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Introduction

Central venous catheters (CVCs) play a clinically important role in various treatments,

including venous pressure monitoring, the infusion of drugs, such as anti-cancer

chemotherapy and antibiotics, parenteral nutrition, and blood transfusion (Saugel et al.,

2017). However, compared with peripheral venous catheters, patients with indwelling

CVCs are at increased risk of thrombosis, embolism, and infection (Ball and Singh,

2023). Catheter-related infections (CRIs) are thought to be associated with the formation

of bacterial and fungal colonies on the catheter (Hanna et al., 2004). Microorganisms

adhere to device surfaces, produce an extracellular polymeric matrix, and form biofilms.

The biofilm-forming microorganisms then become a source of medical device-associated

infection (Donlan, 2002). CRI is defined as a positive catheter tip culture and systemic

inflammatory findings, while catheter-related bloodstream infection (CRBSI) is defined

as CRI-criteria plus detection of the same organisms as in the catheter tip culture in

peripheral blood cultures (Garner et al., 1988; Rockholt et al., 2023). CRBSIs have a reported

mortality rate of 12%−40% depending on a variety of factors, such as comorbidities, the

type of CVC used, and the type of pathogen, and are associated with longer hospital

stays and increased medical costs (O’Grady et al., 2011; Böll et al., 2021; Ball and Singh,

2023).

Several preventive measures exist for CRIs, such as thorough hand hygiene,

sterilization of the CVC site, and avoidance of catheter insertion at the

femoral site. It is widely accepted that CVCs, which are foreign substances

that can be a source of infection, should be removed as soon as possible.

However, in clinical practice, situations arise in which long-term indwelling

is required. Therefore, in such special situations, the Centers for Disease

Control and Prevention (CDC) recommends the use of antimicrobial agents

or antiseptic-impregnated catheters with comprehensive and adequate infection

control measures, as shown Supplementary Figure S1 (O’Grady et al., 2011).

Antimicrobial-impregnated catheters are a promising option for cases that

require long-term CVC use (Böll et al., 2021). The purpose of this article was to
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summarize previous attempts to use antimicrobial/antiseptic

impregnated catheters and provide a new perspective.

Antimicrobial/antiseptic-impregnated
catheters

The control of CRI remains a major challenge to overcome;

hence, a multifaceted attempt should be conducted. Certainly,

antimicrobial-impregnated catheters have achieved some success

to date, but no established clinical efficacy has been achieved

with antiseptic substances (e.g., silver), which have been studied

for many years (Viola et al., 2017). One such catheter is the

chlorhexidine/silver sulfadiazine catheter, but most studies have

found that its effect on reducing CRBSIs is not significant (Viola

et al., 2017). Minocycline/rifampicin and miconazole/rifampicin

catheters have also been shown to reduce the incidence of

CRBSIs in several studies, where the incidence of antibiotic

resistance, which remains a concern, was low (Viola et al.,

2017; Reitzel et al., 2020; Böll et al., 2021). In clinical trials

of patients with cancer, minocycline/rifampicin-impregnated

catheters have also been shown to reduce the incidence of

CRBSIs when used for longer than 2 months (Hanna et al.,

2004). The combination of chlorhexidine with minocycline and

rifampicin on catheters has been reported to have enhanced

antimicrobial activity (Raad et al., 2012). Chlorhexidine acts

on cell membranes, minocycline on protein synthesis, and

rifampin on RNA synthesis. Thus, the mechanism of action

of the combination of these three drugs may be additive.

However, the confirmed enhancement of activity is only

the result of in vitro studies, and the possibility of clinical

application needs to be confirmed in clinical trials (Viola et al.,

2017). As discussed above, a combined approach with different

mechanisms of action may enhance antimicrobial activity and

broaden the spectrum. Therefore, new approaches that are

not antimicrobial agents or antiseptic substances may produce

additional benefits.

Hypothesis

From a different perspective, attempts have been made to

inhibit iron, which is essential for the growth and proliferation of

pathogenic microorganisms, as a strategy to increase antimicrobial

activity (Schwarz et al., 2019; Scott et al., 2020). Specifically,

the strategy is to use iron chelators in combination with

antibacterial and antifungal agents. We hypothesize that the

impregnation of catheters with antimicrobial agents and iron

chelators would increase their antimicrobial and anti-biofilm

activity and inhibit microbial colony and biofilm formation,

resulting in reduced CRI incidence and longer catheter use,

as shown in Supplementary Figure S2. The surface and lumen

of the catheter are impregnated with antimicrobial and iron-

chelating agents, which are assumed to inhibit bacterial and

fungal colony and biofilm formation by exerting antimicrobial and

iron-chelating activities on the bacteria and fungi that attach to

the surface.

Support for the hypothesis

Antimicrobial activity of iron chelators

Because of its redox potential, iron is involved in many

biochemical reactions. Iron is an essential element for all living

organisms, including bacterial pathogens (Dev and Babitt, 2017). It

also plays an important role as a cofactor in various intracellular

pathways, such as DNA synthesis and repair, electron transfer,

oxygen transport, and immune response (Scott et al., 2020). Iron

levels in the human body are strictly regulated to protect against

the toxic effects of free iron, which catalyzes the generation of

reactive oxygen species (ROS), and the utilization of iron by

invading microorganisms (Dixon and Stockwell, 2014). Through

nutritional immunity, humans inhibit microbial growth by starving

microorganisms of the metal ions they need (Hood and Skaar,

2012; Palmer and Skaar, 2016). Bacteria and fungi bind iron

using high-affinity chelating compounds, called siderophores, as a

strategy to acquire iron. Numerous types of siderophores have been

reported. Siderophores are categorized into three main structural

families—carboxylates, catecholates, and hydroxamates—with the

catecholate siderophore, enterobactin, showing the highest affinity

for iron, even higher than that for the host iron-binding protein,

transferrin (Ellermann and Arthur, 2017). Iron chelators may

be useful in the treatment of infectious diseases by limiting the

availability of iron, thereby inhibiting the production of ROS,

and by inhibiting microbial growth due to nutrient restriction

(Lehmann et al., 2021; Paterson et al., 2022).

To date, the combinations of vancomycin and deferasirox

against methicillin-resistant Staphylococcus aureus (Luo et al.,

2014), doxycycline, and the iron chelator CP762 against

Pseudomonas aeruginosa (Faure et al., 2021), and the triple

combination of doxycycline, deferasirox, and thiostrepton (an

antibiotic against gram-positive bacteria) against P. aeruginosa

and Acinetobacter baumannii (Chan et al., 2020) have shown

promising effects both in vitro and in animal models. For

fungi, animal model experiments of combination therapy with

liposomal amphotericin B (L-AMB), micafungin, and deferasirox

against Aspergillus and Mucor (Ibrahim et al., 2011), animal

experiments of combination therapy with L-AMB and deferasirox

against Aspergillus fumigatus (Ibrahim et al., 2010), and in vitro

experiments of combination therapy with AMB and deferoxamine

against Cryptococcus spp. (Chayakulkeeree et al., 2020) have

indicated that these combinations are useful. Despite promising

experimental data for the combination of deferasirox and L-AMB

for mucormycosis (Ibrahim et al., 2007, 2011; Schwarz et al.,

2019), unexpectedly, a higher mortality rate at 90 days was seen

with the combination than with L-AMB alone in a randomized

controlled trial (Spellberg et al., 2012). Patients were enrolled at

multiple centers with heterogeneous patient populations, resulting

in an imbalance in underlying diseases and risk factors, with more

patients in the deferasirox group having hematologic malignancies,

neutropenia, and pulmonary infections. This imbalance in the

patient’s background may have influenced the patient’s prognosis

(Spellberg et al., 2012). Therefore, clinical trials are inconclusive

regarding the efficacy of iron chelation assisted therapy.

Nevertheless, iron-chelation therapy still has potential for

clinical applications. Different types of iron-chelating agents
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FIGURE 1

Mechanisms of antimicrobial and anti-biofilm activity of iron chelators and enhancement of antimicrobial activity when used in combination with

antimicrobial agents. (A) Iron chelators exert antimicrobial and anti-biofilm activity by depriving pathogenic microorganisms of iron, which is

necessary for their growth and proliferation and for biofilm formation. (B) When used in combination with an antimicrobial agent (tetracycline),

tetracycline acts on the bacterial 30S ribosome via magnesium, but iron competes with magnesium, so iron chelation reduces the amount of iron

bound to tetracycline, thereby promoting binding to magnesium, resulting in enhanced antimicrobial activity. Figures created with

BioRender (https://biorender.com/).

have been shown to have different antimicrobial activities. Of

those tested, a water-soluble agent containing iron-selective

copolymers (denying iron to bacterial infections; DIBI) was

the most effective (Iron Binding Polymers | Fe Pharma, 2021;

Lehmann et al., 2021). Recent studies have reported the promising

finding that a combination of DIBI and antimicrobials may

overcome drug-resistant bacteria and fungi. DIBI in combination

with ciprofloxacin has been shown to be successful in treating

ciprofloxacin-resistant A. baumannii-infected mice (Parquet et al.,

2019). Moreover, the combination of DIBI and fluconazole was

found to inhibit the growth of fluconazole-resistant Candida

albicans in an in vitro study (Savage et al., 2018). These findings

suggest that the appropriate selection of a type of iron chelator

and its combination with an antimicrobial agent may be useful for

dealing with a broad spectrum of infectious pathogens, and may

overcome antibiotic resistance mechanisms.

Anti-biofilm activity of iron chelators

One notable problem related to CVC implantation is biofilm

formation. Here, we further explain the relationship between iron

chelators and biofilm formation. It has already beenmentioned that

iron is essential for bacterial and fungal growth and proliferation,

but it is also required for biofilm formation (Nazik et al., 2015;

Coraça-Huber et al., 2018; Firoz et al., 2021). Microorganisms

produce biofilms that protect them against antimicrobials, making

them drug resistant (Høiby et al., 2010; Singh et al., 2010; Brauner

et al., 2016; Thi et al., 2020). Hence, methods are needed to inhibit

the formation of biofilms and attack the microorganisms that have

formed within them. Iron-chelation therapy has been tested in P.

aeruginosa to explore adjunctive therapy for chronic P. aeruginosa

infection. Deferiprone, a synthetic iron chelator, has been shown

to inhibit biofilm formation (Houshmandyar et al., 2021).

Furthermore, the combination of iron chelators and antimicrobial

agents has shown enhanced biofilm inhibitory activity; examples

include combination therapy with the iron (VI) chelator N, N’-

bis (2-hydroxybenzyl) ethylenediamine-N, N’-diacetic acid and

colistin in an in vitro experiment (Mettrick et al., 2020), and with

the iron chelators deferoxamine or deferasirox and tobramycin

(Moreau-Marquis et al., 2009). Lactoferrin, a component of

human secretions, also has iron-chelating activity (Singh, 2004),

and ALX-109, an investigational agent containing lactoferrin

and hypothiocyanite (a bactericidal agent), has shown activity

against P. aeruginosa biofilms in combination with tobramycin

and aztreonam (Moreau-Marquis et al., 2015). Deferasirox has

shown biofilm inhibitory effects on the periodontal bacterium

Prevotella intermedia (Moon et al., 2013), and lactoferrin treatment

has significantly reduced proinflammatory cytokines production

by gingival fibroblasts infected with P. intermedia. Moreover,

an observational clinical trial of patients with periodontitis

showed that treatment with lactoferrin reduced proinflammatory

cytokines such as interleukin 6, edema, bleeding, pocket depth, and

gingival and plaque indices in the crevicular fluid and improved
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TABLE 1 Previous studies of antibacterial and anti-biofilm activity with antibacterial/antifungal agents and iron chelators.

References Type of
study

Iron
chelators

Adjuvant
treatment

Pathogen Relevant results/conclusion

Antibacterial activity

Luo et al. (2014) In vitro and in

vivo study

Deferasirox Vancomycin MRSA; VISA Deferasirox enhanced vancomycin-mediated killing of

MRSA and VISA in vitro (time-kill assays) and in vivo (S.

aureus bacteremic mice) by a mechanism that appears to

enhance vancomycin binding to the staphylococcal surface.

Faure et al. (2021) In vitro study CP762 Doxycycline;

Minocycline;

Oxytetracycline;

Tetracycline;

Tigecycline;

Tobramycin

P. aeruginosa Synergistic effects were observed between CP762 and all

tetracyclines except minocycline against P. aeruginosa

strains, while tobramycin showed no synergistic effects. In

addition, the combination of doxycycline and CP762

significantly reduced cell viability in established biofilms.

Chan et al. (2020) In vitro study Deferasirox Thiostrepton;

Doxycycline

P. aeruginosa; A.

baumannii

Fourteen compounds and one iron analog reported to have

iron chelating activity were selected and tested for synergism

with thiostrepton. The triple combination of thiostrepton,

deferasirox, and doxycycline was the most effective against

P. aeruginosa and A. baumannii isolates.

Ibrahim et al.

(2010)

In vitro and in

vivo study

Deferasirox L-AMB A. fumigatus Deferasirox demonstrated in vitro fungicidal activity against

A. fumigatus and prolonged survival in mice with invasive

pulmonary aspergillosis. Deferasirox plus L-AMB

synergistically improved survival and reduced pulmonary

fungal burden compared to either agent alone.

Ibrahim et al.

(2011)

In vivo study Deferasirox L-AMB;

Micafungin

R. oryzae; A.

fumigatus

Triple therapy with L-AMB, micafungin, and deferasirox

improved survival and reduced tissue fungal burden in mice

with mucormycosis, but to a lesser extent in aspergillosis.

Chayakulkeeree

et al. (2020)

In vitro study Deferoxamine;

Deferasirox

AMB C. neoformans; C.

gattii

C. neoformans showed significant growth retardation when

cultured in combination with AMB and deferoxamine, while

C. gattii showed less growth retardation with deferoxamine

plus AMB; no growth retardation of cryptococci was

observed when deferasirox and AMB were used together.

Ibrahim et al.

(2007)

In vitro and in

vivo study

Deferasirox L-AMB R. oryzae Deferasirox effectively chelates iron from R. oryzae and

demonstrated in vitro killing activity against clinical isolates

of Mucorales at concentrations well below clinically

achievable serum levels. When used in combination with

L-AMB, deferasirox synergistically improved survival and

reduced tissue fungal burden.

Spellberg et al.

(2012)

Randomized

controlled trial

Deferasirox L-AMB Rhizopus spp.; R.

oryzae; R.

microsporus;

Cunninghamella

spp.

Twenty patients with proven or probable mucormycosis

were randomized to treatment with L-AMB+ deferasirox or

L-AMB+ placebo. Death at 30 days (45% vs. 11%, P = 0.1)

and 90 days (82% vs. 22%, P = 0.01) were more frequent in

the deferasirox group; global success (survival, clinical

stability, radiographic improvement) at 30 and 90 days was

18% vs. 67% (P = 0.06) and 18% vs. 56% (P = 0.2).

Parquet et al.

(2019)

In vitro and in

vivo study

DIBI Ciprofloxacin A. baumannii DIBI inhibited clinical A. baumanii isolates at MICs below

those of typical antibiotics; low-dose nasal administration of

DIBI after intranasal challenge with ciprofloxacin-resistant

A. baumanii LAC-4 significantly reduced the bacterial

burden in mice and DIBI also inhibited the spread of

infection to the spleen. Given the ciprofloxacin resistance of

LAC-4, treatment of infected mice with ciprofloxacin alone

was ineffective, but treatment with DIBI greatly enhanced

the therapeutic effect.

Savage et al.

(2018)

In vitro and in

vivo study

DIBI Fluconazole C. albicans DIBI inhibited the growth of C. albicans in vitro at relatively

low concentrations, and this inhibition was reversed by the

addition of iron; the combination of DIBI and various azoles

showed stronger growth inhibition than azoles alone, as

shown in fluconazole-resistant C. albicans. In an

experimental model of C. albicans vaginitis, DIBI in

combination with fluconazole significantly improved

clearance of infection in mice inoculated with

fluconazole-sensitive strains.

(Continued)
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TABLE 1 (Continued)

References Type of
study

Iron
chelators

Adjuvant
treatment

Pathogen Relevant results/conclusion

Anti-biofilm activity

Houshmandyar

et al. (2021)

In vitro study Deferiprone P. aeruginosa Deferiprone showed moderate activity against P. aeruginosa

cells grown on plankton and was effective in inhibiting

biofilm formation.

Mettrick et al.

(2020)

In vitro study HBED Colistin P. aeruginosa HBED, a synthetic hexadentate iron chelator, inhibited the

growth and biofilm formation of all clinical strains of P.

aeruginosa under aerobic and anaerobic conditions; HBED

in combination with colistin significantly enhanced the

microcolony killing effect of colistin, resulting in almost

complete biofilm removal.

Moreau-Marquis

et al. (2009)

In vitro study Deferoxamine;

Deferasirox

Tobramycin P. aeruginosa Tobramycin in combination with deferoxamine or

deferasirox reduced the P. aeruginosa biomass of established

biofilms by approximately 90% and reduced viable bacteria

by 7 log units; neither tobramycin, deferoxamine, nor

deferasirox alone had such a significant effect. The

combination of tobramycin and iron chelators also

prevented biofilm formation on human respiratory cells.

Moreau-Marquis

et al. (2015)

In vitro study ALX-109

[combination of

an investigational

drug containing

lactoferrin and

hypothiocyanite

(a bactericidal

agent)]

Tobramycin;

Aztreonam

P. aeruginosa ALX-109 inhibited P. aeruginosa biofilm formation but did

not affect established biofilms; ALX-109 enhanced the ability

of tobramycin and aztreonam to inhibit P. aeruginosa

biofilm formation and reduce established biofilms.

Moon et al.

(2013)

In vitro study Deferasirox P. intermedia Deferasirox exhibited potent antibacterial activity against P.

intermedia, partially inhibited bacterial growth, and

significantly prolonged bacterial doubling time. Deferasirox

also significantly reduced the biofilm-forming activity and

biofilm formation of P. intermedia. In the ATP

bioluminescence assay, Deferasirox significantly reduced

biofilm bioactivity.

Lin et al. (2012) In vitro study PGG S. aureus PGG may be a candidate for the development of anti-biofilm

products for clinical use due to its anti-biofilm activity and

low cytotoxicity. Impairment of S. aureus biofilm formation

by PGG was shown to be due to iron chelation. Iron

supplementation complemented the effect of PGG and

restored biofilm formation.

Richter et al.

(2017)

In vitro and in

vivo study

Deferiprone Gentamicin;

Ciprofloxacin

S. aureus The combination of deferiprone-GaPP significantly reduced

bacterial load and increased survival of S. aureus small

colony variant-infected C. elegans in an artificial wound

model. When deferiprone-GaPP was combined with

gentamicin or ciprofloxacin in a colony biofilm model,

deferiprone-GaPP was able to enhance the activity of

gentamicin or ciprofloxacin.

Coraça-Huber

et al. (2018)

In vitro study Deferiprone Clindamycin;

Gentamycin;

Vancomycin

Coagulase-

negative

staphylococci

Deferiprone alone had only a moderate inhibitory effect on

biofilm growth, but the combination of deferiprone and the

respective antibiotics significantly reduced bacterial counts

by 2–3 logs compared to the effect of the antibiotic alone. In

addition, the combination of deferiprone and antibiotics

showed severe to complete destruction of the biofilm, which

was not seen when antibiotics were administered alone.

Nazik et al. (2015) In vitro study Deferoxamine;

Deferiprone

A. fumigatus Deferoxamine concentrations below 1,250µM had no effect,

while 2,500µM increased biofilm formation or preform

biofilms of A. fumigatus. 156 to 2,500µM deferiprone

inhibited biofilm formation in a dose-response manner. In

preform biofilms, deferiprone above 625 to 1,250µM

showed an inhibitory effect compared to controls. The

results of deferoxamine-induced enhancement of biofilm

formation were attributed to A. fumigatus acquiring many

iron chelator complexes through a siderophore-like

mechanism.

A. baumannii, Acinetobacter baumannii; A. fumigatus, Aspergillus fumigatus; DIBI, denying iron to bacterial infections; GaPP, gallium protoporphyrin; HBED, N, N’-bis (2-hydroxybenzyl)

ethylenediamine-N, N’-diacetic acid; C. albicans, Candida albicans; C. elegans, Caenorhabditis elegans; C. gattii, Cryptococcus gattii; C. neoformans, Cryptococcus neoformans; L-AMB,

liposomal amphotericin B; MRSA, methicillin-resistant Staphylococcus aureus; P. aeruginosa, Pseudomonas aeruginosa; PGG, 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose; P. intermedia,

Prevotella intermedia; R. microsporus, Rhizopus microsporus; R. oryzae, Rhizopus oryzae; S. aureus, Staphylococcus aureus; VISA, vancomycin intermediate Staphylococcus aureus.
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clinical adhesion levels (Berlutti et al., 2011). Several studies

were conducted on Staphylococcus spp. 1,2,3,4,6-Penta-O-galloyl-

β-D-glucopyranose, a plant-derived ingredient with iron-chelating

properties commonly used in Chinese medicine, has shown biofilm

inhibitory effects on S. aureus (Lin et al., 2012). The combination

of deferiprone and the heme analog gallium protoporphyrin

in combination with gentamicin or ciprofloxacin increased

the biofilm inhibitory effects in an S. aureus colony biofilm

model (Richter et al., 2017). Additionally, for coagulase-negative

staphylococci, deferiprone showed enhanced antibacterial activity

in combination with clindamycin, gentamicin, or vancomycin by

disrupting biofilms (Coraça-Huber et al., 2018). Regarding fungi,

deferiprone inhibited biofilm formation by A. fumigatus, whereas

deferoxamine had the opposite effect, and promoted biofilm

formation. The result of the promotion of biofilm formation by

deferoxamine may be due to A. fumigatus acquiring more iron

chelator complexes through a siderophore-like mechanism (Nazik

et al., 2015). In addition, deferoxamine is used by zygomycetes

and A. fumigatus as a siderophore to promote bacterial growth

(Boelaert et al., 1993). Thus, depending on the combination of

the type of microorganism and iron chelator, the microorganism

has a tolerance mechanism and takes advantage of iron starvation.

However, iron chelators have a different point of action than

do antibacterial and antifungal agents, and thus, may carry less

risk of inducing drug resistance in microorganisms. This is a

major advantage of combining drugs with different mechanisms

of action.

Mechanisms of antimicrobial and
anti-biofilm activity of iron chelators
and antimicrobial-impregnated
catheters

The iron chelator CP762 in combination with tetracyclines

against P. aeruginosa showed synergistic effects. Among the

tetracyclines, doxycycline showed particularly high synergism

(Faure et al., 2021). CP762 is a hexadentate hydroxypyridinone

iron chelator that has high affinity and selectivity for iron

and does not utilize many of the bacterial iron siderophore

receptors, making it unlikely to donate iron to pathogenic microbes

(Piyamongkol et al., 2005; Zhou et al., 2011). Tetracycline binds

to the 30S bacterial ribosome via a magnesium bridge (White

and Cantor, 1971; Pioletti et al., 2001), but iron can inhibit

this mechanism by binding to the magnesium binding site

(Faure et al., 2021). Sequestration of iron by iron chelators may

minimize iron binding to tetracycline, which would facilitate its

complexation with low-affinity ions such as magnesium, which

is necessary for binding to the bacterial ribosome (Faure et al.,

2021).

Conclusion

Most iron chelators examined in the past have been effective

in inhibiting biofilm formation by bacteria and fungi, and their

antimicrobial activity has been shown to be enhanced when

used in combination with antimicrobial agents (Figure 1, Table 1).

Therefore, we believe that the inclusion of iron chelators in

antimicrobial- or antifungal-impregnated catheters could help

overcome microbial resistance mechanisms and create CVCs with

a lower risk of CRIs. Further research on iron chelators and

antimicrobial-impregnated catheters, and confirmation of their

effects on reducing the incidence of CRIs in clinical trials,

are warranted.
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