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Introduction: Identification of complex associations between diseases and

microbes is important to understand the pathogenesis of diseases and

design therapeutic strategies. Biomedical experiment-based Microbe-Disease

Association (MDA) detection methods are expensive, time-consuming, and

laborious.

Methods: Here, we developed a computational method called SAELGMDA

for potential MDA prediction. First, microbe similarity and disease similarity are

computed by integrating their functional similarity and Gaussian interaction profile

kernel similarity. Second, onemicrobe-disease pair is presented as a feature vector

by combining the microbe and disease similarity matrices. Next, the obtained

feature vectors are mapped to a low-dimensional space based on a Sparse

AutoEncoder. Finally, unknownmicrobe-disease pairs are classified based on Light

Gradient boosting machine.

Results: The proposed SAELGMDA method was compared with four state-of-

the-art MDA methods (MNNMDA, GATMDA, NTSHMDA, and LRLSHMDA) under

five-fold cross validations on diseases, microbes, and microbe-disease pairs on

the HMDAD and Disbiome databases. The results show that SAELGMDA computed

the best accuracy, Matthews correlation coe�cient, AUC, and AUPR under the

majority of conditions, outperforming the other four MDA prediction models. In

particular, SAELGMDA obtained the best AUCs of 0.8358 and 0.9301 under cross

validation on diseases, 0.9838 and 0.9293 under cross validation on microbes, and

0.9857 and 0.9358 under cross validation onmicrobe-disease pairs on the HMDAD

andDisbiome databases. Colorectal cancer, inflammatory bowel disease, and lung

cancer are diseases that severely threat human health. We used the proposed

SAELGMDA method to find possible microbes for the three diseases. The results

demonstrate that there are potential associations between Clostridium coccoides

and colorectal cancer and one between Sphingomonadaceae and inflammatory

bowel disease. In addition, Veillonella may associate with autism. The inferred

MDAs need further validation.

Conclusion: We anticipate that the proposed SAELGMDA method contributes to

the identification of new MDAs.

KEYWORDS

microbe-disease association, feature representation, dimensional reduction, sparse

autoencoder, LightGBM
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1. Introduction

Human microbes are a class of organisms with simple structure

and small size (Wu et al., 2018; Cheng et al., 2020). They widely

distribute in various organs of the human body including the

gut, gastrointestinal tract, lung, oral cavity, and skin (Lynch and

Pedersen, 2016). Its abnormality may cause diseases, such as

cancers, inflammatory bowel disease (El Mouzan et al., 2018),

and asthma (Demirci et al., 2019). Therefore, it is important to

uncover potential associations between microbes and diseases.

Identification of Microbe-Disease Associations (MDAs) helps

capture the complex pathogenesis of various diseases and provides

novel insights into its drug design. For example, a few methods

have been developed to capture potential drugs against COVID-

19 (Peng et al., 2022a; Shen L. et al., 2022; Tian et al., 2022).

Traditional experimental methods are expensive, time-consuming,

and laborious (Chen et al., 2019). Thus, much attention has been

devoted to computational methods for new MDA prediction.

Many computational models have been designed to find

potential MDAs based on known MDAs and biological features of

diseases and microbes. These methods mainly contain network-

based methods and machine learning-based methods. Network-

based MDA prediction methods include the KATZ measurement

(Zhang et al., 2017; Li et al., 2019), random walk with network

topology structure (NTSHMDA) (Luo and Long, 2018), and bi-

random walk (Zou et al., 2017; Luo and Long, 2018; Yan et al.,

2019). Network-based methods effectively found a few new MDAs;

however, they depend on known MDAs for similarity calculation

and fail to screen possible microbes (or diseases) for a new disease

(or microbes) that has no association prediction.

Machine learning-based MDA prediction methods contain

Laplacian regularized least squares (LRLSHMDA) (Wang

et al., 2017), binary matrix completion (Shi et al., 2018), graph

regularized non-negative matrix factorization (He et al., 2018),

logistic matrix factorization with neighborhood regularization

combining positive-unlabeled learning (Peng et al., 2020),

inductive matrix completion and graph attention networks

(GATMDA) (Long et al., 2021), and low-rank matrix completion

combining the nuclear norm minimization (MNNMDA) (Liu

H. et al., 2023). Machine learning algorithms better improved

MDA prediction.

In particular, deep learning has been increasingly applied to

the area of bioinformatics, such as cardiotoxicity identification

related to hERG channel blockers (Wang T. et al., 2023), protein

model quality assessment (Guo et al., 2022; Liu J. et al., 2023),

metabolite-disease association discovery (Sun et al., 2022), lncRNA-

protein interaction prediction (Lihong et al., 2021), lncRNA-

miRNA association inference (Chen et al., 2021; Wang et al.,

2022), lncRNA-disease association identification (Liang et al., 2022;

Zhang et al., 2023), single-cell data analysis (Hu et al., 2023;

Xu et al., 2023), drug-target interaction detection (Zhang et al.,

2022; Li et al., 2023), and intercellular communication analyses

(Peng et al., 2022b). Similarly, deep learning has been widely

applied to accurate MDA prediction. These methods include deep

matrix factorization combining Bayesian personalized ranking (Liu

et al., 2020), multi-component graph attention network (Liu et al.,

2021), graph convolutional network (Hua et al., 2022), metapath

aggregated graph neural network (Chen and Lei, 2022), dual

network contrastive learning model (Cheng et al., 2022), weighted

meta-graph-based model (Long and Luo, 2019), knowledge graph

neural network (Jiang et al., 2022), and relation graph convolutional

network (Wang Y. et al., 2023).

Deep learning efficiently implements accurate MDA

identification. In this manuscript, we developed a computational

MDA prediction method called SAELGMDA by combining a

sparse autoencoder for feature extraction and Light Gradient

Boosting Machine (LightGBM) for MDA classification.

2. Materials and methods

2.1. Data description

To construct a humanMDA network, we investigated a human

MDA database called HMDADprovided byMa et al. (2017) (http://

www.cuilab.cn/hmdad). The database contains 483 experimentally

confirmedMDAs between 39 diseases and 292microbes. We finally

achieved 450 MDAs after filtering repetitive MDAs. In addition,

Janssens et al. (2018) have collected a new MDA database named

Disbiome. The database contains 5,573 experimentally confirmed

human MDAs between 1,098 microbes and 240 diseases. Finally,

we obtained 4,351 MDAs between 1,052 microbes and 218 diseases

after filtering repetitive MDAs.

Consequently, an element Xij in an MDAmatrix X ∈ Rnd×nm is

represented as Eq. (1):

Xij =

{
1 if disease di associates with microbemj

0 otherwise
(1)

where nd and nm indicate the number of diseases and microbes,

respectively. An MDA is taken as a positive sample if Xij = 1,

otherwise, it is taken as an unlabeled sample.

2.2. Methods

In this manuscript, we proposed an MDA prediction

method called SAELGMDA by combining sparse autoencoder

and LightGBM. First, disease similarity and microbe similarity

are computed by integrating functional similarity and Gaussian

Interaction Profile Kernel (GIPK) similarity. Second, one microbe–

disease pair is represented as one d-dimensional vector. Third,

the obtained features for microbe–disease pairs are mapped into

a low-dimensional space via a sparse autoencoder. Finally, the low-

dimensional features are fed to LightGBM for MDA classification.

The pipeline of SAELGBM is illustrated in Figure 1.

2.2.1. Functional similarity of diseases and
microbes

We considered that similar diseases are more likely to associate

with similar genes (Xu and Li, 2006; Wei and Liu, 2020) and

computed disease functional similarity via disease-related genes.

For two diseases di and dj and corresponding associated gene sets

Gi = {gi1 , gi2 , . . . , gia} and Gj = {gj1 , gj2 , . . . , gjb}, the functional

association between gene gk and gene set G = {g1, g2, . . . , gl} is first

defined by Eq. (2):

FG(gk) = max
gt∈G

(
FS
(
gk, gt

))
(2)
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where FS(gk, gt) indicates the functional similarity between gk and

gt by Eq. (3):

FS(gk, gt) =

{
1, if k = t

LLS′
(
gk, gt

)
, if k 6= t

(3)

where LLS′ denotes the normalized score of LLS by Eq. (4):

LLS′
(
gk, gt

)
=

LLS
(
gk, gt

)
− LLSmin

LLSmax − LLSmin
(4)

where LLS represents association log-likelihood score used to

evaluate the functional linkage probability between two genes

provided by HumanNet (Hwang et al., 2019; Long et al., 2021),

LLSmax and LLSmin denote its maximum and minimum values,

respectively.

Finally, the functional similarity between di and dj is computed

by Eq. (5):

Df

(
di, dj

)
=

∑
gt∈G(di) FG(dj)

(
gt
)
+
∑

gt∈G(dj) FG(di)

(
gt
)

a+ b
(5)

Microbe functional similarity matrixMf is computed based on

the method proposed by Kamneva (2017).

2.2.2. GIPK similarity of diseases and microbes
Based on the assumption that functionally similar diseases

usually associate or disassociate with similar microbes, and

disease Gaussian Interaction Profile Kernel (GIPK) similarity

(Van Laarhoven et al., 2011) is computed via experimentally

validated MDA network. In particular, the GIPK similarity of two

diseases di and dj is computed by Eq. (6):

DG

(
di, dj

)
= exp

(
−γd

∥∥IP
(
di
)
− IP

(
dj
)∥∥2
)

(6)

where

γd = γ ′
d/

(
1

nd

nd∑

i=1

∥∥IP
(
di
)∥∥2
)

(7)

and IP(di) denotes associations between disease di and each

microbe, that is, the ith row of X. γd denotes the normalized kernel

bandwidth with original bandwidth γ ′
d
of 1, and nd denotes the

number of diseases.

Similarly, we computed the GIPK similarity matrix MG of

microbes.

2.2.3. Similarity integration for diseases and
microbes

Wemay fail to compute the functional similarity for all diseases

because not all diseases have related to genes. Thus, we combined

disease GIPK similarity and functional similarity by Eq. (8):

SD(di, dj) =

{
1
2 (Df (di, dj)+ DG(di, dj)) if Df

(
di, dj

)
6= 0

Df

(
di, dj

)
otherwise

(8)

Similarly, the integrated microbe similarity SM is computed.

2.2.4. Feature representation for microbe–disease
associations

For each microbe–disease pair (mi, dj), feature vectors of mi

and dj are obtained based on similarity matrices SD and SM ,

respectively. Particularly, the feature vector of di is denoted as the

similarity between di and all diseases. The feature vector of mj

is denoted as the similarity between mj and all microbes. Thus,

one microbe–disease pair is depicted as an (nd + nm)-dimensional

feature vector after concatenation operation, where nd and nm
indicate the number of diseases and microbes, respectively. In

summary, there are n(n = nd × nm) samples (microbe–disease

pairs), and each sample xi can be represented using a d(d = nd +

nm)-dimensional vector. For xi, its label yi = 1. If its corresponding

microbe–disease pair is associated, otherwise yi = 0. Consequently,

an MDAmatrix X with n samples is represented by Eq. (9):

X =

([
SM1

SD1

]
, · · · ,

[
SM1

SDnd

]
, · · · ,

[
SMnm

SD1

]
, · · · ,

[
SMnm

SDnd

])T

(9)

2.2.5. Feature extraction based on sparse
autoencoder

The obtained features for microbe–disease pairs are highly

dimensional and severely affect the classification accuracy of

models. Deep learning demonstrates stronger feature learning

ability than traditional dimensional reduction approaches.

Thus, we designed a sparse autoencoder to reduce the feature

dimensionality of each sample.

Sparse autoencoder (Andrew, 2011) is an unsupervised neural

network model. It minimizes the reconstruction error and enforces

sparsity constraints on all hidden nodes to obtain a more robust

and meaningful representation of features and further improves

the prediction performance of classification models (Makhzani

and Frey, 2013). First, a high-dimensional feature vector for the

microbe–disease pair is fed to an encoder by Eq. (10):

H = f (WX + b) (10)

where X represents the input n samples with d-dimensional vector,

H denotes the low-dimensional features after encoding, W, b,

and f (·) represent the weight, bias, and encoding function of the

encoder, respectively.

Next, a decoder restores the low-dimensional representation H

to the same appearance as the input feature representation by Eq.

(11):

X̂ = g
(
W′H + b′

)
(11)

where W′, b′, and g(·) represent the weight, bias, and decoding

function of the decoder, respectively, and X̂ denotes the learned

feature representation.

To minimize the reconstruction error, we build a cost function

by Eq. (12):

E = MSE+ λ × �sparsity + β × �weights (12)

where λ and β denote the sparsity regularization parameter and the

coefficients for L2 regularization, respectively.
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FIGURE 1

The flowchart of SAELGMDA.
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The first term MSE is mean square error. The term is used

to measure the discrepancy between the input features X and the

reconstructed features X̂ on training data by Eq. (13):

MSE =
1

n

n∑

i=1

(
Xi − X̂i

)2
(13)

The second term �sparsity is the Kullback–Leibler divergence. The

term is used to control sparsity based on the sparsity proportion ρ

by Eq. (14):

�sparsity =

sl∑

t=1

KL (ρ‖ρ̂t) (14)

where sl and ρ̂t denote the number of neurons in the lth hidden

layer and the average activity of the tth neuron, respectively,

KL (ρ‖ρ̂t) denotes the relative entropy between Bernoulli random

variables with mean ρ and mean ρ̂t . KL (ρ‖ρ̂t) is computed by Eq.

(15):

KL (ρ‖ρ̂t) = ρ log
ρ

ρ̂t
+ (1− ρ) log

1− ρ

1− ρ̂t
(15)

The third term is L2 regularization term �weights. The term is

used to control the weights and avoid overfitting by Eq. (16):

�weights =
1

2

nl−1∑

l=1

sl∑

i=1

sl+1∑

j=1

(
w
(l)
ji

)2
(16)

where nl, sl, and w
(l)
ji denote the number of layers, the number of

units in the lth layer, and the weight, respectively.

2.2.6. MDA classification based on LightGBM
Each microbe–disease pair is represented as a low-dimensional

vector after dimensional reduction based on a sparse autoencoder.

LightGBM (Ke et al., 2017) is an optimized version of Gradient

Boosting Decision Tree (GBDT) (Ye et al., 2009). It obtains better

performance in the area of bioinformatics. Next, the constructed

low-dimensional vector is used as the input of LightGBM (Ke et al.,

2017), to classify each microbe–disease pair. For an MDA dataset

D = {(xi, yi)}
n
i=1, LightGBM intends to learn an approximation f̂

to a certain function f (x) by minimizing the expectation of the loss

function L(y, f (x)) by Eq. (17):

f̂ = argmin
f

Ex,y[L(y, f (x))] (17)

LightGBM integrates T decision trees
∑T

t=1 ft(X) to

approximate the final model fT(X) =
∑T

t=1 ft(X). The decision

trees with J leaf nodes are expressed as wq(x), where wq(x) denotes

the weights of all samples on leaf nodes and q(x) denotes the

decision rules. Hence, The loss function of LightGBM is defined by

Eq. (18):

Ŵt =

n∑

i=1

L
(
yi, Ft−1 (xi) + ft (xi)

)
(18)

The constant term in model (18) is removed for simplicity, and

model (18) is transformed as Eq. (19):

Ŵt
∼=

n∑

i=1

(gift(xi)+
1

2
hif

2
t (xi)) (19)

where gi and hi denote the first-order and second-order derivatives

of the loss function, respectively.

For a sample set, Ij related to leaf j, model (19) could be

transformed as follows:

Ŵt =

J∑

j=1

((∑

i∈Ij

gi)wj +
1

2

(∑

i∈Ij

hi + λ
)
w2
j

)
(20)

Given a tree structure q(x), the optimal leaf weight w∗
j of each leaf

node and the maximum value of a scoring function Ŵk that evaluate

the quality of q(x) are defined by Eqs. (21) and (22):

w∗
j = −

∑
i∈Ij

gi

∑
i∈Ij

hi + λ
(21)

Ŵ∗
T = −

1

2

J∑

j=1

(
∑

i∈Ij
gi)

2

∑
i∈Ij

hi + λ
(22)

TABLE 1 The performance of five MDA identification methods under CV1.

Database Method Accuracy MCC AUC AUPR

SAELGMDA 0.9497± 0.0022 0.1855 ± 0.0116 0.8358 ± 0.0109 0.2155 ± 0.0075

MNNMDA 0.9588 ± 0.0009 0.1085± 0.0109 0.6907± 0.0040 0.1206± 0.0021

GATMDA 0.9562± 0.0009 0.0421± 0.0018 0.5152± 0.0003 0.0816± 0.0014

NTSHMDA 0.9138± 0.0006 0.0101± 0.0008 0.6423± 0.0085 0.0531± 0.0007

HMDAD

LRLSHMDA 0.9421± 0.0007 0.1182± 0.0028 0.5343± 0.0109 0.0769± 0.0006

SAELGMDA 0.9819 ± 0.0000 0.3431 ± 0.0059 0.9301 ± 0.0002 0.3469 ± 0.0037

MNNMDA 0.9814± 0.0000 0.1521± 0.0008 0.6774± 0.0010 0.1207± 0.0004

GATMDA 0.9807± 0.0000 0.0542± 0.0019 0.5214± 0.0005 0.2166± 0.0192

NTSHMDA 0.9416± 0.0000 0.0204± 0.0000 0.5898± 0.0002 0.0235± 0.0000

Disbiome

LRLSHMDA 0.9772± 0.0000 0.1469± 0.0004 0.7200± 0.0005 0.1109± 0.0002
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Consequently, the objective function is represented as Eq. (23):

G =
1

2
(
(
∑

i∈IL
gi)

2

∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2

∑
i∈IR

hi + λ
−

(
∑

i∈I gi)
2

∑
i∈I hi + λ

) (23)

where IL and IR denote the example sets on the left and right sides,

respectively.

3. Results

3.1. Experimental settings and evaluation
metrics

Similar to RNMFMDA provided by Peng et al. (2020), the

experiments were performed under three 5-fold cross validations

(CVs) 20 times. For an MDA matrix Xn, the three CVs were as

follows:

• five-fold CV 1 (CV1): CV on diseases, i.e., in each round, 80%

of nd diseases in X was taken as training set and the remaining

20% was test set.

• five-fold CV 2 (CV2): CV on microbes, i.e., in each round,

80% of nm microbes in X was taken as training set and the

remaining 20% was test set.

• five-fold Cv 3 (CV3): CV onmicrobe–disease pairs, i.e., in each

round, 80% of entries (microbe–disease pairs) in X were used

as training set and the remaining 20% was test set.

In the sparse autoencoder, the neural network comprised an

encoder and a decoder. The network structure was trained in Keras

based on the TensorFlow backend. The structure comprised one

input layer, three hidden layers, and an output layer. The number

of each layer was 331, 256, 128, 96, and 64, respectively. The layers

in the encoder and decoder were symmetric around the bottleneck.

Tanh and ReLU were used as the activation functions in the output

layer and the other layers, respectively. The optimization method

used the Adam algorithm (Kingma and Ba, 2014). The batch size

was set to 32 because a smaller batch size can make the model

converge faster. The parameters λ, β , and ρ were set to 0.1, 0.0005,

and 0.05, respectively. The final encoding size of the autoencoder

is set to 64, that is, the features of MDAs were reduced to 64

dimensions.

For LightGBM, the parameters “num_leaves," “learning_rate,”

and “max_depth” denote the number of leaves in a tree, the speed

of iteration, and the maximum depth of the tree, respectively. They

were set to 31, 0.1, and –1, respectively. “Feature_fraction" and

“bagging_fraction" are two hyperparameters in the optimization

process. The former denotes the fraction of features at each

iteration and was set to 0.9. The latter denotes the fraction of data

and applies to boost the training and reduce overfitting. It was set to

0.9. “min_data" denotes the minimum number of records in a leaf

and is also used to reduce overfitting. The parameters in the other

four comparison methods were set to the defaults in corresponding

publications. One microbe–disease pair is taken as a positive MDA

when its association probability is greater than 50%, otherwise, it is

taken as a negative MDA.

Four evaluation metrics were used to measure the performance

of MDA prediction methods: accuracy, Matthews correlation

coefficient (MCC) (Chicco and Jurman, 2020), area under the ROC

curve (AUC), and area under the Precision-Recall curve (AUPR).

Higher values for the four evaluation metrics represent better

performance.

3.2. Performance comparison of
SAELGMDA with the other four methods

To evaluate the performance of SAELGMDA, we compared

it with four state-of-the-art MDA identification algorithms

(MNNMDA, GATMDA, NTSHMDA, and LRLSHMDA) under

three CVs on the HMDAD and Disbiome datasets, that is, CV1,

CV2, and CV3.

3.2.1. Performance comparison under CV1

Table 1 shows accuracies, MCCs, AUCs, and AUPRs of

SAELGMDA and the other four methods under CV1. The best

performance in each column is described in Tables 1–6. As shown

in Table 1, SAELGMDA computed the best MCC, AUC, and AUPR

on the HMDAD database and the best accuracy, MCC, AUC,

and AUPR on the Disbiome database, significantly outperforming

the other four MDA prediction methods under CV1. Although

accuracy was slightly less than MNNMDA and GATMDA on

HMDAD, the difference was very tiny. Moreover, SAELGMDA

outperformed the other methods, especially AUC and AUPR on the

whole. In addition, although SAELGMDA outperformed the other

four methods, all methods computed lower MCC and AUPR under

CV1, which may be caused by fewer diseases. Figure 2 shows the

ROC and PR curves of the five methods on the two databases under

CV1.

3.2.2. Performance comparison under CV2

Table 2 demonstrates the prediction performance of

SAELGMDA and the other four methods under CV2. The

best performance in each column is described in boldface. As

shown in Table 2, we observed that SAELGMDA computed the

best accuracies, MCCs, and AUCs on the two databases under CV2.

In particular, SAELGMDA obtained better MCC and AUPR on

the HMDAD database than ones on the Disbiome database, which

may be caused by different data structures. In addition, all five

MDA prediction methods computed lower MCC and AUPR on the

Disbiome database. Figure 3 shows the ROC and PR curves of the

five methods under CV2.

3.2.3. Performance comparison under CV3

Table 3 shows the performance of SAELGMDA and the other

four methods under CV3. The best performance in each column

is described in boldface under CV3. The results from Table 3

suggest that SAELGMDA achieved the best accuracies, MCCs,

and AUCs, significantly outperforming the other four MDA

prediction methods under CV3. Moreover, the performance of all

five methods under CV3 outperforms the ones under CV1 and CV2,

demonstrating that more samples help improve the classification
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FIGURE 2

The ROC and the PR curves of five di�erent methods under CV1 on the two databases. (A, B) Denote the ROC curves on the HMDAD and Disbiome

databases, respectively. (C, D) Denote the PR curves on the HMDAD and Disbiome databases, respectively.

TABLE 2 The performance of five MDA identification methods under CV2.

Database Method Accuracy MCC AUC AUPR

SAELGMDA 0.986 ± 0.0000 0.8017 ± 0.0017 0.9838 ± 0.0001 0.8706 ± 0.0010

MNNMDA 0.9654± 0.0000 0.344± 0.0034 0.896± 0.0016 0.7479± 0.0052

GATMDA 0.9604± 0.0001 0.4775± 0.0065 0.7977± 0.0020 0.4677± 0.0096

NTSHMDA 0.9642± 0.0000 0.4449± 0.0029 0.8614± 0.0007 0.3718± 0.0026

HMDAD

LRLSHMDA 0.9642± 0.0000 0.4451± 0.0017 0.8596± 0.0009 0.4068± 0.0065

SAELGMDA 0.9818 ± 0.0000 0.3437 ± 0.0040 0.9293 ± 0.0003 0.3378± 0.0049

MNNMDA 0.9817± 0.0000 0.1907± 0.0016 0.7744± 0.0015 0.4117 ± 0.0023

GATMDA 0.9763± 0.0000 0.0915± 0.0011 0.5761± 0.0009 0.1069± 0.0031

NTSHMDA 0.9723± 0.0000 0.0951± 0.0002 0.7721± 0.0002 0.0767± 0.0000

Disbiome

LRLSHMDA 0.9657± 0.0000 0.1135± 0.0002 0.7792± 0.0002 0.0905± 0.0001
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FIGURE 3

The ROC and the PR curves of five di�erent methods under CV2 on the two databases. (A, B) Denote the ROC curves on the HMDAD and Disbiome

databases, respectively. (C, D) Denote the PR curves on the HMDAD and Disbiome databases, respectively.

performance. Figure 4 shows the ROC and PR curves of the five

methods under CV3.

3.2.4. Performance comparison of LightGBM and
two classification models

To measure the MDA classification performance of LightGBM,

we compared it with two classical boosting algorithms, XGBoost

and NGBoost. Extreme Gradient Boosting (XGBoost) is an

ensemble learning method based on a gradient boost tree and

can accurately cope with multicollinearity impact and complicated

non-linearity interactions (Chen and Guestrin, 2016; Zhu and Zhu,

2019). Natural Gradient Boosting (NGBoost) uses natural gradients

instead of regular gradients to implement flexible probabilistic

forecast (Duan et al., 2020). Tables 4–6 show the accuracy, MCC,

AUC, and AUPR of LightGBM, NGBoost, and XGBoost on the

Disbiome and HMDAD datasets under three cross validations. The

results from Tables 4–6 indicate that LightGBM obtained better

performance on the majority of conditions and can be used to

improve MDA classification ability.

3.2.5. Computational time analysis
We compared the computational time of SAELGMDA with

the other four MDA prediction models, MNNMDA, GATMDA,

NTSHMDA, and LRLSHMDA. The experiments were run on a

machine with an AMD EPYC 7302 CPU, a GeForce RTX 2080

Ti, and 256GB RAM on Ubuntu 20.04.4 LTS operating system.

Figure 5 shows computational time (m) of the five MDA prediction

models on five-fold cross validation for one time on two MDA

datasets. As shown in Figure 5, SAELGMDA is the most rapid

method on the HMDAD dataset and the slowest one on the

Disbiome dataset. SAELGMDA need only to spend 10.57 min,

although it run slowly on the Disbiome database. In summary,

SAELGMDA need not too much time on the two MDA datasets.
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TABLE 3 The performance of five MDA identification methods under CV3.

Database Method Accuracy MCC AUC AUPR

SAELGMDA 0.9859 ± 0.0000 0.7978 ± 0.0010 0.9857 ± 0.0000 0.8705 ± 0.0008

MNNMDA 0.9653± 0.0000 0.3401± 0.0055 0.9511± 0.0002 0.6465± 0.0023

GATMDA 0.8935± 0.0004 0.3427± 0.0020 0.8638± 0.0007 0.3230± 0.0060

NTSHMDA 0.9613± 0.0000 0.1783± 0.0338 0.8874± 0.0003 0.3568± 0.0026

HMDAD

LRLSHMDA 0.9453± 0.0000 0.0568± 0.0011 0.7997± 0.0002 0.1158± 0.0002

SAELGMDA 0.9826 ± 0.0000 0.3376 ± 0.0004 0.9358 ± 0.0000 0.3604± 0.0004

MNNMDA 0.9815± 0.0000 0.1523± 0.0012 0.9355± 0.0000 0.4175 ± 0.0002

GATMDA 0.8461± 0.0004 0.2032± 0.0002 0.8332± 0.0001 0.201± 0.0004

NTSHMDA 0.9807± 0.0000 0.0207± 0.0002 0.8146± 0.0000 0.0766± 0.0000

Disbiome

LRLSHMDA 0.9781± 0.0000 0.0744± 0.0002 0.7365± 0.0000 0.0625± 0.0000

FIGURE 4

The ROC and the PR curves of five di�erent methods under CV3 on the two databases. (A, B) Denote the ROC curves on the HMDAD and Disbiome

databases, respectively. (C, D) Denote the PR curves on the HMDAD and Disbiome databases, respectively.
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TABLE 4 The performance of three classification models under CV1.

Database Method Accuracy MCC AUC AUPR

LightGBM 0.9497± 0.0022 0.1855 ± 0.0116 0.8358± 0.0109 0.2155 ± 0.0075

NGBoost 0.9526 ± 0.0016 0.1728± 0.0107 0.8301± 0.0097 0.1988± 0.0056HMDAD

XGBoost 0.946± 0.0018 0.1832± 0.0092 0.8385 ± 0.0051 0.1843± 0.0050

LightGBM 0.9819± 0.0000 0.3431± 0.0059 0.9301 ± 0.0002 0.3469± 0.0037

NGBoost 0.9826 ± 0.0000 0.3631 ± 0.0032 0.9284± 0.0002 0.3598 ± 0.0027Disbiome

XGBoost 0.9775± 0.0000 0.2706± 0.0034 0.905± 0.0003 0.2494± 0.002

TABLE 5 The performance of three classification models under CV2.

Database Method Accuracy MCC AUC AUPR

LightGBM 0.986 ± 0.0000 0.8017 ± 0.0017 0.9838 ± 0.0001 0.8706 ± 0.0010

NGBoost 0.9854± 0.0046 0.794± 0.0511 0.9808± 0.0102 0.8615± 0.0447HMDAD

XGBoost 0.9846± 0.0000 0.7814± 0.0027 0.9803± 0.0001 0.8434± 0.0021

LightGBM 0.9818 ± 0.0000 0.3437 ± 0.0040 0.9293 ± 0.0003 0.3378± 0.0049

NGBoost 0.9817± 0.0034 0.3382± 0.0756 0.9284± 0.0164 0.3597 ± 0.0920Disbiome

XGBoost 0.9771± 0.0054 0.2671± 0.0619 0.904± 0.0186 0.2502± 0.0640

TABLE 6 The performance of three classification models under CV3.

Database Method Accuracy MCC AUC AUPR

LightGBM 0.9859 ± 0.0000 0.7978 ± 0.0010 0.9857 ± 0.0000 0.8705 ± 0.0008

NGBoost 0.9854± 0.0000 0.7905± 0.0013 0.9821± 0.0000 0.8625± 0.0013HMDAD

XGBoost 0.9838± 0.0000 0.7679± 0.0011 0.9804± 0.0000 0.835± 0.0010

SAELGMDA 0.9826 ± 0.0000 0.3376± 0.0004 0.9358 ± 0.0000 0.3604± 0.0004

LightGBM 0.9826 ± 0.0000 0.3396 ± 0.0003 0.9336± 0.0000 0.3764 ± 0.0002Disbiome

XGBoost 0.9805± 0.0000 0.2375± 0.0039 0.9129± 0.0000 0.2594± 0.0002

3.3. Case study

In this section, we predicted potential MDAs on the two MDA

databases. In addition, multiple evidence suggests that colorectal

cancer, inflammatory bowel diseases, and lung cancer have dense

linkages with microbes (Guarner andMalagelada, 2003; Müller and

Macpherson, 2006; Zhang et al., 2015; Mármol et al., 2017; Chicco

and Jurman, 2020). In this section, we aim to find possible microbes

for the three diseases using the proposed SAELGMDA method.

For the three diseases, microbes that are known to associate with

them were removed. Next, we computed the association scores

between them and all microbes. Third, the computed scores were

sorted in descending order. Finally, the top 20 microbes with the

highest association scores with them were listed and confirmed by

the existing publications.

3.3.1. Finding new MDAs based on known MDAs
We further predicted new MDAs based on known MDAs using

SAELGMDA. The predicted top 50MDAs are shown in Figure 6. In

Figure 6, sky blue solid lines and red dotted lines represent known

and unknown MDAs obtained from SAELGMDA, respectively.

Deep sky blue round rectangles represent microbes and green

diamonds denote diseases.

On the HMDAD database, all predicted top 50 MDAs have

been known to be associated with the database. SAELGMDA

predicted that Actinobacteria and liver cirrhosis have the highest

association probability with the ranking of 130 among all

11,388 microbe–disease pairs. Actinobacteria have been reported

to associate with liver disease (Bull-Otterson et al., 2013).

The expansion of Proteobacteria and Actinobacteria has a

pathogenic effect on alcoholic liver disease (Bull-Otterson et al.,

2013).

In the Disbiome database, SAELGMDA predicted that

Veillonellamay associate with autismwith a ranking of three among

all 229,336 microbe–disease pairs. Zhang et al. (2018) has reported

that the abundance ofVeillonellawas severely decreased in stools of

children suffering from autism spectrum disorder. The decreasing

of its abundance has been also found in subjects involved in autism

(Strati et al., 2017). Furthermore, the decreased Veillonella may

affect the fermentation of lactate in the autism children (Gronow

et al., 2010).
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FIGURE 5

Computational time of five MDA methods.

FIGURE 6

The predicted top 50 MDAs on the HMDAD (A) and Disbiome (B) databases.

3.3.2. Colorectal cancer-related microbe
identification

Colorectal cancer is the third most frequent cause of cancer

mortality worldwide, severely threatening global life and health

(Biller and Schrag, 2021; Saeed et al., 2021; Wong et al., 2023).

There are more than 1.85 million colorectal cancer cases and

850,000 colorectal cancer-related deaths each year. In total, 20%

of patients with colorectal cancer have metastasis cancer among

new colorectal cancer diagnoses. It has been reported that ∼70%–

75% of patients survive more than 1 year, 30%–35% more than

3 years, and fewer than 20% more than 5 years among patients

diagnosed withmetastatic colorectal cancer. Although colonoscopy

has been widely applied to the screen, its effect on colorectal cancer

remains unclear (Bretthauer et al., 2022). Table 7 shows the top

20 microbes associated with colorectal cancer on the HMDAD

database.

For colorectal cancer, as shown in Table 7, 19 microbes have

been confirmed to have associations with colorectal cancer by the

existing literature on the top 20 inferred microbes on the HMDAD

database. For example, pseudomonas is distinctly less abundant

in cancer tissues than normal tissues and has been increasingly

taken as an emerging clinic-related opportunistic pathogen (Decker

and Palmore, 2014; Gao et al., 2015). Haemophilus parainfluenzae

demonstrates higher representation in colorectal cancer subjects

but is scarcely investigated in control subjects (Kasai et al., 2016).

Research in 219 patients with colorectal cancer has suggested that

clostridium difficile has a dense relationship with colorectal cancer

(Yeom et al., 2010). Helicobacter pylori infection has been reported
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TABLE 7 The top 20 microbes related to colorectal cancer inferred by

SAELGMDA on the HMDAD database.

Rank Microbe Evidence

1 Fusobacterium nucleatum Confirmed by HMDAD

2 Firmicutes Confirmed by HMDAD

3 Proteobacteria PMID: 24 603 888, 27 194 068, 32

298 987

4 Prevotella Confirmed by HMDAD

5 Bacteroidetes Confirmed by HMDAD

6 Clostridia Confirmed by HMDAD

7 Fusobacterium Confirmed by HMDAD

8 Bacteroides Confirmed by HMDAD

9 Pseudomonas PMID: 33 998 814, 25699023, 25

217 106

10 Haemophilus PMID: 31 358 825, 26 549 775

11 Actinobacteria PMID: 35 899 111, 35 049 922

12 Acinetobacter PMID: 32 738 757, 32 595 614

13 Corynebacterium PMID: 313 873, 646 934

14 Lactobacillus PMID: 36 162 222, 22 830 611, 35

808 840

15 Streptococcus PMID: 9 771 449, 21 960 713, 21

247 505, 18 990 738, 16 845 563

16 Clostridium difficile PMID: 26 691 472, 28 060 753, 21

152 135, 1 626 323

17 Faecalibacterium prausnitzii PMID: 26 595 550, 35 625 865, 32

675 782

18 Clostridium coccoides Unconfirmed

19 Lachnospiraceae PMID: 28 988 196, 36 893 736

20 Helicobacter pylori PMID: 22 294 430, 16 579 836, 18

506 454, 31 393 968

to be a potential risk increase factor of left-sided colorectal cancer

(Zhang et al., 2012).

Moreover, we inferred that Clostridium coccoides has a possible

association with colorectal cancer. Clostridium coccoides is taken as

one of the most prevalent groups of bacteria in human intestines.

They constitute∼60% of mucin-adhered microbiota and comprise

different species with high oxygen-sensitive anaerobes (such as

Clostridium, Coprococcus, Eubacterium, and Ruminococcus). They

contribute to the prevention of colonization of vancomycin-

resistant Enterococcus in an antibiotic-treated mouse model

(Grenda et al., 2022). The association between Clostridium

coccoides and colorectal cancer needs further validation.

3.3.3. Inflammatory bowel disease-related
microbe identification

Inflammatory bowel disease is one of the idiopathic

inflammatory bowel disorders that severely affect the

gastrointestinal tract. It has become a global, chronic, and

life-threatening disease over the last few decades. Mak et al.

(2020) predicted that patients with inflammatory bowel disease

TABLE 8 The top 20 microbes related to inflammatory bowel disease

inferred by SAELGMDA on the HMDAD database.

Rank Microbe Evidence

1 Bacteroidetes PMID: 12 906 096, 27 999 802, 21

575 910

2 Proteobacteria Confirmed by HMDAD

3 Firmicutes PMID: 19 235 886

4 Lachnospiraceae Confirmed by HMDAD

5 Haemophilus PMID: 33 666 710, 30 685 379

6 Actinobacteria Confirmed by HMDAD

7 Prevotella PMID: 28 542 929, 26 468 751

8 Clostridium coccoides PMID: 27 687 331, 16 432 374

9 Bifidobacterium PMID: 34 337 079, 25 793 197, 24

478 468, 25 391 346

10 Lactobacillus PMID: 29 854 599, 32 509 162, 15

664 933

11 Staphylococcus aureus PMID: 31 698 044

12 Fusobacterium PMID: 27 139 617, 33 996 366, 25

576 662

13 Clostridia PMID: 22 508 484, 28 506 071

14 Clostridium difficile PMID: 22 508 484, 28 506 071

15 Helicobacter pylori PMID: 24 914 359, 19 760 778

16 Streptococcus PMID: 30 392 911, 23 679 203, 28

618 865, 16 868 828

17 Bacteroides vulgatus PMID: 12 906 096, 12 162 408

18 Bacteroides PMID: 12 906 096, 12 162 408

19 Oxalobacteraceae PMID: 29228248

20 Sphingomonadaceae Unconfirmed

may be an exponential increase worldwide. It typically includes

Crohn’s disease and ulcerative colitis. It manifests progressive

and unpredictable features and is partially caused by bacteria

that activate patient’s immune system to protect against foreign

substances (Lomax et al., 2006; Kaplan and Windsor, 2021). It has

a close relationship with microbes. Identification of associated

microbes for the disease helps us better equip to stem its global

rise in future. Table 8 lists the top 20 microbes associated with the

disease on the HMDAD database.

As shown in Table 8, 19 microbes have been validated

to link to inflammatory bowel disorders by existing literature

on the predicted top 20 microbes associated with it on the

HMDAD database. Researchers reported that Firmicutes were

less represented in patients suffered from inflammatory bowel

disease than healthy subjects (Sokol et al., 2009). Streptococcus

and Haemophilus were highly represented in patients with

inflammatory bowel disease (Heidarian et al., 2019). Prevotella

was reduced in pediatric Crohn’s disease (Lewis et al., 2015).

Clostridium coccoides was less abundant in patients with active

inflammatory bowel disease than ones in remission (Prosberg et al.,

2016).
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TABLE 9 The top 20 microbes associated with lung cancer identified by

SAELGMDA on the Disbiome database.

Rank Microbe Evidence

1 Acidovorax Confirmed by Disbiome

2 Parabacteroides PMID: 30 693 820, 32 010 563, 33

302 682, 33 302 682, 32 329 229, 30

693 820

3 Diaphorobacter Confirmed by Disbiome

4 Bifidobacterium Confirmed by Disbiome

5 Roseburia PMID: 33 302 682, 32 227 387, 35

735 103

6 Bacteroides PMID: 306 938 20, 36 498 063, 30

416 658,

7 Lactobacillus PMID: 26 125 762, 36 361 537, 36

638 662

8 Leptotrichia PMID: 34 432 217, 33 454 779

9 Prevotella Confirmed by Disbiome

10 Enterococcus PMID: 33 302 682, 27 717 798, 31

065 547, 33 111 503

11 Streptococcus Confirmed by Disbiome

12 Corynebacterium PMID: 350 388, 6 362 846, 6 998

933, 6 318 791

13 Porphyromonas PMID: 33 279 803,32 615 270

14 Alistipes PMID: 33 939 976, 34 793 492, 35

115 705

15 Haemophilus PMID: 21 407 824, 21 407 824, 27

052 615, 21 098 042, 34 963 470

16 Klebsiella PMID: 32 099 416, 24 706 703

17 Dialister PMID: 30 416 658, 29 023 689, 34

063 829, 31 595 156

18 Ruminococcus PMID: 32 227 387, 33 302 682, 36

737 654, 33 603 241, 32 240 032

19 Pseudomonas PMID: 27 507 537, 25 801 231, 30

101 407

20 Escherichia PMID: 18 496 688, doi:

10.1158/1538-7445.AM2023-5185

In addition, we predicted that Sphingomonadaceae dense

links to inflammatory bowel disease. Sphingomonadaceae family

has high abundance in marine waters, freshwater, and even

drinking water. They can degrade lignin-derived compounds

and refractory organic matter that comprise monocyclic

and polycyclic aromatic hydrocarbons (Shen S. et al., 2022).

Sphingomonadaceae are significantly accommodated to bile

salts through metabolic pathways (de Vries et al., 2019).

In addition, Sphingomonadaceae has a high linkage with

triclosan degradation in nitrification and denitrification systems

(Dai et al., 2022). Microbial communities were adapted to

Bisphenol A through the selection of Sphingomonadaceae

populations including Sphingobium, Novosphingobium,

and Sphingopyxis. The selected Sphingomonadaceae for

Bisphenol A demonstrated higher Bisphenol A metabolic

activity (Oh and Choi, 2019). The association between

Sphingomonadaceae and inflammatory bowel disease needs

further validation.

3.3.4. Lung cancer-related microbe identification
Lung cancer is one of the leading causes of cancer-related

deaths worldwide. It accounts for ∼18% of global cancer deaths

(Sung et al., 2021). More than 350 patients died from lung cancer

each day in the United States (Siegel et al., 2022). It has the highest

incidence andmortality compared with other cancer types in China

(Xia et al., 2022). We used the proposed SAELGMDA model to

identify potential microbes for lung cancer. Table 9 lists the top 20

microbes associated with it on the Disbiome database. As shown in

Table 9, all 20 top microbes have been confirmed to be associated

with lung cancer by existing literatures or the Disbiome database.

The results again validated the MDA prediction performance of

SAELGMDA.

3.4. Discussion and conclusion

Systematic identification of associations between microbes and

diseases significantly contributes to the understanding of the

complex pathogenic mechanism of various diseases (Takahashi

et al., 2018; Zhou et al., 2018; Yang et al., 2022). In particular,

computational pathogenic microorganism discovery helps to

capture potential biomarkers from candidate compounds for

human complex diseases (Barrows et al., 2016; Zhu et al., 2021).

Here, we developed a computational method called

SAELGMDA to improve MDA prediction. First, microbe

similarity and disease similarity were computed via their function

similarity and GIPK similarity. Second, one microbe–disease pair

was represented as a feature vector based on microbe similarity

matrix and disease similarity matrix. Third, the obtained high-

dimensional features were mapped to a low-dimensional space

based on a sparse autoencoder. Finally, unknown microbe–disease

pairs were classified using LightGBM.

Our proposed SAELGMDA method was compared with

MNNMDA, GATMDA, LRLSHMDA, and NTSHMDA.

Experimental results under CV1, CV2, and CV3 show that

SAELGMDA outperforms the above four methods. SAELGMDA

obtains the superior MDA identification ability. To investigate

the MDA classification performance of LightGBM, we further

compared it with XGBoost and NGBoost. The results demonstrate

that LightGBM obtained better accuracy. Case studies demonstrate

that there are possible associations between Clostridium

coccoides and colorectal cancer, between Sphingomonadaceae

and inflammatory bowel disease, and between Veillonella and

autism and needs further validation.

We used two MDA databases (Disbiome and HMDAD) to

investigate the performance of our proposed SAELGMDAmethod.

The HMDAD dataset is a small dataset and Disbiome is a larger

dataset. Under CV1, the performance of SAELGMDA, GATMDA,

and LRLSHMDA on the Disbiome dataset outperforms the ones

on the HMDAD dataset, demonstrating more data contribute to

the performance improvement for the three methods under CV1.

Under CV2 and CV3, all five methods computed higher accuracy

and AUC on the two datasets. However, MCC andAUPR computed
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by these five methods significantly decreased the Disbiome dataset

compared with the HMDAD dataset. It may be caused by data

imbalance; that is, the generalization ability of SAELGMDA is good

when identifying potential associated microbes for a query disease.

However, its generalization ability needs further improvement

under CV2 and CV3.

Although SAELGMDA outperformed the other four methods

under the majority of condition on the HMDAD and Disbiome

databases, the performance of all five MDA prediction methods,

especially MCC and AUPR, remains an improvement. In

future, we will integrate more biological data, such as microbe–

drug associations and disease–gene associations, to extract

effective features for microbe–disease pairs. Furthermore,

we will explore new dimensional reduction algorithms and

classification models to improve MDA prediction by combining

deep learning.
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