraspecific 
fungal communication (Zhao et al., 2019). Rayner et al. reported that 
Malassezia sympodialis EVs exhibited an RNAi-independent route for 
biogenesis, but no evidence was found linking small RNA expression 
in Malassezia sympodialis EVs to pH changes (Rayner et al., 2017). 
Therefore, the role of virulence factors of Malassezia sympodialis EVs 
in the host remains unclear. Additionally, Bitencourt et al. identified 
specific miRNA sequences in Paracoccidioides brasiliensis 

https://doi.org/10.3389/fmicb.2023.1205477
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu
 an

d
 H

u
 

10
.3

3
8

9
/fm

icb
.2

0
2

3.12
0

54
77

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
0

6
fro

n
tie

rsin
.o

rg

TABLE 1 The early evidence and recent discoveries in the field of fungal EVs.

Timeline Discoverer Fungal special Discovery References

1972 Gibson and Peberdy Aspergillus nidulans EVs release by Aspergillus nidulans Gibson and Peberdy (1972)

1973 Takeo et al. Cryptococcus neoformans EVs secretion out of the cell membrane in Cryptococcus neoformans Takeo et al. (1973)

1977 Chigaleichik et al. Candida tropicalis EVs term was used for the first time in Candida tropicalis Chigaleichik et al. (1977)

1990 Anderson et al. Candida albicans EVs traversing the wall through “pimples” in Candida albicans Anderson et al. (1990)

2007 Colmenares Candida albicans EVs released by Schizosaccharomyces pombe and Candida albicans Colmenares et al. (2007)

2007 Rodrigues et al. Cryptococcus neoformans First description of fungal EVs in Cryptococcus neoformans Rodrigues et al. (2007)

2008 Albuquerque et al. Histoplasma capsulatum; Candida albicans; Candida 

parapsilosis; Sporothrix schenckii and Saccharomyces cerevisiae

EVs in Histoplasma spp.; Candida spp.; Sporothrix spp. and Saccharomyces spp. Albuquerque et al. (2008)

Rodrigues et al. Cryptococcus neoformans Virulence-associated proteins in Cryptococcus neoformans Rodrigues et al. (2008a)

2009 Eisenman et al. Cryptococcus neoformans EVs in Cryptococcus neoformans melanization Eisenman et al. (2009)

Panepinto et al. Cryptococcus neoformans Sec6 is involved in EVs release in Cryptococcus neoformans Panepinto et al. (2009)

2010 Oliveira et al. Saccharomyces cerevisiae Characterization of Saccharomyces spp. EVs and the effect of Sec4 in EVs release Oliveira et al. (2010b)

Cryptococcus neoformans Cryptococcus neoformans EVs modulate macrophages

2011 Gehrmann et al. Malassezia sympodialis EVs in Malassezia sympodialis and modulation of PBMC Gehrmann et al. (2011)

2012 Vallejo et al. Paracoccidioides brasiliensis Lipidomics of Paracoccidioides brasiliensis EVs Vallejo et al. (2012a)

Huang et al. Cryptococcus neoformans Cryptococcus neoformans EVs and brain infection Huang et al. (2012)

2014 Rizzo et al. Cryptococcus neoformans Apt1p and EVs-GXM secretion in Cryptococcus neoformans Rizzo et al. (2014)

Silva et al. Alternaria infectoria EVs in Alternaria infectoria Silva et al. (2014)

2015 Kabani and Melki Saccharomyces cerevisiae EVs export prions in Saccharomyces cerevisiae Kabani and Melki (2015)

Gil-Bona et al. Candida albicans Proteomic analysis of EVs in Candida albicans Gil-Bona et al. (2015)

Vargas et al. Candida albicans Characterization and immunobiology of Candida albicans EVs Vargas et al. (2015)

Peres da Silva et al. Paracoccidioides brasiliensis and Paracoccidioides lutzii EVs derived from Paracoccidioides brasiliensis and Paracoccidioides lutzii export glycans Peres da Silva et al. (2015b)

Wolf et al. Candida albicans Lipid metabolism and EVs release in Candida albicans Wolf et al. (2015)

2016 Matos Baltazar et al. Histoplasma capsulatum Humoral responses affect composition of Histoplasma capsulatum EVs Matos Baltazar et al. (2016)

da Silva et al. Paracoccidioides brasiliensis Paracoccidioides brasiliensis EVs modulate host innate immune response da Silva et al. (2016)

2017 Rizzo et al. Cryptococcus neoformans Cryptococcus neoformans EVs modulate amoeba antifungal properties Rizzo et al. (2017)

Rayner et al. Malassezia sympodialis RNA export in Malassezia sympodialis EVs Rayner et al. (2017)

2018 Leone et al. Pichia fermentans Pichia fermentans EVs in biofilm formation Leone et al. (2018)

Ikeda et al. Sporothrix brasiliensis EVs in Sporothrix brasiliensis and the modulation of dendritic cells and in vivo infection Ikeda et al. (2018)

Bitencourt et al. Trichophyton interdigitale EVs in Trichophyton interdigitale and modulation of macrophages and keratinocytes Bitencourt et al. (2018)

Peres da Silva et al. Cryptococcus neoformans EVs-RNA export and GRASP in Cryptococcus neoformans Peres da Silva et al. (2018)

(Continued)
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TABLE 1 (Continued)

Timeline Discoverer Fungal special Discovery References

Johansson et al. Malassezia sympodialis Allergens in Malassezia sympodialis EVs and interaction with skin cells Johansson et al. (2018)

Zarnowski et al. Candida albicans Biofilm EVs and ESCRT machinery in Candida albicans Zarnowski et al. (2018)

Liu et al. Rhizopus delemar EVs-exRNAs in Rhizopus delemar Liu et al. (2018)

Bielska et al. Cryptococcus gattii Cryptococcus gattii EVs and virulence transmission Bielska et al. (2018)

2019 Souza et al. Aspergillus fumigatus EVs in Aspergillus fumigatus and interaction with macrophages and neutrophils Souza et al. (2019)

Reis et al. Cryptococcus gattii EVs-RNA and GXM export in Cryptococcus gattii. Novel protocol for fungal EVs isolation Reis et al. (2019)

De Paula et al. Trichoderma reesei EVs-associated cellulases in Trichoderma reesei de Paula et al. (2019)

Alves et al. Histoplasma capsulatum RNA export in Histoplasma capsulatum EVs Alves et al. (2019)

Zhao et al. Saccharomyces cerevisiae EVs and cell wall remodeling in Saccharomyces cerevisiae Zhao et al. (2019)

2020 Winters et al. Saccharomyces cerevisiae IVC organelles and EVs secretion in Saccharomyces cerevisiae Winters et al. (2020)

Dawson et al. Candida albicans Claudin-like Sur7 family proteins as potential markers of Candida albicans EVs Dawson et al. (2020)

Bleackley et al. Fusarium spp. EVs in Fusarium oxysporum f.sp. vasinfectum and phytotoxicity Bleackley et al. (2020)

Vallhov et al. Malassezia sympodialis EVs in Malassezia sympodialis and interaction with human keratinocytes Vallhov et al. (2020)

Kabani Saccharomyces cerevisiae Glucose availability and EVs prions export in Saccharomyces cerevisiae Kabani et al. (2020)

Cleare et al. Histoplasma capsulatum Nutritional environment and EVs release in Histoplasma capsulatum Cleare et al. (2020)

Brauer et al. Aspergillus flavus Aspergillus flavus and their immunomodulatory functions Brauer et al. (2020)

Rizzo et al. Aspergillus fumigatus Aspergillus fumigatus EVs production in the absence of cell wall Rizzo et al. (2020)

2021 Munhoz da Rocha 

et al.

Candida auris generated data set for Candida auris and cellular small RNA fraction, EVss RNA during without/

with caspofungin treatment

Munhoz da Rocha et al. (2021)

Rizzo et al. Cryptococcus spp. Cryptococcus EVs has potential as a vaccine Rizzo et al. (2021)

Baltazar et al. Paracoccidioides brasiliensis Protective response in experimental Paracoccidioidomycosis elicited by EVs containing antigens 

of Paracoccidioides brasiliensis

Baltazar et al. (2021)

Zamith-Miranda et al. Candida albicans; Candida auris Remarkably distinct compared to EVs from Candida auris’s phylogenetic relative Candida albicans Zamith-Miranda et al. (2021)

Yang et al. Talaromyces marneffei EVs derived from Talaromyces marneffei yeasts mediate inflammatory response in macrophage 

cells by bioactive protein components.

Yang et al. (2020)

2022 Castelli et al. Cryptococcus deuterogattii NOP16 functions in EV biogenesis and cargo, and the composition of EVs is determinant for 

cryptococcal virulence

Castelli et al. (2022)

Amatuzzi et al. Candida auris The ability of Candida auris to efficiently alter the composition of EVs represent a mechanism for 

the fungus to mitigate the effects of antifungal agents

Amatuzzi et al. (2022)

Gandhi and Joseph Candida albicans The potential use of EVs as theranostic marker for management of fungal infections Gandhi and Joseph (2022)

(Continued)
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(has-mir5685, cre-MIR905, dre-MIR-125-a2, and has-mir-5583-1) 
and Saccharomyces cerevisiae (ame-mir-3797 and cin-mir-4104), 
suggesting their potential virulence significance in fungal EVs (Peres 
da Silva et al., 2015b).

3. The interaction of fungal EVs with 
the immune system

Fungi have developed effective immune evasion mechanisms to 
survive within the host environment, and long-term antigenic 
stimulation can significantly impact the modulation of the host 
immune response (Richie et al., 2009). Fungal pathogens possess the 
ability to evade human host immune responses by skillfully avoiding 
recognition and manipulating host responses, which may potentially 
trigger immune reactions against the fungi (Luo et al., 2015). Similarly, 
fungal EVs also have the capacity to modulate immunity activation, 
either positively or negatively, depending on the presence of fungal 
virulence factors (Oliveira et  al., 2010a). Fungal EVs regulate the 
expression of co-stimulatory molecules in dendritic cells, macrophages 
polarization, and cytokine production in phagocytes. Figure 3 shows 
the immunoregulatory functions of fungal EVs. Table 2 summarizes 
the positive and negative regulation of activation of innate immunity 
by fungal EVs.

3.1. Fungal EVs positively modulate the 
activation of immunity

Candida albicans is more prone to cause diseases ranging from 
superficial mucosal to life-threatening systemic infections in patients 
with malignancy, leading to a variety of diseases, including mucosal 
infection, candidemia and disseminated candidiasis. Antimicrobial 
peptides and the complement system are two important, evolutionary 
conserved systems discovered as the first line of defense against 
bacteria in relation to the humoral response against fungi (Wenzel, 
1995; Pfaller et al., 1998; Steele et al., 1999). Candida albicans EVs 
exhibit immunomodulatory effects that active the innate immune 
response. Co-stimulation of RAW 264.7 macrophages with EVs 
induces the production of NO, IL-12p40, IL-10, and TGF-β, similar to 
bone marrow-derived macrophages (BMDM) that produce NO, 
IL-12p40, TNF-α, and IL-10. In an in vivo experiment by Vargas et al., 
immunosuppressed mice vaccinated with EVs + Freund’s adjuvant 
(ADJ) showed higher levels of TNFα, IL-12p70, and IFN-γ in the 
blood. However, IL-12p70, TGFβ, IL-4, and IL-10 levels also increased 
without EVs + Freund’s adjuvant (ADJ) treatment (Vargas et al., 2020). 
Macrophages and DCs can internalize Candida spp. EVs, triggering a 
significant biological response characterized by increased NO, IL-12, 
IL-10, and TGF-β secretion, and MHC-II expression in DCs (Vargas 
et al., 2015). The morphological transition between yeast and hyphal 
forms is known to be linked to the virulence of Candida spp., affecting 
traits such as the ability to penetrate host tissues. Interactions on the 
cell surface and secreted proteins play crucial roles in the initial 
interaction between Candida spp. and the host (Hazen, 1989). 
Candida albicans EVs modulate the immune response by secreting 
TGF-1 transporter from human monocytes. It has been discovered 
that Candida-glucans activate the complement receptor 3 (CR3) on 
the plasma membrane of monocytes, leading to the production of T
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TGF-1-transporting EVs. These EVs suppress the immune response 
in blood vessels, stimulate endothelial cells to produce TGF, and 
attenuate systemic infection (Mobius et al., 2002; Andriantsitohaina 
and Papon, 2020). Martinez-Lopez et al. observed that EVs secreted 
by hyphal cells (HEVs) of Candida albicans differ from yeast EVs 
(YEVs), with HEV exhibiting higher virulence and more pronounced 
effects on human immune cells (Martinez-Lopez et al., 2022). Oliveira 
et al. showed that low levels of Candida haemulonii var. EVs are not 
recognized by the traditional pathway of the oxidative burst produced 
by macrophages, which allow the transport of virulence factors via 
EVs that are not recognized by the host immune system and could act 
as regulators during infections caused by Candida haemulonii var. 
High EV concentrations and Candida haemulonii var., however, 

triggered microbicidal responses of macrophages (Oliveira et  al., 
2023). Therefore, EVs were shown to contribute to fungal virulence, 
and these vesicles may be  a source of antigens that activate host 
immune responses and can be used to develop new therapeutic targets.

It has been reported that human neutrophils produce antifungal 
EVs against Aspergillus fumigatus (Shopova et al., 2020). The release 
of EVs by the pathogenic Aspergillus fumigatus was first demonstrated 
by Souza et al., showing that Aspergillus EVs can induce phagocytosis, 
production of pro-inflammatory mediators, and phagocyte 
recognition, all of which contribute to fungal elimination (Souza 
et al., 2019). Brauer et al. evaluated Aspergillus flavus EV production 
and immunomodulatory effects and observed that the presence of 
EVs induces the production of inflammatory mediators such as NO, 

FIGURE 3

The immunoregulatory functions of fungal EVs. Fungal EVs can present antigen on their surface molecules directly to T cells, DCs, and monocytes. 
Fungal EVs could modulate positively or negatively the activation of innate immunity, which depend on the presence of fungal virulence factors and 
fungal species.
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TABLE 2 Positively and negatively modulate the activation of innate immunity with fungal EVs.

Immune 
effects

Fungal species Mechanisms Outcomes References

Positive 

regulation

Candida albicans RAW264.7 macrophages produce NO, IL-12p40, and lower concentration of IL-10 and TGF-β; bone marrow-

derived macrophages (BMDM) produce NO, IL-12p40, TNF-α, and TGF-β; via maturation, coincides with a 

higher expression of major histocompatibility complex class II and CD86

Activation of the innate response Vargas et al. (2015)

Candida albicans In vivo study with larval A lower fungal burden and an increased life 

span in the EV-treated larvae

Vargas et al. (2015)

Candida albicans EVs derived from phosphatidylserine synthase (CHO1)-knockout fungi were unable to activate NF-κB in BMDM 

and J774.14 macrophages

Immune cell activation Wolf et al. (2015)

Cryptococcus 

neoformans

Macrophages stimulated in vitro with EVs derived from C. neoformans produce anti-inflammatory cytokines, 

such as transforming growth factor β (TGF-β) and IL-10; produce TNF-α, NO

Anti-inflammatory function; increased 

ability to phagocytize and kill fungal cells

Oliveira et al. (2010a)

Paracoccidioides 

brasiliensis

Induce the differentiation of M1 macrophages; produce proinflammatory cytokines and increase relative 

expression of iNOS gene

Cause macrophage phagocytosis and 

modulate the innate immune response

da Silva et al. (2016)

Paracoccidioides 

brasiliensis

The interaction between EVs and DCs was dendritic cell-specific intercellular adhesion molecule-3-grabbing 

nonintegrin (DC-SIGN) dependent

Generation of immune response Peres da Silva et al. (2015a)

Malassezia sympodialis Carry allergens recognized by IgE from AE patients; induce the production of IL-4 and TNF-α by peripheral 

blood mononuclear cells (PBMC)

Exert an indirect immune effect Gehrmann et al. (2011)

Malassezia sympodialis DCs are able to phagocytize these fungal structures and produce their own EVs containing M. sympodialis 

antigens. Monocytes and keratinocytes could actively internalize M. sympodialis EVs

Exert an indirect immune effect Johansson et al. (2018)

Trichophyton 

interdigitale

Toll-like receptor 2 activation; produce NO, TNF-α, IL-6, and IL-1β in response to EVs. Increase iNOS relative 

expression; EV-treated macrophages differentiate into M1 macrophages, exhibiting a higher phagocytic and 

intracellular killing index than other macrophages when incubated with fungal conidia

Induce a strong inflammatory response in 

BMDM and keratinocytes

Bitencourt et al. (2018)

Negative 

regulation

Candida albicans Hgt1p in EVs plays a canonical transmembrane role in glucose transport, binding to FH on the surface of the 

yeast cell wall serves an additional non-canonical role as a moonlighting protein

Interfering with host cells, enabling Candida 

albicans to evade the immune attack

Karkowska-Kuleta et al. (2020)

Cryptococcus 

neoformans

Carry many virulence factors, including its major capsular antigen, glucuronoxylomannan (GXM), and laccase, 

the enzyme responsible for melanin production

Exert an immunosuppressive action over 

macrophages, monocytes, neutrophils, and 

T lymphocytes

Rodrigues et al. (2007); Rodrigues 

et al. (2008b); Vecchiarelli et al. 

(2000); Monari et al. (2003); 

Vecchiarelli et al. (1996); Monari 

et al. (2002)

Cryptococcus gattii Enter infected macrophages and impact on the rate of fungal intracellular proliferation within the phagosome Modulate macrophage responses, ultimately 

facilitating the intracellular multiplication of 

less virulent strains without interfering with 

the phagocytosis rate

Bielska et al. (2018)

Histoplasma 

capsulatum

EVs reduced the phagocytic rates and intracellular fungal killing by Bone marrow-derived macrophage (BMDM) Suppressive in the infection Baltazar et al. (2018)

Sporothrix brasiliensis Differential production of IL-12 p40, TNF-α, and IFN-γ compared with that by nontreated BMDC and higher 

levels of phagocytosis but not intracellular killing of S. brasiliensis yeast cells by pretreated BMDC than by 

nontreated BMDC

Impaired the initial immune response Ikeda et al. (2018)
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TNF, IL-6, and IL-1 are produced by macrophages. Furthermore, 
Aspergillus flavus EVs regulate macrophage phagocytosis, killing, and 
M1 macrophage polarization in vitro (Brauer et  al., 2020). 
Mesenchymal stem cells (MSCs) play a role in the fungal immune 
response. Studies found that EVs secreted by MSCs possess tissue 
repair capabilities, inhibit inflammation, improve immune response, 
and promote angiogenesis (Gatti et al., 2011). In a clinical model of 
allergic airway inflammation, Cruz et  al. discovered that 
MSC-secreted EVs attenuated the Th2/Th17-mediated inflammatory 
response, thereby alleviating airway hyper-responsiveness induced by 
Aspergillus filaments (Cruz et al., 2015). This suggests that MSC-EV 
could be  a valuable target in vaccine formulations. Freitas et  al. 
evaluated the pro- and anti-inflammatory effects of Aspergillus 
fumigatus EVs in vitro, revealing EVs derived from Aspergillus 
fumigatus induced a partial proinflammatory response in 
macrophages by increasing the production of TNF-α and gene 
expression of induced nitric oxide synthase and adhesion molecules 
(Freitas et al., 2023).

In Cryptococcus spp., studies have shown that Cryptococcus 
neoformans EVs are more beneficial than detrimental to the host 
(Oliveira et  al., 2010a). Oliveira et  al. observed that Cryptococcus 
neoformans secretes EVs during interactions with phagocytes in vivo, 
which can directly modulate host-pathogen interactions and influence 
the outcome of Cryptococcus neoformans-macrophage interactions by 
regulating macrophage activation states (Oliveira et  al., 2010a). 
Indeed, Cryptococcus neoformans EVs have been shown to stimulate 
macrophages in vitro, inducing the production anti-inflammatory 
cytokines such as TGF-β and IL-10 (Oliveira et  al., 2010a). 
Additionally, it is crucial to investigate the role of Cryptococcus spp. 
EVs in inducing immunity, particularly in infected 
immunocompromised hosts, where innate immune cells develop a 
memory-like response to repeated exposure to Cryptococcus 
neoformans (Devi et  al., 1991; Hole et  al., 2019). The presence of 
functional T cells is undoubtedly essential for effective defense against 
Cryptococcus neoformans. Moreover, Oliveira et  al. found that 
incubation of murine macrophage with Cryptococcus neoformans EV 
led to a significant elevation in extracellular levels of TNF-α, IL-10, 
and TGF-β, promoting localized fungal infection (Oliveira 
et al., 2010a).

It has been reported that various fungal species secrete EVs that 
modulate the immune response of patients. Bitencourt et al. were the 
first to report that Trichophyton interdigitale secretes EVs, which 
stimulate the transcription of the M1-polarization marker inducible 
nitric oxide synthase (iNOS) and inhibit the expression of the M2 
markers arginase-1 and Ym-1. These EVs also induce the production 
of pro-inflammatory mediators by bone marrow-derived macrophages 
(BMDMs) and keratinocytes in a dose-dependent manner (Bitencourt 
et al., 2018). Gehrmann et al. discovered that EVs derived from DCs 
co-cultured with Malassezia sympodialis can carry Malassezia 
sympodialis antigens and stimulate cytokine release in autologous 
CD14 and CD34-depleted PBMCs from patients. Interestingly, they 
also found for the first time that Malassezia sympodialis EVs contain 
antigens and allergens that induce cytokine responses in CD14 and 
CD34-depleted PBMCs from patients (Gehrmann et al., 2011). To 
date, Paracoccidioides brasiliensis EVs have been shown to stimulate 
M1 Macrophages in vitro, leading to the production of 
pro-inflammatory cytokines and increased relative expression of the 
iNOS gene (da Silva et al., 2016).

3.2. Fungal EVs negatively modulate the 
activation of immunity

As mentioned above, EVs derived from fungal species contain a 
diverse range of virulence factors, regulators, and highly immunogenic 
components that may directly contribute to disease development 
(Vargas et al., 2020). Therefore, the presence of multiple virulence 
factors in fungal EVs suggests that their potential harm to the host 
cannot be disregarded entirely. However, only a limited number of 
studies have reported on fungal EVs negatively modulating the 
activation of host immunity, such as Sporothrix spp. and Histoplasma 
spp. (Baltazar et al., 2018; Ikeda et al., 2018). In an in vivo study, Ikeda 
et al. observed a significant increase in fungal load in animals infected 
with Sporothrix brasiliensis. They found that the amount of fungal 
growth in the tissue increased as the number of fungal EVs injected 
into the mice increased, suggesting that fungal EVs facilitate the 
growth of fungus in the host (Ikeda et al., 2018). Similarly, Baltazar 
et  al. demonstrated that the determination of the pathogen’s 
intracellular fate depends on the signaling pathways activated when 
macrophages and Histoplasma capsulatum interact. Importantly, they 
investigated that Histoplasma capsulatum-EV-treated macrophages 
had a reduced ability to kill fungal cells, particularly phagocytes 
treated with 7B6-EV. The levels of glutathione peroxidase (C0NI23) in 
EVs were reduced due to 6B7mAb treatment. Therefore, yeast cells 
may be better equipped to handle peroxides produced by phagocytes 
because glutathione peroxidase is less abundant in 6B7-EV (Baltazar 
et  al., 2018). Additionally, in the extensively studies case of the 
opportunistic fungal pathogen Cryptococcus neoformans, EVs contain 
the capsular antigen GXM, which has been shown to exert cytotoxic 
effects on macrophages directly through the Fas/FasL pathway and 
can suppress monocytes, neutrophils, and T lymphocytes (Diamond 
et  al., 1972; Villena et  al., 2008). Other evidence suggests that 
Cryptococcus neoformans EVs enhance brain infection by facilitating 
the crossing of the blood-brain barrier and modulating the host’s 
ability to fight against infection through cytokines induction, 
providing a remarkable example of cross-kingdom communication 
(Huang et al., 2012). Therefore, the functional role of fungal EVs in 
the host immune system is complex, and further molecular biology 
experiments are needed in the future to explore the main regulatory 
pathways, as well as key cytokines and proteins.

4. The application of fungal EVs

Although current multiple methods for diagnosing fungal 
infections are applied including culture, microscopic examination, 
molecular biology, histopathology, and serological tests (Ness et al., 
1989), they cannot specifically detect invasive fungal diseases and 
accurately identify fungal species in an efficient and inexpensive 
manner. The development of novel diagnostic methods for fungi can 
benefit from investments in identifying fungal pathogens through 
EVs-based strategies, as they offer distinct advantages in disease 
biomarkers (Ahn et al., 2018). EVs have been found to carry reliable 
markers for the diagnosis of infectious diseases, including viral and 
misfolded proteins, enabling the development of sensitive tests that 
can identify the infection and monitor its progression. Infectious EVs 
are particularly useful in this regard due to their ability to detect both 
active and dormant intracellular infections (Kruh-Garcia et al., 2014). 
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However, the absence of specific protein markers, such as those found 
in mammalian EVs, which have allowed for sophisticated isolation 
and analysis techniques, has hindered in-depth research into fungal 
EVs. For example, ESCRT proteins like Vps23 (Tsg101) and Bro1 
(ALIX), involved in the biogenesis of fungal EVs, are not present in 
the cargo of fungal EVs. Tetraspanin homologs have been discovered 
in numerous fungi, including the model yeast Saccharomyces 
cerevisiae. Interestingly, 22 putative Candida albicans EVs protein 
markers were identified, including the claudin-like Sur7 family (Pfam: 
PF06687) proteins Evp1 (orf19.6741) and Sur7 (Dawson et al., 2020), 
providing evidence that fungal EVs can be useful tools for elucidating 
the role of EVs derived from fungi. Furthermore, Martinez-Lopez 
et al. discovered distinct differences between Candida albicans hyphal 
cells EVs (HEVs) and Candida albicans yeast EVs (YEVs), suggesting 
their relevance and potential use in developing new diagnostic 
markers and therapeutic targets for Candida albicans infection 
(Martinez-Lopez et  al., 2022). Moreover, a broad-omics approach 
proposed by Zysset et al. could enhance our knowledge in the fields of 
fungal MV biology, biogenesis, composition, and immunomodulatory 
capabilities, and facilitating the discovery of new molecules with 
diagnostic biomarker potential (Zysset et  al., 1988). Fungal EVs 
containing RNA could serve as potential diagnostic biomarkers due 
to their involvement in spliceosome machinery and pre-mRNA 
processing during fungal adaptation to different niches (e.g., 
cre-MIR905, has-mir5685, dre-MIR-125-a2, and has-mir5583-1) 
(Peres da Silva et al., 2015b). Interestingly, has-mir5685 was also found 
to be significantly decreased in breast cancer, while has-mir5583-1 has 
a strong correlation with nasopharyngeal carcinoma (Wen et  al., 
2019), indicating the possibility of fungal infection in tumor patients 
through RNA delivery and communication in EVs. However, most 
current molecular tests lack validity, exhibit cross-reactivity, and are 
limited to the detection of a few species. Therefore, the exploration of 
fungal EVs as diagnostic biomarkers is still in its early stages.

RNA-based methods, such as host-induced gene silencing and 
artificial vesicle-protected RNA antifungal strategies, have been 
proposed as EV-based approaches for preventing infectious diseases 
(Cai et  al., 2018). Currently, only a limited number of vaccine 
candidates targeting vulvovaginal candidiasis are under development, 
and there are no licensed antifungal vaccines available (Levy et al., 
1989; Odds, 2003). The development of antifungal vaccines focusing 
on the fungal cell wall presents attractive targets. Clinical trials are 
underway for a vaccine composed of the recombinant N terminus of 
Als3p, a surface protein expressed by Candida albicans that facilitates 
host entry. This vaccine has demonstrated effectiveness in treating 
oropharyngeal and vaginal candidiasis (Schmidt et  al., 2012). 
Additionally, preclinical studies in rodents have shown promise for the 
major secreted aspartic protease (Sap2) as a vaccine against vaginal 
candidiasis (Vecchiarelli et al., 2012). Fungal EVs elicit robust immune 
responses in animals both in vitro and in vivo, suggesting their 
potential application as mycosis vaccines. The antifungal properties of 
Candida EVs have been extensively investigated, with several studies 
demonstrating their ability to inhibit the growth of other fungal 
strains. For instance, Vargas et al. discovered that EVs from Candida 
albicans exhibit a protective effect against candidiasis by stimulating 
macrophages and dendritic cells to produce cytokines and express 
costimulatory molecules (Vargas et al., 2020). Gandhi et al. revealed 
that EVs derived from fungal-infected Retinal Pigment Epithelial 
(RPE) cells may contribute to the pathogenesis of endophthalmitis 

and activate immune signaling pathways, indicating the potential of 
EVs as a cargo for treating fungal infections (Gandhi and Joseph, 
2022). In an in vivo study, Souza et al. found that Aspergillus fumigatus 
EVs rescued 50% of mice with Aspergillus fumigatus-induced lethal 
fungal pneumonia, suggesting their potential use as immunizing 
agents (Souza et al., 2022). Shopova et al. discovered a previously 
unknown mechanism by which neutrophils combat Aspergillus 
fumigatus infection, holding significant clinical implications for the 
development of new antifungal therapies (Shopova et  al., 2020). 
Specifically, the discovery that neutrophils release EVs carrying 
antifungal substances to target fungi highlights the diagnostic and 
therapeutic potential of these vehicles for fungal infections.

Furthermore, conducting additional research on the molecular 
mechanisms underlying this interaction has the potential to uncover 
novel targets for drug development. Ultimately, comprehending the 
intricate interplay between host defenses and fungal pathogens is 
critical for enhancing the outcomes of patients affected with invasive 
fungal infections (Shopova et al., 2020). Considering the substantial 
global burden of the disease on high-risk populations, the development 
of a vaccine against Cryptococcosis is an urgent priority. Wang et al. 
demonstrated that in immunocompromised animals, particularly 
those lacking CD4+ T cells, heat-killed fbp1 cells (HK-fbp1) from 
Cryptococcus neoformans can confer protection against a challenge by 
the virulent parental strain, suggesting its potential as a therapeutic 
agent for treating invasive Cryptococcus infection (Wang et al., 2023). 
Additionally, Specht et al. investigated four Cryptococcal proteins 
(GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) and their potential role 
as candidate vaccines, highlighting their ability to protect mice from 
a lethal Cryptococcal challenge (Specht et  al., 2017). The clinical 
application of fungal EVs is summarized in Table 3.

5. Conclusion and perspective

Fungal infections are increasingly prevalent worldwide. However, 
unlike bacteria or viral infections, there is currently no available 
vaccine for fungal threats. In recent years, the incidence of fungal 
infections has risen, particularly among immunocompromised 
individuals such as organ transplant recipients, AIDS patients, and 
those undergoing chemotherapy. The identification of fungal EVs has 
provided a promising avenue for diagnosing and treating invasive 
fungal infections. Nonetheless, the field of fungal EV research is still 
in its early stages within mycology, despite the widespread use of EVs 
in various biomedical disciplines. The impact of fungal EVs on the 
host’s innate immunity can be  either beneficial or detrimental, 
contingent upon the presence of fungal virulence factors. Interestingly, 
mounting evidence suggests that fungal EVs can serve as valuable 
tools for investigating the role of EVs derived from fungi. This review 
highlights the current progress and limitations in the study of fungal 
EVs, encompassing their potential clinical applications as diagnostic 
tools and therapeutic carriers. However, despite the growing interest 
and understanding of fungal EVs, their precise role in mediating the 
immune response between fungal cells and the host remains 
unknown. This includes elucidating the mechanisms by which fungal 
EVs enable fungal cells to evade immune surveillance and exploring 
the protective effects of fungal EVs in eliminating fungal pathogens. 
Furthermore, this review offers insights into the potential utility of 
fungal EVs in modulating host immune responses, improving 
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antifungal drug delivery, and serving as a platform for vaccine 
development. It may also shed light on the unexplored therapeutic 
potential of fungal EVs in pathogenesis and their application in 
therapeutic interventions.
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