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The goal of the research was to find alternative protein sources for animal farming 
that are efficient and cost-effective. The researchers focused on distillers dried 
grains with solubles (DDGS), a co-product of bioethanol production that is 
rich in protein but limited in its use as a feed ingredient due to its high non-
starch polysaccharides (NSPs) content, particularly for monogastric animals. 
The analysis of the Paenibacillus pabuli E1 genome revealed the presence of 
372 genes related to Carbohydrate-Active enzymes (CAZymes), with 98 of them 
associated with NSPs degrading enzymes that target cellulose, hemicellulose, and 
pectin. Additionally, although lignin is not an NSP, two lignin-degrading enzymes 
were also examined because the presence of lignin alongside NSPs can hinder 
the catalytic effect of enzymes on NSPs. To confirm the catalytic ability of the 
degrading enzymes, an in vitro enzyme activity assay was conducted. The results 
demonstrated that the endoglucanase activity reached 5.37  U/mL, while beta-
glucosidase activity was 4.60  U/mL. The filter paper experiments did not detect 
any reducing sugars. The xylanase and beta-xylosidase activities were measured 
at 11.05 and 4.16  U/mL, respectively. Furthermore, the pectate lyase and pectin 
lyase activities were found to be 8.19 and 2.43  U/mL, respectively. The activities 
of laccase and MnP were determined as 1.87 and 4.30  U/mL, respectively. The 
researchers also investigated the effect of P. pabuli E1 on the degradation of 
NSPs through the solid-state fermentation of DDGS. After 240  h of fermentation, 
the results showed degradation rates of 11.86% for hemicellulose, 11.53% for 
cellulose, and 8.78% for lignin. Moreover, the crude protein (CP) content of DDGS 
increased from 26.59% to 30.59%. In conclusion, this study demonstrated that P. 
pabuli E1 possesses various potential NSPs degrading enzymes that can effectively 
eliminate NSPs in feed. This process improves the quality and availability of the 
feed, which is important for animal farming as it seeks alternative protein sources 
to replace traditional nutrients.
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1. Introduction

Pigs play a pivotal role as a primary source of meat and protein for human consumption 
(Casellas et al., 2013). The demand for pig feed is exceptionally high, accounting for over 20% 
of the total animal feed production (Mottet et  al., 2017). With the current global maize 
production reaching 114.8 million tons (Wang et al., 2021), maize serves as the predominant 
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raw material in swine feed formulation. However, the escalating 
demand for maize in the swine industry poses a significant challenge, 
as it competes directly with human food sources, thereby 
compromising long-term sustainability. Consequently, the 
development of nutritious and efficient swine feeds assumes strategic 
significance in addressing the pressing issue of global food shortages.

The United States and Brazil hold significant prominence as the 
foremost global producers of fuel ethanol. In the year 2021, the 
collective global production of bioethanol amounted to a substantial 
27.22 billion gallons. Among the major contributors, the United States 
spearheaded the production with a noteworthy output of 15.01 billion 
gallons, closely followed by Brazil at 7.43 billion gallons. Remarkably, 
the combined efforts of the United States and Brazil accounted for an 
impressive 82.3% of the world’s total ethanol production (Filipe et al., 
2023). Currently, corn ethanol production is predominant in the 
United States, while sugarcane ethanol production is predominant in 
Brazil. A significant by-product of sugarcane processing is bagasse 
(Sugarcane Bagasse SB), which contains approximately 2.1% to 2.9% 
crude protein, 79.4% to 88.3% neutral detergent fiber, 62.2% to 69.8% 
acid detergent fiber, 22.1% total lignin, 10.3% to 10.5% acid detergent 
lignin, 1.4% ash, and some extracts (Arntzen et al., 2021; de Lucas 
et al., 2021). Bagasse has low crude protein content and high cellulose 
and lignin content, making it suitable for ruminant feed. Ruminants 
have various microorganisms in their rumen that can digest and 
decompose cellulose and hemicellulose (de Almeida et al., 2018). On 
the other hand, distillers dried grains with solubles (DDGS), a 
co-product of corn fermentation, is high in protein and can serve as a 
substitute protein feed ingredient (Streams, 2006; Pahm et al., 2009). 
Corn is the primary grain used for ethanol production in the 
United  States and China. Approximately 1.4  L of ethanol and 1 
kilogram of DDGS are produced from every 3 kilograms of fermented 
corn (Mohammadi Shad et al., 2021). DDGS has been recognized as 
a valuable source of protein, energy, water-soluble vitamins, lutein, 
and linoleic acid (Lumpkins et  al., 2005) and is utilized as an 
alternative ingredient in swine feed. The global annual output of 
DDGS exceeds 40 million tons, with China alone producing over 15 
million tons. As a new high-quality protein resource, DDGS can help 
reduce the overall amount of feed required and partially alleviate the 
significant feed shortage (Abd El-Hack et al., 2018).

Non-starch polysaccharides (NSPs) are widely distributed anti-
nutritional factors found in plant-derived feeds. Cereals, including 
corn, have high levels of NSPs, mainly composed of pentosan, glucan, 
and cellulose. Compared to corn, DDGS has varying crude protein 
content ranging from 26.7% to 32.9%, with concentrated levels of 
NSPs (Min et al., 2009). DDGS contains xylan ranging from 9.1% to 
18.4% and cellulose ranging from 6.3% to 14.7%. Monogastric animals 
lack the enzymes necessary to digest cellulose and xylan. NSPs 
increase chyme viscosity and hinder the interaction between digestive 
enzymes and nutrients, thereby greatly affecting nutrient absorption 
and utilization (Xu et  al., 2009). As anti-nutritional factors, NSPs 
disrupt the physiological activities of intestinal microorganisms, 
reduce animal production performance, and have a more significant 
impact on young animals (Pedersen et al., 2014; Swiatkiewicz et al., 
2016). Cellulose, a linear polymer of D-glucose units linked by beta-
1,4-glycosidic bonds, forms microfibril units through hydrogen 
bonding between cellulose chains. These microfibril units assemble to 
create cellulose fibers, enhancing the stability and resistance of the cell 
wall against degradation (Thapa et  al., 2020). 

Endo-1,4-beta-D-glucanases hydrolyze beta-1,4 linkages randomly in 
both soluble and insoluble cellulose chains. Cellobiohydrolases 
(CBHs) release cellobiose from the reducing (CBH II) and 
non-reducing (CBH I) ends of cellulose chains. Beta-glucosidases 
liberate D-glucose. Hemicellulose consists of pentose sugars (beta-D-
xylose, alpha-L-arabinose), hexose sugars (beta-D-mannose, beta-D-
glucose, and alpha-D-galactose), and aldonic acid (alpha-D-
glucuronic acid; Girio et al., 2010; Escamilla-Alvarado et al., 2017). 
Hemicellulases can be categorized into three types: endoenzymes that 
act within the interior of polysaccharides, exoenzymes that hydrolyze 
from either the reducing or non-reducing ends, and coenzymes that 
act on branched chains. Hemicellulases encompass various enzymes 
such as xylanases, mannanases, beta-glucanases, galactanases, ferulic 
acid esterases, acetyl esterases, and arabinofuranosidases. Lignin, a 
three-dimensional biopolymer, forms complex structures composed 
of random propanol groups. It acts as a barrier, preventing cellulolytic 
enzymes from accessing their substrates by physically obstructing 
enzyme-cellulose interaction and hindering contact with 
hemicelluloses, leading to non-productive enzyme adsorption (Meng 
et al., 2020). Lignin-degrading enzymes primarily include laccases, 
manganese peroxidases, and lignin peroxidases (Bugg and 
Rahmanpour, 2015).

Consequently, the elimination of NSPs in feed ingredients is 
necessary. Paenibacillus species are widely distributed in various 
environments, particularly in soil, where they play roles in 
detoxification through biological nitrogen fixation (Xie et al., 2014), 
phosphate dissolution (Xie et  al., 2016), production of the plant 
hormone indole-3-acetic acid (IAA; Patten et al., 2013), and release of 
siderophores (Raza and Shen, 2010), which promote crop growth. 
Some bacteria, including Paenibacillus species, produce antimicrobial 
agents such as bacteriocins and antimicrobial peptides that can 
be used to control phytopathogenic microorganisms, reducing the 
need for chemical fungicides that may negatively impact the 
environment (Xie et al., 2016). Various Paenibacillus species found in 
the soil produce glucans, chitinases, cellulases, and proteases involved 
in the degradation of eukaryotic cell walls (Grady et al., 2016; Seo 
et al., 2016). However, there are limited reports on the systematic 
study of non-starch polysaccharide degradation by Paenibacillus. The 
target bacteria in this study belong to the Paenibacillus genus. The 
purpose of this study is to explore the degradation effect of the target 
bacteria on non-starch polysaccharides in DDGS and improve the 
feeding value of DDGS.

Paenibacillus pabuli E1 was isolated from surface soil and stored 
in our laboratory. It has been thoroughly characterized and its genome 
has been completely sequenced. Carbohydrate-active enzymes 
(CAZymes) are a group of enzymes that degrade, modify, or generate 
glycosidic bonds, enabling efficient carbohydrate utilization. The 
CAZy database categorizes CAZymes into four types: glycoside 
hydrolases (GHs), glycosyl transferases (GTs), polysaccharide lyases 
(PLs), and carbohydrate esterases (CEs). The database also includes 
carbohydrate-binding modules (CBMs; Cantarel et al., 2009). In this 
study, we  report the annotation of carbohydrate-active enzymes 
(CAZymes) of P. pabuli E1. The NSPs-degrading genes in the P. pabuli 
E1 genome were identified, and the structural information of different 
NSPs-degrading enzymes was comprehensively analyzed. The 
identification results based on CAZymes provide insights into the 
degradation mechanism of NSPs in feed and contribute to the design 
and development of useful microorganisms and enzyme preparations 
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for agriculture or feed. This study investigated the degradation ability 
of P. pabuli E1 on NSPs in DDGS and provides guidance for the 
fermentation application of P. pabuli E1 in eliminating NSPs in feed. 
The results offer a theoretical basis for the subsequent development of 
NSPs enzyme preparations.

2. Materials and methods

2.1. CAZyme annotation

The GenBank accession number for P. pabuli E1 is MT322455, 
and the strain preservation number is CGMCC NO.20517 (Li et al., 
2021). All protein-encoding ORFs from P. pabuli E1 genomes were 
subjected to CAZy annotation using a two-step procedure of 
annotation and identification. BLASTp or Markov models were 
employed to confirm that the sequences belonged to the CAZyme 
family, and the information for each protein was collected (Bayer 
et  al., 2008). The identification of CAZymes in P. pabuli E1 was 
performed using the HMMER (e-value < 1e−15, coverage > 0.35), and 
DIAMOND (e-value < 1e−102) tools in dbCAN (Tamaru et al., 2011). 
The results were analyzed to determine the presence of a secretory 
signal peptide or a transmembrane domain for each identified enzyme 
(Fabrice et al., 2002).

2.2. Growth condition

Luria-Bertani (LB) medium was composed of tryptone (20 g/L), 
yeast (10 g/L), and NaCl (20 g/L). Minimal mineral (MM) medium 
consisted of (NH4)2SO4 (1 g/L), NaH2PO4 (0.5 g/L), K2HPO4 (0.5 g/L), 
MgSO4 (0.2 g/L) and CaCl2 (0.1 g/L). The polysaccharide medium was 
MM solid medium supplemented with agar (15 g/L) and different 
polysaccharides (1 g/L) such as carboxyl methyl cellulose (CMC), filter 
paper, cellulose powder, xylan, and pectin. LB medium supplemented 
with the above-mentioned polysaccharides (0.5 g/L) in addition to 
cellulose powder was used to produce degradative enzymes. The 
ability to degrade lignin was also tested because it is closely related to 
the above polysaccharides. All media were autoclaved at 121°C for 
20 min. Before each experiment, P. pabuli E1 was reactivated in a fresh 
LB liquid medium. Cultures were incubated at 37°C on a shaker at 
160 rpm for 48 h. The presence of spores can hinder the production of 
degradative enzymes in P. pabuli E1 cultures for more than 48 h. 
Hence, a 48-h incubation time was adopted for our experiments.

2.3. Enzyme assay

Paenibacillus pabuli E1 was cultivated in the LB medium for 48 h. 
After 10 min centrifugation of liquid culture (6,000 ×g at 4°C), both 
supernatant and cell pellets were collected. The supernatant was used 
as crude enzyme source, while cell pellets were disrupted by 
ultrasonication (300 W, 2 s interval 4 s, 7 min) in an ice bath and then 
centrifuged at 4°C, 6,000 ×g for 10 min. The filter paper disintegration 
experiment assessed the supernatant and cell insoluble fraction 
separately. To initiate the experiment, 50 mL of the medium was 
added with 0.05 g of circular filter paper and incubated at 37°C and 
160 rpm, with phosphate buffered saline (PBS) solution serving as a 

control. The endo-cellulase activity was determined using the 
3,5-dinitrosalicylic acid (DNS) method, as described by Miller 
(1959). The assay was conducted by combining approximately 
0.05 mL of crude enzyme with 0.3 mL of 1% carboxymethyl cellulose 
(CMC) that was solubilized in a 0.05 M PBS (pH 7.0). The mixture 
was then incubated at 40°C in a water bath for a duration of 30 min. 
Subsequently, 0.285 mL of DNS solution was added, and the reaction 
was stopped by boiling the mixture in a water bath for 10 min. The 
liberated sugars were quantified by measuring the absorbance at 
540 nm. The xylanase and pectate lyase activities were quantified 
using the DNS method, with xylan and pectin employed as the 
respective substrates. Beta-glucosidase activity was estimated by 
spectroscopic measurement of p-nitrophenol (pNP) released from 
p-nitrophenyl-beta-glucopyranoside (pNPG). The reaction mixture 
contained 0.4 mL of 1 mM pNPG, 0.5 mL of 0.1 M PBS buffer (pH 
7.0), and 0.1 mL of crude enzyme solution. The reaction mixture was 
incubated at 37°C for 30 min. The reaction was stopped by the 
addition of 1.0 mL of 0.5 M Na2CO3, centrifuged at 6,000 ×g for 5 min 
at 4°C, and measured the absorbance at 400 nm. Beta-xylosidase 
activity was similarly estimated under the same conditions by 
measurement of pNP released from p-nitrophenyl-beta-D-
xylopyranoside (pNPX). Pectin lyase acted on the alpha-1,4 glycosidic 
bonds in pectin, generating unsaturated oligogalacturonic acid with 
unsaturated bonds between C4 and C5 at the reducing end, which 
exhibited a characteristic absorption peak at 235 nm. Laccase 
decomposed 2,2-azino-bis(3-ethylbenz-thiazoline-6-sulfonate; 
ABTS) to produce ABTS radicals, with a significantly higher 
absorption coefficient at 420 nm than the substrate ABTS. The molar 
extinction coefficient of ABTS was 36,000 L·mol−1·cm−1. In the 
presence of Mn2+, manganese peroxidase oxidized guaiacol to 
4-o-methoxy phenol, which had an absorption peak at 465 nm. The 
activity of manganese peroxidase was determined by monitoring the 
change in absorbance at 465 nm. The molar extinction coefficient of 
guaiacol was 12,100 L·mol−1·cm−1. The MnP Enzyme Activity 
Detection Kit was obtained from Beijing Solarbio Science & 
Technology Co., Ltd., and other reagents were purchased from 
Sangon Biotech (Shanghai) Co., Ltd. The enzyme unit (U/mL) was 
calculated as the amount of enzyme required to release one μmol of 
reducing sugar or product per mL per minute.

2.4. Solid-state fermentation

DDGS was obtained from Weifang Yingxuan Industrial Co., LTD 
(Shandong, China). The inoculum concentration for DDGS 
fermentation was 107–108 CFU/mL. Sterile water was added to 50 g of 
feed, and the humidity was adjusted to 50% using a hygrometer. The 
mixture was then placed in a sterile fermentation bag with a one-way 
filter valve. Solid-state fermentation was conducted at 37°C for 240 h. 
The humidity of the solid-state ferment was monitored daily, and if 
reduced, it was supplemented with sterile water as needed. Samples 
were collected every 48 h for nutritional composition analysis. DDGS 
samples were dried at 105°C until a constant weight was achieved. 
Crude protein (CP) was determined by the Kjeldahl method (Belyea 
et al., 2004). The content of crude fiber (CF) was determined following 
the AOCS Ba 6a-5 standard method (Dey et al., 2021). The content of 
cellulose, hemicellulose, and Klason lignin was determined using a 
two-step acid treatment (Leite et  al., 2016). Ash content was 
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determined by incinerating samples in a muffle furnace at 450°C 
for 4 h.

2.5. Statistical analysis

Enzyme assays and solid-state fermentation experiments were 
performed in triplicate. Origin 2023 (Origin 2023 program, 
OriginLab) and SPSS v 25.0 were used for variance (ANOVA) and 
statistical comparisons, as well as for data visualization. Results were 
presented as means of more than three replicates.

3. Results

3.1. CAZy database annotation

The P. pabuli E1 genome harbors a considerable number of 
carbohydrate-degrading enzymes. However, limited information on 
Paenibacillus species for feed is available in the existing database. 
Therefore, this study aimed to analyze the carbohydrate distribution 
in the P. pabuli E1 genome to provide fundamental data for the 
development and utilization of degrading enzymes. A total of 372 
genes were assigned to CAZymes families. Among these, the GH 
family was the most predominant, followed by CBM, GT, CE, PL, and 
AA families, with gene counts of 228, 69, 33, 26, 14, and 2, respectively 
(Figure 1A). The GH family comprises a versatile group of enzymes 
involved in the hydrolysis of glycosidic bonds in carbohydrates. The 
abundance of GH family enzymes in P. pabuli E1 is advantageous for 
its growth and reproduction by facilitating the degradation of complex 
polysaccharides. Specifically, there are 24 GH families associated with 
cellulose degradation and 46 GH families related to hemicellulose 
degradation. Additionally, the PLs families encompass 16 pectin-
degrading enzymes, while the CEs families comprise three and nine 
enzymes involved in hemicellulose and pectin degradation, 
respectively (Figure 1B).

3.1.1. Cellulose degradation
Complete cellulose degradation necessitates the presence of endo-

1,4-beta-D-glucanase, cellobiohydrolase, and beta-glucosidase 
enzymes (Figure 2A). Endo-1,4-beta-D-glucanase enzymes randomly 
cleave O-glycoside bonds. Among the annotated genes, seven were 
identified as endo-1,4-beta-D-glucanases, with six of them containing 
signal peptides and one being an intracellular protein. These seven 
proteins belong to five distinct GH families: GH5, GH8, GH9, GH12, 
and GH74. Notably, E1GL002997 and E1GL006765 of the GH5 family 
possess a CBM46 domain at their C-terminal ends. Cellobiosidase 
(exo-cellulase) catalyzes the processive hydrolysis of cellulose chains 
toward the crystalline region, generating cellobiose. Two genes, 
E1GL01119 and E1GL01285, were annotated as cellobiosidases. 
E1GL01119 belongs to GH6 and is linked to a CBM3 domain at its 
C-terminal, while E1GL001284, E1GL002456, E1GL001119, and 
E1GL001285 are all associated with a CBM3 domain at their 
C-terminal ends. Beta-glucosidase (BG) acts on cellobiose, producing 
glucose as the final product. Among the annotated genes, 12 were 
identified as beta-glucosidases, with only E1006056 belonging to the 
GH1 family and the rest belonging to the GH3 family. Notably, 
E1GL00945 possesses a signal peptide for extracellular secretion, 
whereas E1GL002415 and E1GL006476 possess a CBM6 domain at 
their C-terminal ends. Additionally, E1001978 and E1006424 were 
annotated as cellobiose phosphorylases (CBP), which differ from beta-
glucosidases as they act on cellobiose through the phosphorolysis 
pathway, resulting in glucose and glucose-1-phosphate as the final 
products. CBP belongs to the GH94 family and exhibits strict 
substrate specificity.

3.1.2. Hemicellulose degradation
Paenibacillus pabuli E1 is equipped with the necessary enzymes 

for complete xylan hydrolysis (Figure 3). Five genes were annotated as 
beta-1,4-endo-D-xylanases, with four of them possessing signal 
peptides. E1GL000825, E1GL003990, and E1GL006811 belong to the 
GH10 family, while E1GL003315 belongs to the GH11 family. 
E1GL000825 is linked to CBM9 and CBM22 domains at its C-terminal 

FIGURE 1

CAZyme annotation. (A) A total of 372 genes were assigned to CAZyme families. The GH family exhibited the highest abundance, followed by CBM, GT, 
CE, PL, and AA families, with 228, 69, 33, 26, 14, and 2 genes, respectively. (B) Among the GH families, 24 and 46 were associated with the degradation 
of cellulose and hemicellulose, respectively. The PL families contained 16 pectin-degrading enzymes. In the CE families, three and nine enzymes were 
related to the degradation of hemicellulose and pectin, respectively.
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end, and E1GL002701 is connected to the CBM36 domain. Moreover, 
eight genes were annotated as exo-1,4-beta-xylosidases. E1GL003470 
and E1GL003905 belong to the GH52 and GH39 families, respectively, 
while the remaining six genes belong to the GH43 family. Natural 
xylan comprises various substituent groups on the main chain and 
side chain sugar groups, including arabinoyl and glucuronyl. Seven 
genes were annotated as alpha-L-arabinosidases, all of which belong 
to the exo-glycosidases. Specifically, E1GL000109, E1GL001288, 
E1GL003221, and E1GL004074 are classified under the GH51 family, 
while E1GL001321, E1GL003870, and E1GL003989 belong to the 
GH43 family. Alpha-galactosidase catalyzes the hydrolysis of galactose 
residues from the side chains of xylans or galactomannans at 
non-reducing ends. This study identified 10 annotated genes for 
alpha-galactosidase, with E1GL002357 and E1GL003820 possessing 
signal peptides. These enzymes belong to the GH4, GH27, and GH36 

families. E1GL003471 was the sole annotated alpha-glucuronidase in 
P. pabuli E1, belonging to the GH67 family. Additionally, hemicellulose 
is typically acetylated, and the presence of acetyl groups limits the 
action of xylan-degrading enzymes. E1GL002453 and E1GL006825 
were annotated as acetyl xylan esterases, with E1GL006825 belonging 
to the CE2 domain. Furthermore, E1GL003852 was annotated as a 
ferulic acid esterase responsible for cleaving the ester bond between 
ferulic acid and arabinose residues.

The backbone of mannan consists of beta-1,4-linked mannose or a 
combination of mannose and glucose residues, often substituted by 
alpha-1,6-linked galactose. The main enzymes involved in mannan 
degradation are beta-mannanase and beta-mannosidase, along with 
additional enzymes such as alpha-galactosidase and acetyl mannan 
esterase to remove side groups from the mannan main chain. Three 
genes, E1GL001833, E1GL002988, and E1GL004125, were annotated as 

FIGURE 2

Cellulose and pectin degrading enzyme gene ID and CAZyme family/domain. (A) Cellulose degrading enzyme. Seven genes were annotated as endo-
1,4-beta-D-glucanase. Two genes were annotated as cellobiosidase. There are 12 genes annotated as beta-glucosidase. (B) Pectin degrading enzymes. 
Four genes were annotated to pectin lyases. Ten genes were annotated to pectate lyases. Two genes were annotated as exo-polygalacturonate lyases. 
Nine genes were annotated as pectate esterases.
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endo-1,4-beta-mannanases. E1GL001833 and E1GL004123 belong to 
the GH26 family, while E1GL002988 belongs to the GH5 family. These 
three genes are linked to different CBM domains at their C-terminal 
ends. Additionally, E1GL002377, E1GL002764, and E1GL004106 were 
annotated as beta-mannosidases, all belonging to the GH2 family.

Xyloglucan serves as the primary hemicellulose in the primary cell 
walls of dicots and non-graminous monocots. Two genes, E1GL002413 

and E1GL003571, were annotated as alpha-xylosidases, and classified 
under the GH31 family. GH31 enzymes catalyze the hydrolysis of 
terminal unsubstituted xylosides at the reducing ends of xylogluco-
oligosaccharides. Eight genes were annotated as beta-galactosidases, 
distributed across the GH2, GH35, and GH42 families. Specifically, 
E1GL001003, E1GL002404, and E1GL002462 belong to the GH2 
family. Moreover, E1GL001003 and E1GL002404 are linked to the 

FIGURE 3

Hemicellulose degrading enzyme gene ID and CAZyme family/domain. (A) Five genes were annotated as beta-1,4-endo-D-xylanase. Eight genes were 
annotated as exo-1,4-beta-xylosidase. Seven genes were annotated as alpha-L-arabinosidase. Ten genes were annotated as alpha-galactosidase. 
(B) One gene was annotated as alpha-glucuronidase. Three genes were annotated as acetyl xylan esterases. Three genes were annotated as endo-1,4-
beta-mannanase. Three genes were annotated as beta-mannosidase. Two genes were annotated as alpha-xylosidases. Two genes were annotated as 
alpha-xylohydrolase. Eight genes were annotated as beta-galactosidases.
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CBM6 domain at their C-terminal ends, while E1GL002462 is linked 
to the CBM51 domain.

3.1.3. Pectin degradation
The P. pabuli E1 genome contains 10 pectate lyases (PGL) and four 

pectin lyases (PMGL) belonging to the polysaccharide lyases (PL) 
family, distributed across PL1, PL3, PL9, and PL10 (Figure  2B). 
Among these, only the pectin lyase E1GL005251 belongs to the PL1 
family, while the others lack PL1 domain characteristics. The pectate 
lyases E1GL000925, E1GL002344, E1GL003636, E1GL004709, and 
E1GL006647 all possess signal peptides. E1GL000925, E1GL002344, 
and E1GL004709 belong to PL3, PL10, and PL9, respectively, while 
E1GL003636 and E1GL006647 belong to PL1. Additionally, 
E1GL003331 and E1GL005234 were annotated as 
exo-polygalacturonate lyases, both with signal peptides and classified 
under PL9. Nine genes were annotated as pectate esterases, with 
E1GL000713 and E1GL006647 belonging to CE12 and CE8, 
respectively, while the remaining genes lacked a clear domain match.

3.1.4. Lignin degradation
The potential lignin-degrading enzymes identified in P. pabuli E1 

are MnP (from E1GL004832) and laccase (from E1GL004895). The 
E1GL004832 showed 100% similarity to the reported manganese 
catalase (WP_076288188.1) from Lactobacillus plantarum when 
analyzed using the blastp tool. Manganese catalase exhibits a 
hexameric structure that is stabilized through extensive contacts 
between subunits. Each subunit contains a dimanganese active site. 
Similarly, the sequence E1GL004895 exhibited 100% similarity to the 
reported polyphenol oxidase (CAH1208948.1) from Paenibacillus sp. 
JJ-223 when analyzed using blastp. The COG database annotation 
identifies it as a Copper oxidase (laccase).

3.2. Growth in different polysaccharide 
mediums

Paenibacillus pabuli E1 exhibited growth in polysaccharide media 
supplemented with carboxymethyl cellulose (CMC), xylan, and 
pectin. However, the growth was limited when cellulose powder was 
used, and no growth was observed when filter paper was used as the 
sole carbon source (Table 1). Lignin, a non-polysaccharide compound, 
was also tested, and growth was observed in a minimal medium 
supplemented with lignin. To investigate the potential induction of 
cellulase, filter paper or CMC was added to the LB activation culture 
medium. The results showed that no reducing sugar activity was 
detected regardless of whether filter paper or CMC was pre-added to 
the activation medium. The disintegration of filter paper was observed 
to varying degrees after incubating with the supernatant and cell 
insoluble fraction for 4 h, with the control group being PBS solution 
(Supplementary Figure S1). The cell insoluble fraction showed a 
stronger disintegration effect on filter paper, but no reducing sugar 
was detected in either case.

3.3. Enzyme assay

The endoglucanase (CMCase) activity of P. pabuli E1 was 
measured to be 5.37 U/mL, while the beta-glucosidase activity was 
4.60 U/mL. No reducing sugars were detected in the filter paper 
experiments. In the degradation of xylan, the concerted action of 
complex enzymes is required, with beta-xylanase and beta-xylosidase 
being the most crucial enzymes involved. These enzymes are capable 
of degrading the main chain structure of xylan. Therefore, in the 
present experiment, the activities of beta-xylanase and beta-xylosidase 
were tested. The beta-xylanase and beta-xylosidase activities were 
determined to be 11.05 U/mL and 4.16 U/mL, respectively. Pectate 
lyase and pectin lyase activities reached 8.19 U/mL and 2.43 U/mL, 
respectively. Lignin, a highly complex aromatic polymer, poses 
challenges for degradation due to its intricate structure. The activities 
of laccase and MnP in P. pabuli E1 were measured to be 1.87 U/mL 
and 4.30 U/mL, respectively. Laccase and MnP are responsible for 
lignin degradation in bacteria. All enzyme activity values are shown 
in Table 2.

3.4. Solid-state fermentation

Solid-state fermentation was employed to reduce NSPs such as 
lignocellulose. After 7 days of fermentation, the neutral detergent fiber 
(NDF) content in DDGS decreased from 46.9% to 41.33%, while the 
acid detergent fiber (ADF) decreased from 22.15% to 20.65%. 
Similarly, the acid detergent lignin (ADL) content decreased from 
4.63% to 4.23%. These results demonstrate that P. pabuli E1 effectively 
reduced the lignocellulosic content of DDGS through fermentation. 
The ash content in DDGS increased from 4.46% to 4.90%, potentially 
due to the addition of inorganic salt ions during the preparation of 
P. pabuli E1. CF, which serves as an important parameter in feed 
formulation, decreased from 15.62% to 11.76%. Furthermore, CP 
content in DDGS increased from 26.59% to 30.59% (Figure 4). NDF 
comprises cellulose, hemicellulose, lignin, and ash, while ADF 
contains the latter three components. By calculating the differences 

TABLE 1 Growth in polysaccharide medium.

Polysaccharide type Growth

No sugar −

Cellulose powder +

CMC +

Filter paper −

Xylan +

Pectin +

TABLE 2 Enzymatic activities detected.

Enzyme type Enzyme activity (U/mL)

Endoglucanase 5.37

Beta-glucosidase 4.60

FPAase -

Beta-xylanase 11.05

Beta-xylosidase 4.16

Pectate lyase 8.19

Pectin lyase 2.43

Laccase 1.87

MnP 4.30
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between NDF, ADF, ADL, and ash, the content of cellulose, 
hemicellulose, and lignin can be  obtained. After 240 h of DDGS 
fermentation (p < 0.001), the degradation rates of hemicellulose, 
cellulose, and lignin were determined to be  11.86%, 11.53%, and 
8.78%, respectively (Figure 5).

4. Discussion

4.1. Cellulose degradation

The disintegration of filter paper without the presence of reducing 
sugars suggests that P. pabuli E1 may produce cellulose accessory 
proteins that disrupt the crystalline structure of cellulose without 
exhibiting hydrolase activity. Previous studies have reported the 
production of auxiliary proteins such as expansin and swollenin by 
some microorganisms. These proteins loosen the cellulose structure 
by breaking hydrogen bonds between microfibrils, thus increasing the 
accessibility of cellulase to the substrate (Hendriks and Zeeman, 

2009). Kim et al. (2009) demonstrated that expansin from Bacillus 
subtilis synergistically increased cellulase activity by 5.7-fold. 
Therefore, it is speculated that the disintegration of filter paper 
observed in P. pabuli E1 may be caused by an auxiliary protein that 
disrupts the network structure of the cellulose surface without 
detectable reducing sugars but significantly enhances cellulase 
hydrolytic activity. Expansins are present in various plants and 
microorganisms, and they share homology with the GH45 family of 
glycoside hydrolases. However, expansins lack a complete catalytic 
mechanism, and no hydrolytic activity has been detected (Georgelis 
et  al., 2015). Expansins from B. subtilis do not possess hydrolytic 
activity but contribute to the loosening of cellulose structure, thereby 
facilitating cellulose biotransformation (Kim et al., 2009). Swollenin, 
a non-enzymatic protein with high sequence similarity to expansins, 
has also been found in Trichoderma reesei. Swollenin swells cotton 
fibers without producing detectable reducing sugars (Chen et  al., 
2010). The application of swollenin effectively alleviates the hindering 
effect of the crystallization region of the substrate on the hydrolysis 
reaction and increases the affinity between the enzyme and the 

FIGURE 4

Degradation rates of cellulose, hemicellulose, and lignin in solid-state fermentation. The NDF content decreased from 46.9% to 41.33%, the ADF 
decreased from 22.15% to 20.65%, and ADL decreased from 4.63% to 4.23%. Ash increased from 4.46% to 4.90%. CF reduced from 15.62% to 11.76%. 
CP increased from 26.59% to 30.59%. *** Indicates p-value < 0.001, which is considered extremely significant.
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substrate, thus enhancing cellulase hydrolysis activity (Saloheimo 
et al., 2002). Unfortunately, the genome of P. pabuli E1 did not match 
any proteins similar to the reported auxiliary proteins. There are few 
studies on auxiliary proteins in bacteria, and it is not ruled out that 
there are novel auxiliary proteins.

Cellulolytic enzymes are essential to break down cellulose 
thoroughly, although the role of accessory proteins is indispensable. 
Fungi, known for their potent ability to degrade lignocellulose, have 
been extensively studied as the primary group of microorganisms 
involved in plant biomass degradation. This is attributed to their 
remarkable enzyme secretion capacity and the robustness of their 
degradation enzymes. Among the cellulose-degrading 
microorganisms, A. Niger and T. reesei are the most extensively 
investigated. The study revealed the complete secretomes of A. Niger 
and T. reesei are involved in lignocellulose degradation. These 
secretomes include the well-known GH7 and GH6 cellobiohydrolases, 
GH5 endoglucanases, beta-glucosidases, as well as additional enzymes 
that target other components of the plant cell wall (Borin et al., 2015). 
A total of 430 CAZymes were annotated in T. harzianum. These 
included 259 GHs, 101 GTs, 6 PLs, 22 CEs, 42 AAs and 46 CBMs 
(Ferreira Filho et al., 2017).

When compared to fungi, bacteria generally exhibit lower 
cellulase activity. However, the characterization of novel enzymes has 
increasingly focused on bacterial sources due to the high specific 
activity (Obeng et al., 2017). Among the bacterial strains isolated for 
their ability to degrade crystalline cellulose, the majority belong to 
specific lineages within the four major phyla: Actinobacteria, 
Firmicutes, Proteobacteria, and Bacteroidetes (Koeck et al., 2014). The 
primary cellulase-producing bacteria are often from the genus 
Bacillus, such as B. licheniformis and B. subtilis, as well as from the 

genus Clostridium. Anaerobic bacteria play a significant role among 
cellulose-degrading bacteria. In anaerobic bacteria, cellulases are 
typically associated with the bacterial surface in the form of 
cellulosomes. Certain anaerobic members of the Clostridia group are 
known to produce cellulosomes, which are highly efficient 
multienzyme complexes attached to the outer surface of bacterial cell 
(Wilson, 2008). This arrangement allows for enzyme recycling and 
rapid assimilation of hydrolytic products. Whole genome sequencing 
has led to the characterization of key components of cellulosomes. The 
structure of cellulosomes can vary in complexity among different 
bacterial species. The most prominent enzymes integrated into 
cellulosomes typically belong to GH48, GH9, and GH5 families, 
which are involved in cellulose degradation (Artzi et  al., 2017). 
However, it should be noted that the genome of P. pabuli E1 does not 
contain the structural skeleton proteins typically associated 
with cellulosomes.

In contrast, aerobic bacteria are capable of secreting extracellular 
enzymes involved in cellulose degradation. Members of the Bacillus 
and Paenibacillus exhibit significant cellulolytic capability, which is 
attributed to the presence of a wide range of glycoside hydrolase (GH) 
enzymes in their genomes (Ma et al., 2020). For instance, B. velezensis 
LC1 demonstrated promising cellulase activity. Carbohydrate-active 
enzyme annotation revealed 136 genes associated with CAZy families. 
The cellulase activities of strain LC1 were then determined. The 
endoglucanase activity was measured as 0.689 ± 0.011 U/mL on day 1 
and increased to 0.752 ± 0.013 U/mL on day 6. The exoglucanase 
activity ranged from 0.359 ± 0.016 U/mL to 0.385 ± 0.022 U/mL (Li 
et al., 2020).

The agricultural waste hydrolyzing capabilities of Paenibacillus 
dendritiformis CRN18 were investigated. The strain exhibited enzyme 

FIGURE 5

Nutrients in DDGS at different fermentation times. After 240 h of DDGS fermentation, the degradation rates of hemicellulose, cellulose, and lignin were 
11.86%, 11.53%, and 8.78%, respectively (p  <  0.001). *** Indicates p-value < 0.001, which is considered extremely significant.
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activities for exo-glucanase, beta-glucosidase, beta-glucuronidase, 
endo-1,4-beta-xylanases, arabinosidase, and alpha-galactosidase at 
levels of 0.1, 0.3, 0.09, 0.1, 0.05, and 0.41 U/mL, respectively (Srivastava 
et al., 2020). Genomic analysis of Paenibacillus lautus BHU3 strain 
predicted 6,234 protein-coding genes, with 316 genes associated with 
sugar metabolism. This analysis suggests an important role in 
enhancing cellulolytic properties (Kim et  al., 2018). Similarly, 
Paenibacillus sp. strains IHB B 3415, a cellulase-producing 
psychrotrophic bacterium, contained 1,011 genes assigned for 
carbohydrate metabolism, including 16 genes predicted for cellulases, 
supporting its cellulose degradation capabilities (Dhar et al., 2015). 
Among the examined isolates, Paenibacillus sp. O199 demonstrated 
the highest efficiency for cellulose deconstruction. Its genome 
contained 476 genes associated with CAZyme families, including 100 
genes coding for GHs potentially involved in cellulose and 
hemicellulose degradation (Lopez-Mondejar et al., 2016). Paenibacillus 
pabuli E1 possesses multiple types of endo-1,4-beta-D-glucanases 
with different substrate affinities. The GH8 family exhibits broad 
substrate specificity and catalyzes various polysaccharides such as 
carboxymethylcellulose (CMC), chitosan, barley-beta-glucan, 
lichenin, and xylan sugars (Ontanon et al., 2019). GH74 is considered 
an important family of endoglucanases, but recent studies have shown 
high specificity for xyloglucan (Wang et al., 2022). CBM46 enhances 
the enzyme’s affinity for cellulose, and some studies have indicated 
that the catalytic activity of enzymes depends entirely on the CBM46 
domain (Liberato et al., 2016).

Cellobiosidases are classified into CBH I and CBH II based on the 
reducing properties of the bound chain ends. GH6 is a typical 
representative of CBH II enzymes that act on the non-reducing end of 
cellulose molecules. Most GH6 enzymes exhibit processive catalysis, 
and their catalytic domains have a short connecting peptide to the 
CBM domain, which is essential for enzyme activity (Irwin et al., 
1998). E1GL01285, belonging to the GH48 domain, is a CBH 
I enzyme that acts on the reducing end of cellulose and is present in 
many bacterial cellulase systems. GH48 enzymes have inherently low 
cellulolytic activity but exhibit strong synergy with GH9 
endoglucanases, even at low ratios. CBM3 can enhance cellulose 
adsorption capacity, which is beneficial for the catalysis of endo-
cellulases and cellobiosidases.

The presence of endo-1,4-beta-D-glucanases and cellobiosidases 
is crucial for the initial degradation of cellulose. Endo-glucanases 
randomly bind to non-crystalline regions of microfibrils, generating 
new reducing ends, while exo-cellulases bind to the reducing or 
non-reducing end of a single cellulose chain and processively degrade 
the crystalline region. Studies have indicated that the loss of 
exo-cellulase activity is a major factor in the reduced rate of enzymatic 
cellulose hydrolysis (Wang et  al., 2006). Although cellulose is the 
primary resource in feed for ruminant livestock, monogastric animals 
such as pigs and chickens have limited ability to degrade cellulose. 
Paenibacillus pabuli E1 possesses the necessary enzymes to break 
down cell walls, thereby releasing nutrients and significantly 
improving feed nutrient absorption rates.

4.2. Hemicellulose degradation

Xylan, as an anti-nutritional factor present in feed, poses obstacles 
to the absorption and utilization of nutrients in livestock (Dikeman 
and Fahey, 2006). Among the constituents of feed ingredients, 

hemicellulose primarily comprises xylan, mannan, and xyloglucan (de 
Vries and Visser, 2001). When the culture temperature was raised to 
37°C and the initial pH was set at 8.5, the xylanase activity of 
Paenibacillus glycanilyticus X1 peaked at 189.6 mU after 72 h (Wang 
and Liang, 2021). Another study focused on Paenibacillus sp. BL11 
strain, which exhibited the highest enzyme activity at an initial pH of 
8 and a culture temperature of 37°C. This strain displayed greater 
xylanase activity under neutral to slightly alkaline conditions and at 
moderate to high temperatures (Ko et al., 2010). The endo-beta-1,4-
xylanase derived from Paenibacillus curdlanolyticus B-6, belonging to 
the GH10 family, was found to possess CBM22 and CBM3 domains 
at its C-terminus (Sermsathanaswadi et  al., 2017). Additionally, a 
novel GH6 cellobiohydrolase from the same strain, Paenibacillus 
curdlanolyticus B-6, demonstrated high substrate specificity toward 
amorphous cellulose and lower specificity toward crystalline cellulose. 
However, this enzyme did not exhibit activity on substitution 
substrates such as carboxymethyl cellulose and xylan (Baramee et al., 
2017). Paenibacillus sp. LS1 exhibited the ability to utilize different 
types of xylans. Genome analysis revealed a comprehensive set of 
xylan-active CAZymes, indicating its capacity for efficient degradation 
of xylan (Mukherjee et al., 2023). Moreover, Paenibacillus sp. strains 
DA-C8 completely degraded 1% beechwood xylan within 4 days under 
anaerobic conditions, while it was capable of growth on xylan medium 
under aerobic conditions (Chhe et  al., 2021a,b). In the case of 
Paenibacillus physcomitrellae XB, different xylan degradation abilities 
were observed for various substrates such as corncob xylan, oat spelled 
xylan, and wheat flour arabinoxylan. The bifunctional enzymes 
Ppxyl43A and Ppxyl43B identified in this strain hold promise for 
xylan biomass conversion (Zhang et al., 2021).

Paenibacillus pabuli E1 exhibits higher levels of beta-xylanase and 
beta-xylosidase compared to similar strains (Ghio et  al., 2020). 
Xylanases are commonly classified into two families. GH10 xylanases 
have a high molecular weight and possess four or five substrate 
binding sites, while GH11 xylanases catalyze xylans with a minimum 
of three adjacent xyloses without substituents (Mendis et al., 2016; 
Chang et al., 2017). GH11 xylanases demonstrate higher specificity, 
with superior hydrolytic activity toward long-chain xylan compared 
to GH10 xylanases. The presence of CBM9 and CBM22 domains 
enhances the adsorption capacity of xylan. CBM22 aids in delivering 
xylan to the adjacent catalytic domain of GH10 by promoting binding 
to xylan, whereas CBM9 enhances xylan degradation by binding to 
cellulose (Tanimoto et al., 2016). CBM36 is a novel carbohydrate-
binding module that exhibits Ca2+-dependent affinity for xylan. 
Additionally, the CBM2 domain exhibits broad substrate recognition 
and can bind xylan, cellulose, and chitin (Tanimoto et  al., 2016). 
Xylanases are responsible for cleaving the glycosidic linkages in the 
xylan backbone, leading to the generation of xylooligosaccharides. 
Beta-1,4-xylosidase further hydrolyzes xylooligosaccharides into 
xylose, which is crucial for complete xylan degradation. The activity 
of beta-1,4-xylosidase derived from Bacillus sp. in the GH52 family 
gradually decreases as the length of the main chain increases 
(Teramoto et  al., 2021). Alpha-L-arabinosidase acts on alpha-
nitrophenol-furan arabinoside or branched arabinan. Some xylanases 
cannot degrade glycosidic bonds between xylose units with substituted 
side chains, while others can only hydrolyze side chain substituents on 
xylooligosaccharides. Alpha-L-arabinosidase is classified into the 
GH43 and GH51 families. The presence of metal ions enhances the 
enzyme activity of the GH43 family, whereas the GH51 enzyme 
hydrolyzes alpha-1,2 or alpha-1,3-linked arabinofuranose residues. 
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The synergy between GH51 and GH43 enzymes improves the 
debranching efficiency of arabinoxylans (Koutaniemi and Tenkanen, 
2016). Alpha-glucuronidase, as the rate-limiting enzyme in xylan 
degradation, plays a crucial role in the biodegradation of xylan 
hemicellulose. It acts specifically on small molecules of 
4-O-methylglucurono-oligosaccharides with residues, hydrolyzing the 
side chain of the non-reducing end of 4-O-methylglucuronic acid (de 
Wet et al., 2006). Paenibacillus sp. TH501b isolates from soil samples 
contain alpha-glucuronidase. This enzyme is most active at pH 6.0–7.0 
and 30°C (Iihashi et al., 2009). Acetyl xylan esterase primarily acts on 
the 2- or 3-position O-acetyl groups of xylose residues in acetylated 
xylan. The CE2 domain exhibits strong specificity for the 4-position 
acetyl group of xylopyranose residues. The degree of 2-O- and 
3-O-acetyl substituents in xylan is challenging to determine, and the 
release of O-acetyl groups reduces pH, which inhibits fermenting 
microorganisms (Basen et al., 2014). Ferulic acid, found as monomers 
and dimers linked to arabinoxylan residues, is enzymatically 
hydrolyzed from the hemicellulose substrate, loosening the cell wall 
structure and increasing the rate of cellulose degradation (Krueger 
et al., 2008).

Mannan, another type of anti-nutritional factor present in plant-
based feedstuffs such as soybean meal, rapeseed meal, sesame meal, 
and corn, can be degraded by beta-mannanase. Among them, the 
highest content of beta-mannan in soybean meal is 1.1%–1.3% (Seo 
et  al., 2015). Beta-mannanase facilitates the release of nutrients 
encapsulated in the cell wall and reduces chyme viscosity, thereby 
improving nutrient absorption in animals. Enzyme supplementation 
enhances feed digestion, utilization, and animal production 
performance (Chauhan et  al., 2012). CBM6-associated beta-
galactosidases not only adsorb amorphous cellulose but also bind to 
beta-1,3-glucan, beta-1,3/1,4-glucan, and beta-1,4-glucan. Although 
research on CBM51 is limited, its members demonstrate specificity for 
eukaryotic glycans (Gregg et al., 2008).

Xyloglucan is initially hydrolyzed by endo-1,4-beta-glucanase, 
producing xyloglucan oligosaccharides (XGOs) that are further 
hydrolyzed by beta-galactosidase, releasing galactose monomers. 
Alpha-xylosidase removes xylosyl residues in oligosaccharides, while 
beta-glucosidase hydrolyzes glucose residues in the xyloglucan 
backbone (Attia and Brumer, 2016). The structural complexity of 
hemicelluloses, with their varied main chains and modified side chain 
groups, poses challenges for complete degradation. Paenibacillus 
pabuli E1 possesses a repertoire of enzymes targeting both the main 
chains and side chains, which are essential for efficient hemicellulose 
degradation. The P. pabuli E1 genome contains enzymes that degrade 
different types of xylan, which is also helpful for eliminating xylan in 
other cereals not limited to those in DDGS.

4.3. Pectin degradation

Pectin is composed of D-galacturonic acid units connected via 
alpha-1,4-glycosidic linkages, with side chains comprising rhamnose, 
arabinose, galactose, and xylose. Pectin is classified into four types: 
pectic acid, pectinic acid, pectin, and protopectin. In Paenibacillus 
amylolyticus 27C64, a comprehensive analysis identified a total of 314 
putative carbohydrate-active enzymes (CAZymes) distributed among 
108 distinct families. Further investigation of the culture supernatants 
revealed the presence of pectinase activities (Keggi and Doran-
Peterson, 2019). An alkaline pectate lyase gene derived from 

Paenibacillus polymyxa KF-1 was also studied. This gene encodes a 
protein consisting of 449 amino acid residues and belongs to the 
polysaccharide lyase family 9 (PL9). The optimal conditions for its 
enzymatic activity were determined to be at pH 10.0 and a temperature 
of 40°C (Zhao et al., 2018; Yuan et al., 2019).

Structurally, lyases from PL1, PL3, and PL9 families exhibit a 
parallel beta-helix conformation, while the PL10 family adopts an 
(alpha/alpha)3-barrel structure. Galacturonic acid plays a vital role in 
maintaining the pectin structure, making the degradation of 
polygalactose essential. Additionally, nine pectin esterases promote 
the hydrolysis of pectin esters by removing methyl groups, thus 
facilitating the production of pectinic acid. PMGL, on the other hand, 
directly degrades high-methoxyl pectin without the need for esterases 
to remove methyl ester groups. Most pectin methylesterases (PGLs) 
degrade polygalacturonic acid and low-methoxyl pectin but exhibit 
less activity toward high-methoxyl pectin. In animals, the absence of 
endogenous pectinases hampers the digestion of pectin, making 
pectinase supplementation crucial for improving crude fiber 
utilization (Sharma et al., 2012; Lima et al., 2017; Yang et al., 2020). 
Pectate lyase and pectin lyase act on the alpha-1,4-glycosidic bonds of 
pectin or pectinic acid, generating unsaturated pectin oligosaccharides 
without producing highly toxic methanol. Pectinase finds applications 
in various industries such as food fermentation, paper biopulping, 
animal feed, and environmental protection (Kohli and Gupta, 2015).

4.4. Lignin degradation

Microbial degradation of lignin represents a promising approach 
for mitigating its deleterious effects. Among microorganisms, fungi 
possess a diverse array of lignin depolymerase systems, with significant 
research attention directed toward white-rot and brown-rot fungi 
(Wang et al., 2019). However, our understanding of bacterial ligninases 
remains limited, despite their potential importance in lignin 
degradation. Paenibacillus sp. DLE-14, isolated from plant roots, 
demonstrates the potential to degrade lignin. Lignin degradation is 
commonly associated with the action of two prominent enzymes, 
namely laccase and manganese peroxidase (MnP). However, the 
presence and activity of these enzymes in the Paenibacillus species 
have received limited research attention. To date, only one study has 
reported the purification of MnP from Paenibacillus sp., revealing an 
enzyme activity of 4.3 U/L under optimal conditions (De et al., 2009).

MnP activity is primarily dependent on Mn2+ ions, which are 
oxidized to Mn3+ and form complexes with glycolic acid and oxalic 
acid present in the system. MnP exhibits a low oxidation/reduction 
potential and selectively degrades phenolic lignin (Xu et al., 2018). 
Laccase, belonging to the blue multi-copper oxidase family, is a 
polyphenol oxidase with a broad range of substrates, including 
phenols, aromatic amines, carboxylic acids, and steroids. It catalyzes 
the oxidation of phenols by generating phenoxy radicals, thereby 
promoting lignin degradation (McMahon et al., 2007).

Laccases are found in fungi, plants, and other bacteria. However, 
most laccases cannot directly oxidize non-phenolic compounds due 
to their high redox potential compared to the “normal hydrogen 
electrode” (NHE), whereas the redox potential of laccases is lower 
than 0.8 V (Canas and Camarero, 2010). Nevertheless, there are two 
basidiomycetes known to produce laccases with high redox potential 
(Hernández-Martínez et al., 2017, 2018). White-rot fungi are generally 
more efficient in lignin degradation, but their enzymes are susceptible 
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to loss of activity under extreme temperature and pH conditions. 
However, heat-resistant laccases produced by Pycnoporus sanguineus 
CS43 (LacI and LacII) have demonstrated high resistance to organic 
solvents such as acetonitrile, ethanol, and acetone (Ramírez-Cavazos 
et al., 2014). Enzymes with superior tolerance are more suitable for 
industrial and agricultural applications. In comparison to fungal 
laccases, bacterial laccases exhibit high activity at elevated 
temperatures, alkaline pH, and high chloride and copper ion 
concentrations, making them compatible with various industrial 
processes (Ausec et  al., 2011; Chandra and Chowdhary, 2015). 
Bacteria may also possess the ability to modify lignin and release 
smaller aromatic compounds that can be  imported into cells and 
metabolized through aromatic catabolism (Brown and Chang, 2014). 
Bacterial enzymes show significant potential in lignin degradation and 
have become candidates for commercial production. While P. pabuli 
E1 enzymes have lower oxidation/reduction potentials and inferior 
lignin degradation ability compared to fungi, bacteria’s strong 
environmental adaptability and biodiversity have sparked interest in 
bacterial lignin degradation research (Wang X. et al., 2018).

4.5. Solid-state fermentation

CF refers to the content of fiber in a sample, and it is important to 
note that the use of acid–base reagents during sample preparation may 
lead to the destruction of some cellulose and hemicellulose, resulting 
in a measured value smaller than the actual value. ADF comprises 
cellulose, lignin, and a small amount of acid-insoluble silicate ash, and 
there is a strong correlation between ADF and CF in DDGS (Pekel 
et al., 2013; Liu et al., 2018). DDGS typically contain varying amounts 
of NDF, ADF, CF, and ADL (Kannadhason et al., 2009). The NDF 
content is generally higher than the ADF content, indicating a higher 
hemicellulose content in DDGS (Sharma et  al., 2016). Solid-state 
fermentation has been shown to effectively reduce the content of NSPs 
in DDGS and improve its nutritional value. Studies have demonstrated 
that solid-state fermentation using B. subtilis and L. plantarum can 
reduce lignin, ADF, and NDF contents by 1.1%, 5%, and 20.4% 
respectively (Wang C. et al., 2018). Supplementation of cornmeal with 
Lactobacillus plantarum can reduce CF content by approximately 77% 
(Terefe et al., 2021).

Fungi are commonly employed in the fermentation of 
DDGS. Research has indicated that the addition of Trichoderma can 
reduce the CF content of corn stalks by approximately 23.5% (Li et al., 
2022), while fermentation with A. niger can increase the protein 
content by about 22% (Fan et  al., 2022). The increase in protein 
content is particularly important in providing cost-effective feed, as 
access to affordable and high-quality feed is a crucial constraint in 
animal nutrition. Solid-state fermentation of DDGS not only reduces 
anti-nutritional factors but also increases protein content through 
bacterial proliferation. Despite the relatively long fermentation period, 
the increased CP content significantly enhances the competitiveness 
of DDGS as a high-protein feed.

Studies have demonstrated that feeding fermented DDGS 
significantly enhances the average daily gain of swine, reduces average 
daily feed intake and feed-to-weight ratio, and induces beneficial 
changes in the microbial flora of swine manure (Wang et al., 2017). In 
summary, solid-state fermentation of DDGS substantially reduces 
lignocellulosic content and eliminates the negative effects of anti-
nutritional factors in the feed on monogastric animals. Concurrently, 

the increase in CP content improves the competitiveness of DDGS as 
a protein feed.

5. Conclusion

NSPs include cellulose, xylan, pectin, and smaller amounts of 
mannan and galactomannan. These complex carbohydrates can have 
detrimental effects on animal performance as animals lack the 
necessary digestive enzymes to break them down. Additionally, 
certain NSPs possess high viscosity due to their network structure, 
leading to the inhibition of nutrient digestion by adsorbing digestive 
enzymes. Therefore, it is crucial to identify microorganisms that 
possess the ability to extensively degrade NSPs. In this study, 
we conducted a systematic analysis of the potential NSPs-degrading 
enzymes present in the genome of P. pabuli E1. The genome of 
P. pabuli E1 encodes a diverse range of carbohydrate-degrading 
enzymes. By examining the distribution of carbohydrates, this study 
provides essential data that can be utilized for the development and 
application of degrading enzymes. In vitro enzyme activity assays were 
conducted, which demonstrated that P. pabuli E1 produces enzymes 
capable of effectively degrading NSPs. Furthermore, fermentation 
experiments using DDGS confirmed the practical applicability of 
P. pabuli E1  in eliminating non-starch polysaccharides. Given the 
presence of numerous potential NSPs-degrading enzymes in P. pabuli 
E1, this microorganism holds significant promise as a candidate for 
the development of highly efficient enzyme preparations.
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