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Introduction: Personal identification of monozygotic twins (MZT) has been

challenging in forensic genetics. Previous research has demonstrated that

microbial markers have potential value due to their specificity and long-term

stability. However, those studies would use the complete information of detected

microbial communities, and low-value species would limit the performance of

previous models.

Methods: To address this issue, we collected 80 saliva samples from 10 pairs of

MZTs at four di�erent time points and used 16s rRNA V3–V4 region sequencing

to obtain microbiota information. The data formed 280 inner-individual (Self) or

MZT sample pairs, divided into four groups based on the individual relationship

and time interval, and then randomly divided into training and testing sets with

an 8:2 ratio. We built 12 identification models based on the time interval (≤ 1

year or ≥ 2 months), data basis (Amplicon sequence variants, ASVs or Operational

taxonomic unit, OTUs), and distance parameter selection (Jaccard distance, Bray-

Curist distance, or Hellinger distance) and then improved their identification power

through genetic algorithm processes. The best combination of databases with

distance parameters was selected as the final model for the two types of time

intervals. Bayes theory was introduced to provide a numerical indicator of the

evidence’s e�ectiveness in practical cases.

Results: From the 80 saliva samples, 369OTUs and 1130 ASVswere detected. After

the feature selection process, ASV-Jaccard distance models were selected as the

final models for the two types of time intervals. For short interval samples, the final

model can completely distinguish MZT pairs from Self ones in both training and

test sets.

Discussion: Our findings support the microbiota solution to the challenging

MZT identification problem and highlight the importance of feature selection in

improving model performance.

KEYWORDS

forensic microbiology, monozygotic twins, personal identification, 16s rRNA sequencing,

machine learning, genetic algorithm
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1. Introduction

Distinguishing monozygotic twins (MZT) has long been

a challenging task in individual identification, and it has

significant implications in some cases. For example, Jobling (2013)

introduced several of such cases, including a rape case where the

characterization was obstructed by the existence of the suspect’s

MZT brother and the difficulty of distinguishing them. Various

techniques have been established to identify MZTs. One such

technique involves the analysis of Single Nucleotide Polymorphism

(SNP), Count Number Variation (CNV), and Insertion/Deletion

variation (InDel) markers (Hannelius et al., 2007; Abdellaoui et al.,

2015; Xu et al., 2017). Researchers have reported that there may be

differences in these genomic biomarkers between MZTs. However,

due to the nearly identical nuclear and mitochondrial genome

information shared by MZTs, such differences are infrequent

(McRae et al., 2015; Ming et al., 2019) and genome-wide

sequencing is typically necessary to differentiate MZTs. Another

MZT identification strategy involves the investigation of various

biomarkers from the perspective of epigenetics, including DNA

methylation (Stewart et al., 2015; Xu et al., 2015) and microRNA

(Fang et al., 2019; Xiao et al., 2019). Applying such biomarkers,

the difference between MZTs would be more significant and the

identification efficacy can be promising (Xu et al., 2015). However,

using such biomarkers would necessitate strict material standards

which would limit their application in daily work. Specially, RNA

is easily degraded by exonuclease hydrolysis in the environment

andDNAmethylationmethod requires high quality and quantity of

DNA because sodium bisulfite may lead to DNA fragmentation and

loss. Therefore, more suitable biomarkers for MZT identification

are still required.

Advances in microbiology may provide another possible

solution to the MZT identification problem. As it is known,

human bodies contain two genomes: the human genome is

inherited from parents, and the microbiota reside on/in the human

body. The latter, known as the “second genome” of the human

body, is thought to contain genetic information that is ∼50–100

times greater than the human genome (Grice and Segre, 2012).

Recent advances in sequencing technology have helped the growth

of forensic microbiology, an interdisciplinary field of forensic

medicine andmicrobiology (Ventura Spagnolo et al., 2019; Speruda

et al., 2022). With a sharp focus much attention has been focused

on the application of microbial information, with a particular

emphasis on postmortem interval estimation (Liu et al., 2022),

cause of death inference (Kaszubinski et al., 2020), body fluid

type identification (Yao et al., 2021), and individual identification

(Watanabe et al., 2018).

Numerous studies have revealed that everyone has a unique

microbiome and differs, including betweenMZTs (Stahringer et al.,

2012; Abeles et al., 2014; Suzuki et al., 2022; Sukumar et al.,

2023). For example, Stahringer et al. (2012) demonstrated that

the difference in salivary microbiome 16s rRNA data between

MZT individuals was not less than that between dizygotic twins

(DZT) and that this difference gradually increased after they

lived apart. Based on such differences, primary studies on the

MZT identification model constructions have been conducted.

For example, Bozza et al. (2022) collected saliva samples from

individuals with different relationships (unrelated individuals,

MZT, or inner-individual samples) for sequencing and then built

a model that can roughly distinguish between MZT and inner-

individual samples. However, such studies would include all tested

species in the model construction. In theory, the sensitivity

of different microbial species to environmental changes should

differ, resulting in different stability within the same individual.

Therefore, changes in sequencing data of relatively unstable

species would partially offset support for the same identification

from relatively stable species. Therefore, there is still room for

improvement in this field.

In this study, 80 saliva samples were collected from 10 MZT

pairs to collect microbiota information via 16s rRNA sequencing.

Twelve models were developed, each considering sample collection

intervals, sequence data basis, and distance selection. High-value

species were selected using Genetic Algorithm (GA) processes in

such models. Finally, the two models with the best distinguishing

power in the training test (under two different sampling intervals)

were selected. The model developed for the short interval samples

could completely separate MZT from inner-individual sample pairs

in training and test sets.

2. Materials and methods

2.1. Sample collection

The present study included 10 pairs of MZT (four male and six

female pairs). Participants signed informed consent forms before

data collection, and the research content met the medical ethics

requirements of Hebei Medical University. For each participant,

four freely flowing saliva samples (1 mL each) were collected at

four different time points (TP 1-4), the second, third, and fourth

of which were collected 12, 13, and 14 months after the first one.

Each participant stated that they had not used antibiotics within

6 months before sampling and had not consumed food or water

within 2 h of sampling. A total of 80 samples were collected

and labeled based on the participant and the time point. For

example, “S10A1” denoted the sample belonging to individual A

of the 10th MZT pair and was collected at the first time point.

Genomic DNA was extracted from the saliva samples using the

TGuide S96 Magnetic Soil/Stool DNA Kit (TIANGEN Biotech,

Beijing) as recommended by themanufacturer and stored at−80◦C
until needed.

2.2. Library preparation and sequencing

A two-round-PCR workflow was used for the library

preparation for the 16s rRNA V3–V4 sequencing that

involves four steps: (i) First round PCR: The following

primers were used to amplify the target regions of 16S rDNA:

338F: 5′-ACTCCTACGGGAGGCAGCA-3′ and 806R: 5′-
GGACTACHVGGGTWTCTAAT-3′. PCR was performed in 10 µL

reactions, with 0.3 µL forward primers (10 µM), 0.3 µL reverse

ones (10 µM), 50 ng ± 20% template DNA, 0.2 µL KOD FX

Neo, 5 µL KOD FX Neo Buffer, and 2 µL dNTP (2 mM of each
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type). The PCR program consisted of 95◦C for 5 min, followed

by 25 cycles of 95◦C for 30 s, 50◦C for 30 s, and 72◦C for 40

s, with a final extension at 72◦C for 7 min. (ii) Second round

PCR: The first round PCR product was used as a template in

the second round PCR to add index labels to each sample. PCR

was performed in 20 µL reactions containing 5 µL of the first

PCR round product, 2.5 µL MPPI-a (2 µM), 2.5 µL MPPI-b (2

µM), and 10 µL 2 × Q5 HF MM. The PCR program consisted

of 98◦C for 30 s, followed by 10 cycles of 98◦C for 10 s, 65◦C
for 30 s, and 72◦C for 30 s, with a final extension at 72◦C for 5

min. (iii) Quantifying and sample mixing: The integrity of the

second round PCR product for each sample was tested using 1.8%

agarose gel electrophoresis (120 V, 40 min), and then quantitative

analysis was performed based on electrophoresis findings using

ImageJ software. The samples were mixed by equal mass based

on the quantification results. (iv) Purifying and recovering: The

mixed samples were purified using OMEGA DNA purification

columns. The fragments with target lengths were then cut and

recovered in a second round of 1.8% agarose gel electrophoresis

(120 V, 40 min).

Then, sequencing was performed on the Illumina Novaseq

6000 sequencing platform using a double-end sequencing strategy

(PE250, Biomarker Technologies Co, Ltd., Beijing, China)

according to standard protocols.

2.3. Preliminary analysis of microbial
diversity

Several steps were taken on the original sequence data to obtain

high-quality reads: (i) FLASH (Magoč and Salzberg, 2011) (version

1.2.11) was used to splice the original sequencing data and obtain

Raw Tags, with aminimum overlap length of 10 bp and amaximum

mismatch ratio set as 0.2; (ii) Trimmomatic (Bolger et al., 2014)

(version 0.33) was used to filter the spliced sequence and obtain

the Clean Tags: Raw Tags were checked sequentially using a 50

bp window, once the average quality value within the window was

<20, the subsequent bases would be truncated. Truncated Tags with

<75% length would be filtered; (iii) UCHIME (Edgar et al., 2011)

(version 8.1) was used to obtain Clean Reads by removing chimeras.

The threshold for confirming a chimera was set at 80% similarity

between the query sequence and parent sequences selected from the

reference database.

Two strategies were employed to achieve two types of microbial

information (i.e., the “feature” to be selected) based on these

filtered high-quality sequences: (i) The UPARSE algorithm was

used on USEARCH software version 10.0 (Edgar, 2013) to cluster

the sequences at a level of 97% similarity to obtain Operational

Taxonomic Unit (OTU); and (ii) the dada2 workflow (Callahan

et al., 2016) on QIIME2 platform (Bolyen et al., 2019) (2020.6)

was used to perform noise reduction and to obtain Amplicon

Sequence Variant (ASV, i.e., OTU with a level of 100% similarity).

The OTUs/ASVs with <0.005% of total reads were filtered out

(Bokulich et al., 2013). The SILVA database Release 138.1 (Quast

et al., 2012) was used as a reference for species annotation based

on ASV information, using a naive Bayesian classifier combined

with alignment. RDP Classifier version 2.2 (Wang et al., 2007)

was used as the annotating tool. The abundance information of

various species at different taxonomic levels was then summarized

using QIIME2.

The Chao 1, ACE, Shannon-wiener, and Simpson indices

were calculated using Mothur v.1.30 (Schloss et al., 2009)

for alpha diversity analysis for each sample. In addition,

principal coordinate analysis (PCoA) was performed using

the distance matrix of beta diversity parameters (such as

Bray-Curtis distance).

2.4. Feature selection to promote the
distinguishing ability of microbial model in
MZT identification

2.4.1. Division of data sets
There would be eight samples for each MZT pair, resulting in

C2
8 = 28 sample pairs. All the 280 pairs (28 sample pairs per

MZT pair × 10 MZT pairs) were divided into four groups based

on two dimensions: (i) the relationship between the individuals

from which the two samples were collected (samples from the

same individual were labeled as “Self,” and samples from different

individuals within an MZT pair were labeled as “MZT”); and (ii)

the sample collection interval (6 2 months was labeled as “short”,

or> 12 months was labeled as “long”). The sample pairs in the four

groups were randomly divided into training or test sets with an 8:2

ratio, where the test set is used only for the validation of the final

models. The sample amounts in each group are listed in Table 1.

2.4.2. Feature type and beta distance parameter
choice

As stated in Section 2.3, two types of features (i.e., microbial

sequencing information) would be used as the data basis for model

construction: OTUs or ASVs. Three types of beta diversity distances

were calculated based on these two types of features:

(i) Jaccard distance (JD), which only considers whether a

specific feature was detected in two samples. JD between two

samples, A and B, is denoted as JD (A,B) and calculated as shown in

Equation (1), if the symbol “|A∩B|” denoted the number of features

detected in both samples A and B, and “|A∪B|” represented the total
number of features detected in the two samples.

JD (A,B) = 1− |A ∩ B|
|A ∪ B| (1)

(ii) Bray-CurtisDistance (BC),which represents the difference

in absolute abundance information between two samples of the

TABLE 1 The division of data sets.

Relationship Interval Training set Test set

Self Short 48 12

Long 48 12

MZT Short 80 20

Long 48 12
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tested features, calculated as Equation (2), if symbols “ai” and “bi”

denote the absolute abundance of the ith feature in samples A and

B, respectively.

BC (A,B) =
∑

i|ai − bi|
∑

i

(

ai + bi
) (2)

(iii) Hellinger distance (HD), which calculates the difference

in relative abundance information between two samples of the

tested features, calculated as Equation (3), if “
∑

j aj” and “
∑

j bj”

denote the total abundance of all features considered in samples A

and B, respectively.

HD (A,B) = 1√
2

√

√

√

√

√

∑

i





√

ai
∑

j aj
−

√

bi
∑

j bj





2

(3)

In summary, six possible models could be constructed based

on data basis and distance choices for distinguishing the Self and

MZT pairs under each sampling interval. Therefore, a total of 12

models will be constructed. The distinguishing ability of the 12

choices would be measured based on all features detected. The

area under the receiver operating characteristic curve (AUC) would

be used in such measurements. The AUC parameter serves as a

commonly used metric for evaluating binary classifiers. For each

of the 12 models, the following steps can be taken to calculate

the AUC: Firstly, calculation results for all sample pairs are sorted

from smallest to largest and assigned rank numbers, during which

the average rank would be assigned for pairs with identical results.

Secondly, if the number of MZT pairs and Self pairs are indicated

as nM and nS, respectively, and the sum of ranks in MZT pairs is

represented with symbol “RM ,” the AUC can be obtained by using

the following equation:

AUC =
RM − nM(nM+1)

2

nM × nS
(4)

2.4.3. Feature selection based on genetic
algorithm

To construct more efficient discrimination models, GAs

were performed 12 times on MATLAB (R2021a update 4,

MathWorks, United States) to screen the high-value OTUs or

ASVs in the identification models. Since their introduction

in the 1970s, GAs have been widely used in feature selection.

The algorithm uses mathematical methods and computer

simulation operations to transform the process of solving

complex problems into processes similar to the chromosome

genes crossover and mutation in biological evolution. Then

it searches for the optimal solution by simulating natural

evolution processes.

The operational process of GA involves several fundamental

concepts that are presented in bold and italicized words: (i)

An individual presents a potential solution to the problem.

Each individual is a digital string of the same length as the

number of detected features in all samples. Each position on the

string is called a gene, one-to-one corresponding to the detected

features. Each gene has two possible states called alleles, 1 if the

corresponding feature is selected or 0 if not. (ii) A population

is a group of individuals. Besides the initial population [P(0)],

populations would be generated iteratively and denoted as P(x),

where “x” denote the iteration generation and x = 10,000 is

set as the first termination condition. (iii) The value of an

individual in MZT identification would be measured with the

“fitness function.” In the present study, the corresponding distance

parameter would be calculated for each pair in the training set with

the corresponding interval based on the features being selected

according to a specific individual (i.e., the corresponding allele

being 1); then AUC would be calculated with Equation (4) and

used as the fitness function. The second termination condition

would be AUC = 1, indicating that the two groups can be

completely separated.

The GA operation would be carried out in the following steps

for each of the 12 model construction processes:

(i) Initialization: Randomly generate 2,000 individuals to

form P(0). Calculate AUC for each individual; if the second

termination condition is fulfilled, output the optimal solution

directly; otherwise, enter the evolution process.

(ii) Evolution: Three steps would be taken to generate a new

population, P(x+1), from the existing one, P(x):

(a) Selection: Individuals with the lowest 10% AUC in P(x)

would be eliminated. According to their AUCs, 2,000 “fathers” and

2,000 “mothers” would be selected from the remaining 90% P(x)

individuals according to their AUC:

Pr(individual i is selected) = AUCi
∑

j∈the top 90% individuals

AUCj
(5)

(b) Crossover: Individuals in P(x+1) would inherit alleles

from their “parents,” alleles from both of which have the same

probability of being inherited for each gene.

(c) Mutation: A part of the alleles in the next generation would

be reversed between 0 and 1. In the present study, themutation rate,

i.e., the probability of such reversion occurring, was 1%.

(iii) Evaluation and iteration: Calculate AUC for each

individual of P(x+1). If any of the two termination conditions are

fulfilled, output the optimal solution and terminate the process;

otherwise, repeat the evolution process in step (ii).

After the 12 GA processes, select the two feature-distance

combinations with the best AUCs for each type of interval to build

the MZT identification model.

2.5. Introducing Bayes theory in the final
models

After feature selection, the specific distance between a sample

pair can be used to infer the relationship between the sourcing

individuals. However, in some cases, it may be necessary to answer

the question, “How confident are we in judging the relationship

between these two individuals.” The likelihood ratio calculation

could be helpful in answering the question.
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2.5.1. Basic theories
When only one individual of the MZT pairs is available as

the suspect for MZT identification, there are more than two

exclusive assumptions (Bozza et al., 2022), such as H1: the query

saliva trace originates from the suspect; or H2: the query saliva

trace originates from the suspect’s MZT sibling. The present study

aimed to estimate the probability of H1 being true, considering the

distance obtained by sequencing and calculating, i.e., Pr(H1|D = d)

where “d” stands for the specific distance value and “D = d” denote

the event that d is calculated between the two samples. According

to the Bayes Rules, such a probability can be calculated by Equation

(6):

Pr(H1|D = d) = Pr(H1)× Pr(D = d|H1)

Pr(D = d)
(6)

Where Pr(H1) denote the probability of H1 being true without

considering the microbial evidence, and Pr(D= d) denote the

probability of two individuals exhibiting corresponding distance.

Pr(D= d) is usually difficult to calculate accurately because there

may be infinite hypotheses, resulting in a high difficulty in

accurately calculating Pr(H1|D = d). However, calculating the ratio

of it to the probability of another hypothesis being true would be

much easier, such as:

Pr(H1|D = d)

Pr(H2|D = d)
= Pr(H1)

Pr(H2)
× Pr(D = d|H1)

Pr(D = d|H2)
(7)

Where the ratio Pr(H1)/Pr(H2) is known as the ratio of prior

probabilities, and if the probability of any hypothesis being true

is assumed to be equal, such a ratio should equal 1. Thus, if we

define a parameter likelihood ratio (LR or BF in some studies;

Bozza et al., 2022) as Equation (8), it can represent the degree to

which H1 is more likely to be true than H2. When considering

a determined value, the probability ratio should equal the ratio

between the probability density in the Self group and that in the

MZT group, labeled with f̂ :

LR = Pr(D = d|H1)

Pr(D = d|H2)
= f̂ (d|Self , short/long)

f̂ (d|MZT, short/long)
(8)

2.5.2. Model construction based on LR results
To obtain the two probabilities in Equation (8), the distribution

of the specific distance between Self or MZT sample pairs must

be estimated while considering the time interval. Gaussian Kernel

density estimation (KDE) was used as the estimation method.

Assume that n pairs of specific samples are tested, and the specific

distance between each pair is labeled as X1, X2, ..., and Xn, then the

probability density can be estimated by Equation (9):

f̂ (d) = 1

nh
√
2π

n
∑

i=1

[

e
− (d−Xi)

2

2h2

]

(9)

And the bandwidth h was set as Equation (10), where δ denotes

the standard deviation of all Xi.

h = 1.06δn−
1
5 (10)

Thus, the LR of each pair could be calculated by Equation (11)

LR =
nMhM

nS
∑

i=1

[

e
− (d−Si)

2

2h2S

]

nShS
nM
∑

j=1



e
− (d−Mj)

2

2h2M





(11)

Where nM or nS denotes the number of MZT or Self

pairs within a specific time interval, and hM or hS represents

the bandwidth of corresponding groups. Si denotes the specific

distance between the ith Self pair and Mj the distance between the

jthMZT pair.

After calculating LR for each of the 224 sample pairs, diagnostic

tests were performed between MZT and Self pairs at each time

interval. Two types of thresholds would be used in the final models:

(i) Tmax: the LR thresholds that may provide the best Youden index

[YI, which can be calculated with Equation (12), if Sen and Spe

denote sensitivity and specificity, respectively] in the training sets;

and (ii) LR = 1.

Sen = number of Self pairs being confirmed as Self pairs

nS

Spe = number of MZT pairs being confirmed as MZT pairs

nM















H⇒ YI = Sen+ Spe− 1

(12)

2.6. Validation of the model

Based on the two feature-distance combinations selected, LRs

would be calculated for each of the 56 sample pairs in the test

set, and diagnostic tests would be performed. The validation

parameter of the final models would be YI under the two types of

threshold sets.

3. Results

3.1. Sequencing results

Supplementary Table 1 contains basic information about the

10 MZT pairs: age, gender, and population. After sequencing,

6,134,347 pairs of reads were obtained, with 6,107,044 clean reads

remaining after splicing and filtering, as described in section 2.3.

At least 48,389 clean reads were obtained for each of the 80

samples, with the mean number of clean reads per sample being

76,338. After clustering at 97% similarity and filtering with a

threshold of 0.005% in total reads, 369 types of OTUs were detected

across all 80 samples. The number of OTUs obtained per sample

ranged from 141 to 332, averaging 230. As shown in Figure 1A,

OTUs obtained in samples collected at the first time point for

each participant would differ from the other three. Those differed

significantly between inner-individual samples could be “burdens”

on the identification model, implying the importance of feature

selection. A total of 1130 ASVs were obtained after noise reduction

using DADA2 and filtering with a 0.005% threshold in the 80
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FIGURE 1

The distribution of microbial species characteristics in each sample. The microbiological information of 80 samples (each column for a sample) is

represented at two levels: (A) Operational taxonomic unit (OTU); (B) Amplicon sequence variants (ASV). The numbers of OTUs or ASVs detected in

each sample are listed at the top of each column. A color gradient represents the percentages for each detected OTU/ASV in the corresponding

sample.

samples. Figure 1B indicates that the number of ASVs obtained per

sample ranged from 96 to 260, with an average of 181.

Taxonomic annotation was performed using the SILVA 138

database, as mentioned in Section 2.3. There were 13 phyla detected

in all 80 samples, with the top five (Firmicutes, Proteobacteria,

Bacteroidota, Actinobacteriota, and Fusobacteriota) accounting

for 97%. At the genus level, 131 genera were detected, with

Streptococcus and Neisseria accounting for about 21 and 13% of

the bacteria in saliva, respectively. The top five genera account

for more than half of all species. Figure 2 depicts the taxonomic

composition of all samples at the phylum and genus levels, and

Supplementary Figure 1 indicates the compositions in each sample.

Differences in taxonomic compositions can be found between both

Self sample pairs andMZT sample pairs, indicating that microbiota

information may have the potential to distinguish MZT. However,

feature selection would be required in the model construction.

Basic information of OTUs and ASVs applied in the model

construction is presented in Supplementary Table 2, including

taxonomic annotation, Reads in each sample and the status of

selection in the final model.

3.2. Preliminary analysis

3.2.1. Alpha diversity analysis
Based on ASV information, four alpha diversity indices were

calculated for each sample. After calculation, it was found that both

ACE and Chao 1 indices of any sample equaled the number of

ASV detected from the corresponding sample. For each individual,

the four samples collected at different time points can form

six comparisons; and for each type of comparison, paired t-test

or Wilcoxon sign rank-sum test was performed to assess the

difference between the distributions of the alpha indices between

the corresponding two time points, according to whether the

differences between all samples fit the normal distribution. As

shown in Figure 3 and Table 2, if the time interval was <2 months

within the same individuals, no significant difference could be

found regardless of which index was calculated. More significant

differences could be found between samples collected at the first

time point and the other three if Shannon and Simpson’s indices

were more calculated than the other two.

3.2.2. PCoA based on beta diversity analysis
The three types of beta diversity parameters mentioned in

Section 2.4.2 were used to perform principal coordinate analysis

as shown in Figure 4, indicating that the results were similar

to each other. The samples collected at the first time point

were significantly different from other samples, i.e., the difference

between the collection times point would overcome the difference

between MZT pairs.

3.3. Feature selection with GA processes

As mentioned in Section 2.4.1, the 80 samples could form

280 Self or MZT sample pairs and be divided into four groups

based on the relationship of the sourcing individuals and the

time interval. Each group was randomly divided into training

and test sets in an 8:2 ratio. A total of 12 GA processes were

performed based on different feature-distance combinations in the

training set, with the best AUC of each population generation

listed in Supplementary Figure 2. Except for two GAs that stopped

due to satisfying AUC = 1, the generational-best AUC of the

remaining 10 GAs fluctuated within a relatively flat range after

1,000-1,500 iterations. The final output result can be considered
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FIGURE 2

Species composition in all samples. (Inner) Pie chart of phylum composition of all samples: the top five phyla are arranged clockwise, with names

and proportions marked in corresponding positions. (Outer) A doughnut chart of genus composition in all samples, with the top 10 genera listed. All

genera belonging to the same phylum are grouped and labeled with a gradient of color for the corresponding phylum in the inner pie chart. The

names and proportions of each genus are marked in the corresponding positions, where serial numbers in parentheses indicate the proportion

rankings. Streptococcus and Neisseria are the most common genera in saliva and the top five genera accounting for more than half of all species.

close to the optimal solutions. Table 3 indicates the best AUCs for

each GA, each of which is better than the corresponding AUC

if all species detected were considered. Supplementary Figure 3

depicts the distance distributions based on the corresponding

selected species and the KDE results. If the time interval is short

and JD is used, the two groups could be completely separated,

regardless of the choice in OTUs or ASVs. However, the KDE

results indicate that if the final chosen combination of ASVs is used,

the gap between the two curves would be larger, implying a better

distinguishing ability. Meanwhile, when the time interval is long,

the ASV-JD combination can also provide the best AUC. Therefore,

ASV-JD combinations are selected for further model construction.

As mentioned in Section 3.1, the status of whether each ASV is

applied in the final model is annotated in Supplementary Table 2B.

3.4. Construction and validation of the final
models

In the present study, the training set comprised 224 sample

pairs. JD was calculated for each sample pair based on one of

the two ASV combinations, as selected in Section 3.3, according

to the time interval between the samples. Further, probability

density curves were obtained for the four groups by processing

the calculation results using KDE. These groups were segregated

based on the relationship and time interval between the samples.

Then, LR was computed for each of the 224 sample pairs and the

corresponding results are shown in Table 4 (the first 4 rows) and

Figures 5A, B. In the training set, the minimum LR of the Short-Self

group was 0.8152, which was slightly higher than the maximum LR
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FIGURE 3

Paired comparisons of microbial alpha diversity in samples collected at di�erent times. Four parameters were calculated to access microbial alpha

diversity within a single sample and compare them in di�erent time groups. (A) Chao 1 and ACE indices, measuring the species richness of a sample;

(B) the Shannon indices and (C) Simpson indices, considering community evenness. These alpha diversity parameters were calculated using ASV

sequence data of 80 samples from 20 individuals at four-time points (TP 1–4), with samples from TP 2/3/4 collected at least 1 year after TP 1. Dots

present the parameters of each sample, and dotted lines link samples of the same individual. Paired t-test or Wilcoxon sign rank-sum test was

performed for each of the six comparisons between the four groups, and P < 0.05 are listed in the figure.

of Short-MZT group (0.3638). Therefore, if the confirming Self pair

threshold is set between the two LR values (e.g., 0.4), the two groups

in the training set can be completely separated, i.e., YI = 1. If LR =

1 is set as the threshold, one in 48 Short-Self pairs will be identified

as an MZT pair, while no MZT pair will be mistakenly identified,

i.e., YI = 0.9792. Meanwhile, in the training set, the minimum LR

of the Long-Self group was 0.9553, and 3 Long-MZT pairs had LR

higher than that. The best YI was achieved when the threshold was

set between 1.2214 and 1.2548 when the Long-Self pair with the

minimum LR would be the only pair incorrectly identified, and YI

= 0.9792. If LR = 1 is set as the threshold, three Long-MZT pairs

and one Long-Self pair would be mistakenly identified, resulting in

YI= 0.9167.

Furthermore, JD was calculated similarly for each sample pair

in the test set, and then LR was calculated based on the above

mentioned probability density curves. The two types of threshold

sets were validated in the test set, as shown in Table 4 (the last four

rows) and Figures 5C, D (the two lower sub-figures). Comparing

to the training set, the model under short intervals could provide a

similar YI in the corresponding test set. In contrast, two types of YI

would drop sharply for identification between Long-Self and Long-

MZT groups, from∼0.9 in training set to 0.5 (with both sensitivity

and specificity being 0.75) in test set.

4. Discussion

In the present study, MZT identification models were built

using microbiota 16s rRNA V3–V4 region information from 80

saliva samples collected from 10 pairs of MZT individuals while

considering the time interval of sample collections. GAs were used

to select high-value species-distance combinations for suchmodels.

As a result, JD calculated from 516 selected ASVs was used to

construct a model that could completely separate MZT sample

pairs collected in a short time interval (62 months, i.e., Short-

MZT pairs) from Short-Self pairs in both the training and test sets.

The distinguishing power of such a model was improved when

compared to all 1,130 detected types of ASVswith the same distance

parameter. A similar improvement in the GA process could be

found for sample pairs with long time intervals (>1 year), and
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TABLE 2 Comparison between α diversity between inner-individual

samples.

Parameter Time points P1∗ P2∗∗ Note∗∗∗

ACE/Chao 1 TP 1 vs. TP 2 0.1412 0.1332 T

TP 1 vs. TP 3 0.8144 0.0675 T

TP 1 vs. TP 4 0.4232 0.0161 T

TP 2 vs. TP 3 0.7515 0.6714 T

TP 2 vs. TP 4 0.6478 0.2619 T

TP 3 vs. TP 4 0.0833 0.3042 T

Shannon TP 1 vs. TP 2 0.0001 0.0153 R

TP 1 vs. TP 3 0.0011 0.0014 R

TP 1 vs. TP 4 0.0003 0.0005 R

TP 2 vs. TP 3 0.0023 0.4221 R

TP 2 vs. TP 4 0.0880 0.2026 T

TP 3 vs. TP 4 0.8462 0.7192 T

Simpson TP 1 vs. TP 2 0.2056 0.0340 T

TP 1 vs. TP 3 0.1974 0.0064 T

TP 1 vs. TP 4 0.3124 0.0021 T

TP 2 vs. TP 3 0.0119 0.9854 R

TP 2 vs. TP 4 0.2653 0.2760 T

TP 3 vs. TP 4 0.5051 0.6319 T

∗P-value of Shapiro-wilk tests on the differences of specific parameters in samples from the

same individual.
∗∗P-value of paired t-test (if corresponding P1 > 0.05) or Wilcoxon sign rank-sum test (if

not) of each paired comparison, in which the significant differences (P2 < 0.05) are colored

red and underlined.
∗∗∗T, paired t-test; R, Wilcoxon sign rank-sum test.

510 ASVs were selected to construct a model that would make

correct decisions for 95 out of 96 pairs of the training set. However,

the accuracy of such a model would drop sharply in the test set,

where 6 of 24 pairs were misjudged, indicating the probability

of over-fitting.

It is imperative that applied biomarkers exhibit individual

specificity (i.e., distinction between different individual) to

distinguish between MZT pairs effectively. Microbiota information

is a more promising avenue for this purpose than the traditional

genomic biomarkers, such as short tandem repeats (STRs) or single

nucleotide polymorphisms (SNPs), which theoretically should be

identical betweenMZTs. The first phase of the HumanMicrobiome

Project (HMP) demonstrated that each collected sample contained

a unique set of microorganisms (Human Microbiome Project

Consortium, 2012), and multiple studies have highlighted the

occurrence of similar differences between MZTs (Bowyer et al.,

2022; Sukumar et al., 2023). The composition of an individual’s

microbiota undergoes a succession process throughout their

lifetime (Martino et al., 2022), which can be influenced by several

factors such as dietary habits, antibiotic treatments (Bokulich

et al., 2016), diseases, or stochastic factors (Turnbaugh et al.,

2010). While these factors shape the individual specificity of

microbiota communities, they also continuously affect the stability

of the communities. And another important requirement of the

MZT distinguishing biomarkers is inner-individual stability, which

ensures that the difference between the corresponding biomarkers

from inter-individual samples is highly likely to exceed the

difference between inner-individual samples. The sensitivity of

different microorganisms to the above-mentioned factors should

differ; the more sensitive species would significantly affect the

inner-individual stability and thus “drag down” the application

value of theMZT identificationmodels. This could partially explain

the improved performance of the model after the feature selection

process, as represented by AUC (as illustrated in Table 3).

Based on ASV data, four types of alpha diversity parameters

were calculated for each of the 80 samples. ACE and Chao 1

estimators measure species richness among these parameters, while

Shannon and Simpson’s indices consider community evenness.

Analysis of Figure 3 reveals no significant differences in inner-

individual samples collected at TP 2–4. Meanwhile, significant

differences were identified between these samples and those

collected at TP 1 when Shannon and Simpson’s indices were used.

This suggests that microbiota composition can be stable over a

relatively short period of time. In contrast, calculating the ACE

or Chao 1 estimator only revealed a significant difference between

samples with the longest time intervals (14 months between TP

1 and TP 4). This indicates that the inner-individual stability of

microbial species richness is superior to the stability considering

community composition. This finding may help to explain why

subsequent model constructions based on JD (which also considers

only species richness) performed better under the same conditions

than models based on the other two types of distances (which

consider the community composition).

The calculated ACE and Chao 1 indices for each sample equaled

the detected ASV of the corresponding sample. The reason would

be that after being confirmed as ASVs, sequences were filtered with

a 0.005% threshold, making the minimum reads of the final used

ASVs > 48,389 × 0.005% = 2.41945. Consequently, parameters

“F1” and “F2” used in the calculation of ACE and Chao 1 indices

were set to zero for each sample, and the two indices equaled the

observed ASV number, as shown in Equation (13).







ACE = Sabund + Srare
1− F1

CACE

+ F1
CACE

γ 2
ACE = Sabund + Srare = Sobs

Chao 1 = Sobs + F1(F1−1)
2(F2+1) = Sobs

(13)

Where Sobs, Sabund, and Srare denote the total number of

observed ASVs, the number of ASVs with large reads, and the

number of ASVs with small reads; F1 and F2 represent the number

of ASVs with reads 1 and 2, respectively. CACE and γ 2
ACE can be

calculated with several additional steps, but their values do not

affect the final result when F1 = 0.

Based on the data presented in Supplementary Figure 3, it

appears that distances exhibited a unimodal distribution across all

24 groups, accounting for three types of distances, two types of

time intervals, two types of databases, and two types of sourcing

individuals’ relationships. Therefore, the conversion of LRs based

on the aforementioned distributions results in a rough negative

correlation with distance results. Consequently, there was no

significant change in the numerical ranking of calculation results

between samples, indicating that adding LR did not improve

the distinguishing capability of the specific model in this study.

Nevertheless, LR can be an effective tool for evaluating evidence
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FIGURE 4

Results of principal coordinate analysis (PCoA). PCoA was performed using three types of beta density parameters: (i) Dots: Jaccard distance; (ii)

Triangles: Bray-Curitis distance; (iii) Rhombus: Hellinger distance. Each point represents a sample, which is colored according to the time point of

sample collection. Dotted lines connect samples collected from an MZT pair at the same time.

TABLE 3 Best AUC achieved by 12 GA processes.

Time interval Species-level Distance AUC_ALL∗ Best AUC∗∗ N∗∗∗

Short OTUs Jaccard 0.6730 1 113

Bray-Curtis 0.7299 0.8977 176

Hellinger 0.7669 0.9560 134

ASVs Jaccard 0.8964 1 516

Bray-Curtis 0.8448 0.9820 514

Hellinger 0.8828 0.9880 514

Long OTUs Jaccard 0.5855 0.9123 111

Bray-Curtis 0.6263 0.8320 141

Hellinger 0.6385 0.8533 137

ASVs Jaccard 0.6795 0.9985 510

Bray-Curtis 0.6102 0.9201 517

Hellinger 0.6302 0.9536 494

∗AUC in the training set if all detected features were involved in the model.
∗∗Best AUC achieved after GA processes, the largest of which under each time interval are labeled red and underlined.
∗∗∗Number of features selected in the final model.

credibility with respect to specific distance calculations. It enables

a numerical representation of our confidence level in making a

particular decision when faced with definite distance outcomes in

real-world situations.

Limitations can be found in the present study. For example,

unrelated sample pairs from different MZT pairs were not

considered during the model construction process in this study.

Fresh saliva samples were used, from which the host’s DNA
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TABLE 4 Model evaluation results.

Data set Time interval Threshold Sen Spe YI∗ Misjudged pairs

Training set Short Tmax = 0.4∗∗ 1 1 1 None

1 0.9792 1 0.9792 1 Self

Long Tmax = 1.25 0.9792 1 0.9792 1 Self

1 0.9792 0.9375 0.9167 1 Self and 3 MZT

Test set Short Tmax = 0.4 1 1 1 None

1 0.9167 1 0.9167 1 Self

Long Tmax = 1.25 0.75 0.75 0.5 3 Self and 3 MZT

1 0.75 0.75 0.5 3 Self and 3 MZT

∗Sen, Sensitivity; Spe, Specificity; YI, Youden index; The calculation methods of these three parameters are presented in Equation (12).
∗∗ Tmax : the LR thresholds could provide the best YI in the training sets.

FIGURE 5

The LR distribution based on the final selected combination of ASVs. LR was calculated for each of the 280 sample pairs, which can be divided into

eight groups based on the following three dimensions: (i) time interval (Long or Short); (ii) sourcing individual relationship (Self or MZT pair); (iii)

training set or test set. The four sub-figures contain the LR distribution of Self (blue) or MZT (red) pairs in (A) Short+training set; (B) Long+training set;

(C) Short+test set; (D) Long+test set. The red and black dotted lines denote Tmax and LR = 1, respectively.

should be easily obtained. Therefore, individual identification

issues other than MZT cases can be solved using traditional

host-genome-level biomarkers like STRs or SNPs. If it is difficult

to obtain the host’s DNA, the sample is likely collected from

another part of the body or is not fresh. The reference significance

of results from fresh saliva samples to such cases would be

reduced. This also highlights a problem that hinders using

microorganisms in individual identification. The composition

of microbial communities is greatly affected by the source

body sites (Ward et al., 2018) and the time of isolation

(Liu et al., 2022).

Another challenge to applying microbial 16s rRNA data in the

forensic field is the lack of a standardized method of sequencing

nomenclature, i.e., specific generic names for detected sequences,

similar to the RefSNP (rs) system of SNP markers (Sherry et al.,

2001). Because of this, the ASVs or OTUs in all samples were

numbered sequentially, e.g., ASV1, and ASV2, which is obviously

of a limited reference value. Such a problem would be covered if

the model used all of the sequencing information, but it would

be widened when feature selection is used. Before establishing

the standardized method, researchers must construct their own

microbial MZT identification models based on their sequencing
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data, instead of applying existing models, such as the ones we

constructed in the present study.

Moreover, the present study used a relatively small sample

size, which limited the consideration of various factors that could

affect the model. For example, recent studies have demonstrated

that co-habitation may be the primary factor in bacterial sharing

between MZT pairs due to person-to-person oral microbiome

transmission between co-living family members (Valles-Colomer

et al., 2023). Therefore, there would be an increase in microbiota

similarity between MZT pairs with increased co-habitation

time, and a decrease after they live apart (Stahringer et al.,

2012; Valles-Colomer et al., 2023). The number of co-living

and separated pairs among the 10 MZT pairs investigated in

the present study were four and six, respectively, which are

insufficient for statistical analysis when considering time intervals

and dividing data sets. Similar insufficiency would occur when

considering gender, age, diseases, and antibiotics applications.

Therefore, large-scale research and experimentation considering

co-living factors may provide a more accurate assessment of

the potential of microbiota information in resolving the MZT

identification problem.

In summary, the investigation of the microbial solution

to the MZT identification problem is still in its early stages.

And thus, rather than recommending a preconceived model,

the primary objective of the current research is to underscore

the potential utility of feature selection in facilitating the

process of model construction when identifying MZT pairs with

microbial information.

5. Conclusions

The present study used 80 saliva samples from 10 pairs of

MZT to develop models for identifying MZT based on their

microbiota information. The feature selection method was used

to build models that effectively distinguish MZT from Self pairs.

When the sampling interval was <2 months, the final model

could completely separate the two types of sample pairs. This

highlights the potential value of microbiota information as a

biomarker in MZT identification. Moreover, the feature selection

process demonstrated its ability to refine models and filter out

irrelevant data in this field, resulting in more accurate and

reliable models.
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