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Introduction: In metabolic engineering and synthetic biology applications,

promoters with appropriate strengths are critical. However, it is time-consuming

and laborious to annotate promoter strength by experiments. Nowadays,

constructing mutation-based synthetic promoter libraries that span multiple

orders of magnitude of promoter strength is receiving increasing attention. A

number of machine learning (ML) methods are applied to synthetic promoter

strength prediction, but existing models are limited by the excessive proximity

between synthetic promoters.

Methods: In order to enhance ML models to better predict the synthetic

promoter strength, we propose EVMP(Extended Vision Mutant Priority), a universal

framework which utilize mutation informationmore e�ectively. In EVMP, synthetic

promoters are equivalently transformed into base promoter and corresponding k-

mer mutations, which are input into BaseEncoder and VarEncoder, respectively.

EVMP also provides optional data augmentation, which generates multiple copies

of the data by selecting di�erent base promoters for the same synthetic promoter.

Results: In Trc synthetic promoter library, EVMP was applied to multiple ML

models and themodel e�ect was enhanced to varying extents, up to 61.30% (MAE),

while the SOTA(state-of-the-art) record was improved by 15.25% (MAE) and 4.03%

(R2). Data augmentation based on multiple base promoters further improved the

model performance by 17.95% (MAE) and 7.25% (R2) compared with non-EVMP

SOTA record.

Discussion: In further study, extended vision (or k-mer) is shown to be essential for

EVMP. We also found that EVMP can alleviate the over-smoothing phenomenon,

which may contributes to its e�ectiveness. Our work suggests that EVMP can

highlight the mutation information of synthetic promoters and significantly

improve the prediction accuracy of strength. The source code is publicly available

on GitHub: https://github.com/Tiny-Snow/EVMP.
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1. Introduction

Promoters are the fundamental components of transcriptional

regulation and have a direct impact on gene expression.

In metabolic engineering and synthetic biology applications,

promoters with desired strengths are critical (Gao et al., 2021).

However, it is challenging for them to meet the requirements of the

logical design and optimization of metabolic pathway due to the

insufficient number of well-characterized promoters. Therefore, a

vast library with hundreds of promoters with better properties must

be created and characterized (Tang et al., 2020).

The conventional methods for building promoter libraries rely

on functional module combinations or random sequence mutation

techniques. Methods based on random sequence mutations, such

as error-prone PCR, are regarded as a straightforward and

effective mutagenesis technique and have been successfully used

to synthesize artificial promoters. Alper et al. (2005), for instance,

mutagenized the bacteriophage PL-promoter using error-prone

PCR methods. Finally, 22 promoters with an intensity distribution

range of 196 times were selected from nearly 200 promoter

mutants. Zhao et al. (2021) constructed and characterized a mutant

library of Trc promoters (Ptrc) using 83 rounds of mutation-

construction-screening-characterization engineering cycles, and

established a synthetic promoter library that consisted of 3,665

different variants, displaying an intensity range of more than

two orders of magnitude. Despite the availability of experimental

methods, obtaining a small number of useful promoters from

a random library typically necessitates time-consuming and

laborious screening, and given the enormous number of possible

sequence combinations, the effective identification of these useful

promoters is largely constrained by a relatively small mutation

library. For example, a 20-nucleotide sequence space represents

420 = 1.1 × 1012 possibilities, outnumbering even the largest

bacterial libraries and most robust high-throughput screens.

Therefore, obtaining the desired promoter through mutation,

modification, or screening of existing promoters is challenging.

In order to effectively guide how to search for new promoters in

the huge potential sequence space, new methodologies should be

developed to explore the relationship between promoter sequence

and function more thoroughly (Cazier and Blazeck, 2021).

Fortunately, prediction of biological problems has been

shown to be amenable to machine learning (ML) techniques,

as comprehensively reviewed by de Jongh et al. (2020). Several

recent studies have applied ML for promoter strength prediction.

By varying a 50-nt region in the 5′ UTR of the HIS3 promoter,

Cuperus et al. (2017) generated 500,000 variants for use as

their training dataset for a convolutional neural network (CNN).

This allowed them to predictably improve the expression of

promoters with both random and native 5′ UTRs. They also

demonstrated the advantage of using synthetic libraries as they

found motifs that enhance transcription that are absent from the

yeast genome. Additionally, ML has also enabled the prediction

of transcriptional outputs for constitutive, inducible, or synthetic

promoters in Saccharomyces cerevisiae. For instance, training

a CNN with diversified libraries over 105 in size, created by

precisely altering the PGPD constitutive promoter and a PZEV-

based inducible system, allowed prediction of promoter strengths

with an accuracy of 79% (McIsaac et al., 2014; Kotopka and

Smolke, 2020). Similarly, de Boer et al. (2020) created what is

perhaps the largest synthetic library ever made for ML promoter

engineering by synthesizing over 100 million random 80-bp

upstream activating sequences (UASs). This library was used as

a training dataset for a TF-motif-based model that was able to

correctly predict the expression level of 94% of random promoters.

In an elegant combination of hybrid promoter engineering and

ML in human cells, Wu et al. (2019) created 129-bp UASs that

contained tandem, human TF binding sites that represented over

6,000 unique motifs taken from two TF databases, and then used

the resulting dataset to train a generalized linear model with

elastic net regularization (GLMNET) (Kheradpour and Kellis, 2014;

Weirauch et al., 2014; Wu et al., 2019). The model enables us

to successfully predict the differential expression of individual

promoters across different cell lines, a difficult task for mammalian

cell engineering.

Although the progress made in the aforementioned works is

exciting, their methods are not without flaws. The key characteristic

of the synthetic promoter dataset is that the synthetic promoters

are too close to each other while their strengths exhibit a substantial

degree of variation (Zhao et al., 2021). This results in the inability to

differentiate the strengths of synthetic promoters through sequence

homology, and commonly used language models such as LSTM

(Long Short-term Memory) also perform poorly. Therefore, we

have considered another simple approach, which is to highlight the

mutation information.

In this paper, we propose a novel framework, EVMP (Extended

Vision Mutant Priority), to extract important mutation features

and enhance ML models. In EVMP, synthetic promoters are

equivalently transformed into EVMP format data, including base

promoter and k-mer mutations (Liu and Wu, 2021), which

are input into BaseEncoder and VarEncoder, respectively. We

evaluated the effectiveness of EVMP on a Trc synthetic promoter

library constructed by Zhao et al. (2021) and found that EVMP

models exhibited varying degrees of improvement over non-

EVMPmodels. Specifically, LSTMwas improved by 61.30% (MAE)

and 43 times (R2), Transformer by 34.17% (MAE) and 29.93%

(R2), and the other models had effect improvements ranging

from 5.15 to 7.27% (MAE) and 2.88 to 8.90% (R2). Compared

to the state-of-the-art (SOTA) non-EVMP method (Zhao et al.,

2021), which was included in our experiments, EVMP achieved

superior results and improved the SOTA non-EVMP record

by 15.25% (MAE) and 4.03% (R2). EVMP offers optional data

augmentation, which involves selecting multiple base promoters

and generating multiple copies of data in the EVMP format.

Data augmentation further enhanced the effectiveness of EVMP,

which was 17.95% (MAE) and 7.25% (R2) higher than that of the

SOTA non-EVMP method. We conducted ablation experiments to

demonstrate the critical role of the extended vision, or the k-mer

in mutation representation, in EVMP framework. Additionally,

we discussed the effectiveness of EVMP and found that it can

alleviate the over-smoothing phenomenon that often occurs in

synthetic promoter datasets. Our work suggests that EVMP can

significantly improve the performance of ML models in predicting

synthetic promoter strength, while its effectiveness is accompanied

by reasonable interpretability. To the best of our knowledge, this
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is the first research to integrate mutation features for predicting

promoter strength.

2. Materials and methods

2.1. EVMP architecture

As illustrated in Figure 1A, EVMP framework takes EVMP

format data as input and predicts promoter strength using

BaseEncoder and VarEncoder as backbone networks. The pipeline

for applying the EVMP framework to the synthetic promoter

strength prediction task consists of two steps: generating EVMP

format data from the synthetic promoter dataset and passing the

data through the EVMP framework to obtain prediction results.

2.1.1. EVMP data processing
In the synthetic promoter dataset, a base promoter S =

(x1, · · · , xn) is first selected, where each x is a base ∈ R
d and

d = 5 (representing one-hot encoding of four bases A, T, C, G,

and B for the blank). For any synthetic promoter S′ = (x′1, · · · , x′n),
multiple mutation sites are obtained by pairing S′ with the base

promoter S, and the k-mer subsequences centered at each mutation

site in synthetic promoter S′ are referred to as k-mer mutations

M(S, S′). Finally, we obtain the EVMP format data consisting of

base promoter S and k-mer mutationsM(S, S′), which is equivalent

to the original synthetic promoter S′, denoted as 〈S,M(S, S′)〉.

2.1.2. Data augmentation
Data augmentation is an optional step in the EVMP pipeline,

which is primarily achieved through selecting multiple base

promoters. When data augmentation is not applied, the base

promoter is set to Ptrc by default, and each synthetic promoter

S′ is mapped to a corresponding data point 〈Ptrc,M(Ptrc, S
′)〉

in the EVMP format. By introducing data augmentation,

we can select multiple (e.g., 10 in this experiment) base

promoters, denoted as P1, P2, · · · , and generate multiple data

points for the same synthetic promoter S′. Specifically, we can

obtain 〈P1,M(P1, S
′)〉, 〈P2,M(P2, S

′)〉, · · · , each corresponding to a

different base promoter but the same synthetic promoter. Choosing

a suitable base promoter is often challenging. Data augmentation

provides the model with more choices and opportunities to select a

better base promoter.

2.1.3. EVMP framework
Similar to common natural language processing (NLP) models,

the BaseEncoder in the EVMP pipeline directly processes the base

promoter. Specifically, the BaseEncoder takes the base promoter S

as input and produces the corresponding base embedding ebase as

the output.

ebase : = BaseEncoder(S) (1)

In contrast to typical NLP models that handle the entire

synthetic promoter, the VarEncoder in the EVMP pipeline deals

with k-mermutationsM(S, S′) between the base promoter S and the

synthetic promoter S′. Specifically, the VarEncoder receives the k-
mer mutations that are represented by the mutation representation

module and produces the corresponding mutation embedding evar
as the output.

evar : = VarEncoder(M(S, S′)) (2)

In Section 2.2, we will introduce two different mutation

representation paradigms, namely Vars+PE and Mask.

In the EVMP framework, BaseEncoder and VarEncoder

are model-agnostic and may not necessarily be distinct. Our

study offers several alternatives for BaseEncoder and VarEncoder,

including LSTM (Hochreiter and Schmidhuber, 1997; Gers et al.,

2000), Transformer (Vaswani et al., 2017), Random Forests(RF)

(Breiman, 2001), GBDT (Friedman, 2001), XGBoost (Chen and

Guestrin, 2016), and SVM (Boser et al., 1992; Cortes and Vapnik,

1995). For deep learning models, BaseEncoder and VarEncoder

can be separate, taking inputs S and M(S, S′), respectively.

For conventional machine learning models, BaseEncoder and

VarEncoder must be the same model, and the inputs S andM(S, S′)
are concatenated. It should be noted that the BaseEncoder of the

baseline models only refers to the encoder of the models, which

means the FFN output layer is excluded. . In addition, Appendix 1

in Supplementary material provides the necessary mathematical

foundations for the aforementioned machine learning methods.

For more details on model implementations, see Appendix 2 in

Supplementary material.

2.1.4. Promoter strength prediction
The base embedding ebase and mutation embedding evar

produced by the BaseEncoder and VarEncoder, respectively, are

concatenated and passed through a feed-forward network (FFN)

for predicting promoter strength. The model is trained on a dataset

D = {(xi, yi)|i = 1, · · · ,N} using the objective function:

min
w

N
∑

i=1

|ŷi − yi| + λ‖w‖2 (3)

where ŷi is the prediction of promoter strength of the EVMP format

input xi, w is the weights of model, and λ is the regularization

constant.

2.2. Mutation representation paradigms

Mutation representation is a critical component of

EVMP. Different mutation representation methods may be

appropriate for different models. Nevertheless, in general, all

mutation representation methods must satisfy two fundamental

requirements: (i) the extended vision of mutation, and (ii) the

preservation of mutation positional information. In the scope

of our discussion, all mutation representation methods are

based on k-mer mutations, which aligns with the extended

vision principle stated in requirement (i). Therefore, the key to

achieving mutation representation lies in preserving positional

information. In the following, we present two different paradigms

for mutation representation, including Vars+PE (used by LSTM

and Transformer) and Mask (used by conventional ML models).
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FIGURE 1

Extended Vision Mutant Priority framework. (A) The overall pipeline of EVMP framework for synthetic promoter strength prediction, which consists of

data processing and framework. EVMP data processing is based on alignment, where the original synthetic promoter S′ is equivalent to data in EVMP

format: the base promoter S and the k-mer mutation M(S, S′). Ptrc serves as the default base promoter, while data augmentation based on multiple

base promoters is an optional step in data processing. EVMP framework consists of BaseEncoder and VarEncoder, which characterize the base

promoter and the k-mer mutations after mutation representation, respectively. Base embedding and mutation embedding are then concatenated

together and sent to a feed-forward network for strength prediction. (B) Vars+PE, one of the mutation representation paradigms. Each base in a

k-mer mutation is added with the Positional Encoding of the mutation site. (C) Mask, one of the mutation representation paradigms. Each base that

appears in a particular k-mer mutation is retained, and the rest is masked to B (blank).

2.2.1. Vars+PE
In Vars+PE, VarEncoder takes the sequence of k-mer

mutations as input. However, using this form destroys the

positional information of individual mutation sites. To incorporate

positional information for mutations, one approach is to use

Positional Encoding [PE, Vaswani et al. (2017)], which is a

function PE :R → R
d. Generally, the Positional Encoding is

directly added to the sequence, and therefore, we refer to this
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technique as vars+PE. In this study, we utilize the sin-cos

Positional Encoding defined in Definition A1.4 in Appendix 1.4 in

Supplementary material and Figure 1B.

MVars+PE(S, S
′) =

{(

x′i−⌊k/2⌋ + PE(i), · · · , x′i+k−⌊k/2⌋−1 + PE(i)
)

|

if xi 6= x′i , i = 1, · · · , n
}

(4)

It should be noted that BaseEncoder and VarEncoder add PE in

different ways. Specifically, BaseEncoder adds PE(p) to the base at

position p, bases at different positions are added different PE, while

VarEncoder adds the same PE(p′) to k bases in a k-mer mutation at

mutated position p′, as shown in Equation (4).

2.2.2. Mask
In Section 2.2.1, we utilized the PE technique since the selection

of k-mer mutations resulted in the disruption of the initial base

order. However, if the promoter sequence is maintained in its

original form, the provision of additional positional information is

unnecessary. TheMask technique fits this need, which assigns bases

to B(Blank) if they never appear in any of the k-mer mutations, so

as to disguise the less significant bases.

MMask(S, S
′) = S′ ·

(

I

(

xi−k+⌊k/2⌋+1 6= x′i−k+⌊k/2⌋+1

∨ · · · ∨ xi+⌊k/2⌋ 6= x′i+⌊k/2⌋

)

|i = 1, · · · , n
)

(5)

As shown in Figure 1C, bases that appear in k-mer mutations

are kept in their original positions, while the remaining bases

are masked.

2.3. Datasets and models

The central experiment of this study is the prediction of

synthetic promoter strength. The experiments are primarily based

on the Trc synthetic promoter library created by Zhao et al.

(2021), which consists of 3665 Trc synthetic promoters and uses

log Fluorescence/OD600 as a measure of promoter strength.

Previous research, such as that conducted by Zhao et al. (2021),

has evaluated the performance of various models on this dataset,

including LSTM, RF, XGBoost, and GBDT. Our non-EVMP

baselines had included all these competitive models in previous

work. In addition, models such as Transformer and SVM were

added as options. For EVMPmodels, BaseEncoder and VarEncoder

were the same, and their implementation referred to Section

2.1.3. EVMP is based on alignment, and we used MEGA (Kumar

et al., 2008) to perform alignment between the base promoter and

synthetic promoter.

Our main experiment used a 9:1 split of the dataset as training

data and test data, and the training data was split into a 9:1 training

set and validation set in each cross-validation. All experiments used

5-fold cross-validation.

An illustration of sequence homology analysis is necessary.

In general promoter strength prediction, homologous sequences

are considered likely to have similar strength, so homologous

sequences in the training and test sets should be discarded.

However, in mutation-based synthetic promoter libraries, all

sequences are homologous, which renders the sequence homology

approach ineffective. In Figure 2, the number of mutations vs.

the strength difference between the pairwise promoters in the

training and test sets that we divided is presented. As shown,

although the average strength difference tends to decrease as the

number of mutations decreases, the strength difference spans

nearly three orders of magnitude regardless of the number of

mutations. Therefore, it is considered inappropriate to suggest

that promoters with less number of mutations and similar

strength should be removed simply based on sequence homology—

since there may be other promoters with a small number of

mutations but very different strength. Therefore, we kept the

original dataset to simulate the most realistic synthetic promoter

library possible.

It should be noted that our results could not be directly

compared to those in Zhao et al. (2021) for fairness since

the proportion of the training set was reduced and different

independent test sets were adopted. For a fair comparison, the

competitive models in Zhao et al. (2021) were all retrained under

the same conditions, and we adopted the source code of the original

paper, located at https://github.com/YuDengLAB/Predictive-the-

correlation-between-promoter-base-and-intensity-through-mode

ls-comparing. We used MAE (mean absolute error, primary)

and R2 (coefficient of determination, secondary) as evaluation

metrics. In general, MAE is sensitive to the magnitude of promoter

strength, while R2 can reflect the overall prediction effect, both

of which are meaningful evaluation metrics. The reason why

MAE is used as the main metric is that we usually care more

about high-strength promoters, thus it is more important to

accurately predict the strength of synthetic promoters with

larger values.

3. Results

3.1. EVMP discards redundant bases

In the synthetic promoter library, most of the bases between

different promoters are identical, which limits the models’ ability

to gain informative features from these shared bases. As shown

in Figure 3A, in comparison to Ptrc, synthetic promoters with 2,

3, and 4 mutations account for the main part of the dataset,

while the vast majority of synthetic promoters have no more

than 8 mutations, which indicates that highlighting mutations

is necessary.

In EVMP, most of the same bases are useless and should

be discarded. We define the receptive field of VarEncoder

as the proportion of the number of bases appearing in

a k-mer mutation to the length of promoter sequence.

As depicted in Figure 3B, when k = 3 and 8, the mean

receptive fields of VarEncoder turn out to be 9 and 22,

respectively, corresponding to 10.6 and 25.9% of the entire

promoter length. The VarEncoder receives inputs that

discard redundant bases while retaining necessary mutation

information, making the EVMP approach distinct from traditional

NLP models.
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FIGURE 2

Relationship between the number of mutations and strength di�erences between training-test set pairwise promoters. In the figure, boxplots

represent quartiles, and red circles represent outliers. The di�erence in promoter strength spanned nearly three orders of magnitude for all mutation

numbers.

FIGURE 3

(A) The proportion of di�erent mutation times in Trc synthetic promoter library. Mt (t = 1, 2, · · · ) stands for synthetic promoters with t di�erent

mutation sites. The vast majority (> 99%) of synthetic promoters have no more than 8 mutation sites. (B) The probability that each position is

included in the receptive field of VarEncoder, each promoter is filled (B) to 85 length. For k = 3 and 8, the mean receptive field of VarEncoder is 9 and

22, respectively, which is much less than the total length of the promoter.

3.2. EVMP enhances the e�ect of ML
models

The results of the comparison between the effects of EVMP

and non-EVMP models are presented in Table 1. Among the

conventional machine learningmodels, the state-of-the-art (SOTA)

non-EVMP model was RF (0.2262), while the MAE of the

other non-EVMP models ranged from 0.23 to 0.26. However,

the performance of non-EVMP LSTM (0.5337) and Transformer

(0.2912) models was inferior to that of the other ML models.

After applying the EVMP method, MAEs of all models

demonstrated varying degrees of improvement. The LSTM (0.5337

→ 0.2065) and Transformer (0.2912 → 0.1917) showed a 61.30

and 34.17% improvement, respectively, surpassing the performance

of the SOTA non-EVMP model (0.2262) and setting a new SOTA

record. Other models also showed improvement ranging from 5.15

to 7.27%. The application of EVMP enhanced the performance of

each model in predicting synthetic promoter strength, with the

SOTA EVMP model (EVMP-Transformer, 0.1917) outperforming

the SOTA non-EVMP model (RF, 0.2262) by 15.25%.

EVMP also made the R2 of each model increase to varying

degrees, and the R2 improvement of the traditional machine

learning model ranges from 2.88 to 8.90%. Transformer achieved

29.93% improvement in R2. In particular, the R2 of LSTM improves

by a factor of 43—this is due to the fact that LSTM did not work

at all before applying EVMP. EVMP also improved SOTA R2 from
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TABLE 1 Results of EVMP and non-EVMP models on synthetic promoter strength prediction task.

Method Model Mutant k Valid MAE Test MAE Enhance SOTA

non-EVMP SVM 0.2522± 0.0050 0.2604± 0.0012 0.2262

GBDT* 0.2357± 0.0096 0.2434± 0.0042

XGBoost* 0.2193± 0.0107 0.2340± 0.0018

RF* 0.2273± 0.0098 0.2262± 0.0022

LSTM* 0.4959± 0.0213 0.5337± 0.0011

Transformer 0.2744± 0.0171 0.2912± 0.0020

EVMP SVM Mask 8 0.2337± 0.0060 0.2414± 0.0012 7.27% 0.1917

GBDT 0.2197± 0.0096 0.2285± 0.0030 6.14%

XGBoost 0.2051± 0.0143 0.2183± 0.0036 6.72%

RF 0.2231± 0.0132 0.2145± 0.0012 5.15%

LSTM Vars+PE 3 0.1976± 0.0155 0.2065± 0.0065 61.30%

Transformer 5 0.1839 ± 0.0126 0.1917 ± 0.0013 34.17%

EVMP SOTAMAE Enhance 15.25%

Method Model Mutant k Valid R2 Test R2 Enhance SOTA

non-EVMP SVM 0.64± 0.05 0.63± 0.01 0.69

GBDT* 0.68± 0.04 0.69± 0.01

XGBoost* 0.69± 0.05 0.69± 0.00

RF* 0.61± 0.03 0.65± 0.01

LSTM* 0.01± 0.01 0.02± 0.01

Transformer 0.55± 0.07 0.55± 0.01

EVMP SVM Mask 8 0.66± 0.05 0.67± 0.00 5.68% 0.72

GBDT 0.70 ± 0.03 0.71 ± 0.01 2.88%

XGBoost 0.71 ± 0.05 0.72 ± 0.01 4.34%

RF 0.65± 0.05 0.71 ± 0.01 8.90%

LSTM Vars+PE 3 0.70 ± 0.06 0.71 ± 0.02 4312.50%

Transformer 5 0.74 ± 0.05 0.71 ± 0.01 29.93%

EVMP SOTA R2 Enhance 4.03%

The entryMutant is mutation representation method, k is the length of k-mer mutations, MAE is mean absolute error, R2 is coefficient of determination, Enhance reflects the effect improvement

of EVMP models compared to non-EVMPmodels, measured as the reduction in MAE and the increase of R2 . All MAEs and R2s are the results of five-fold cross validation and are expressed as

mean± standard deviation. The model∗ annotated with an asterisk is derived from Zhao et al. (2021). Bold values are the best experimental results.

0.69 to 0.72. It can be seen that EVMP has a high improvement

in both MAE and R2, which indicates that EVMP can not only

improve the overall prediction effect. An interesting finding is that

R2 improved less than MAE, indicating a clear rise in prediction

accuracy for high-strength promoters.

3.3. Data augmentation further enhances
EVMP

In our previous discussion, we did not incorporate optional

data augmentation in the EVMP process. As described in

Section 2.1.2, data augmentation involves selecting multiple base

promoters (P1, P2, · · · , P10) and generating multiple copies of

data 〈P1,M(P1, S
′)〉, 〈P2,M(P2, S

′)〉, · · · , 〈P10,M(P10, S
′)〉 for each

synthetic promoter S′. It is worth noting that the k-mer mutations

M(Pi, S
′) differ based on the selection of the base promoter Pi, i =

1, · · · , 10. The ten selected base promoters, which differ from Ptrc
by 2 to 7 different sites, are listed in Table A4 in Appendix 2.

Table 2 presents the relevant comparative experiments of data

augmentation. In these experiments, we chose EVMP-Transformer

(k = 5) model for analysis. The first two Fixed-Fixed experiments

were the same as in Table 1. The third Rand-Rand experiment

randomly selected one of the 10 base promoters P1, · · · , P10 as the
base promoter, and each synthetic promoter may had a different

base promoter. The fourth Augmented-Augmented experiment

used all 10 base promoters and expanded the dataset by a factor

of 10 by applying data augmentation.

Compared with the Fixed-Fixed method, the EVMP Rand-

Randmethod (0.2396, 0.59) exhibited weaker performance than the

EVMP Fixed-Fixed method (0.1917, 0.71), but still outperformed
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the non-EVMP Fixed-Fixed method (0.2912, 0.55). It is important

to note that the Rand-Rand method represented an extreme

scenario, where only approximately 1/10 of the original dataset was

utilized by directly using Ptrc as the base promoter. Nevertheless,

the Rand-Rand method still achieved better performance than the

non-EVMP method, which highlights the robustness of EVMP.

The Augmented-Augmented method with data augmentation

(EVMP+DA) achieved the best performance (0.1856, 0.74) among

all experiments, which was 17.95% (MAE) and 7.25% (R2) better

than the non-EVMP SOTA. After data augmentation, multiple

copies of data in the EVMP format were generated for each

synthetic promoter from different perspectives (base promoters).

In addition, the Augmented-Fixed method (not listed in Table 2),

achieved a MAE of 0.1876 on the same Fixed (Ptrc-based) test

set in the main experiment, which was better than the EVMP

method (0.1917, 0.71) and worse than the average effect of all

base promoters (0.1856, 0.74). These results suggest that data

augmentation indeed increased the diversity of the data to improve

the model’s performance, and was able to identify a better base

promoter than Ptrc. Therefore, data augmentation is a simple and

effective alternative to rationally selecting base promoters.

3.4. Extended vision is necessary for EVMP

Section 2.2 emphasized the crucial importance of extended

vision for the effectiveness of EVMP. The inclusion of k-mer

mutations with k > 1 achieves this extended vision. Although it

may seem that only including single base mutations (k = 1) in

the mutation input is the most straightforward approach, a single

base may not provide sufficient information for the promoter.

As a result, many biological software programs, such as Allesøe

et al. (2021) and Nurk et al. (2017), use k-mers. Experimental

results in Figures 4A, B, which show the Test MAE of EVMP-

Transformer and EVMP-RF for different values of k = 1, 3, 5, 8,

support this claim.

The Test MAE and R2 of EVMP-Transformer with k = 5, 8 was

the best with values of (0.1917, 0.66) and (0.1952, 0.71), compared

to (0.3136, 0.47) for k = 1, (0.1998, 0.70) for k = 3. The Test MAE

and R2 of EVMP-RF with k = 8 was the best with a value of (0.2160,

0.71), compared to (0.2566, 0.58) for k = 1, (0.2212, 0.66) for k = 3,

(0.2221, 0.66) for k = 5. These results indicate that k > 1 is much

better than k = 1 and that extended vision is an indispensable

key to the success of EVMP. Furthermore, the effect of the models

did not change significantly as k increased. Therefore, choosing a

suitable k is not difficult, and the key is to ensure that k > 1. To

avoid excessive overlap between k-mer mutations, we suggest using

the formula k = l/α, where l is the length of the promoter and α is

the average number of mutation sites.

4. Discussion

4.1. Why EVMP: experimental perspective

Experimental results have shown that EVMP can significantly

enhance the effect of ML models in predicting the strength of

synthetic promoters. However, why EVMP is effective remains

TABLE 2 Results of EVMP-Transformer (k = 5) in synthetic promoter

strength prediction task with data augmentation.

EVMP DA DA method Valid MAE Test MAE

Train Test

× × Fixed Fixed 0.2744± 0.0171 0.2912± 0.0020

X × Fixed Fixed 0.1839± 0.0126 0.1917± 0.0013

X × Rand Rand 0.2423± 0.0076 0.2396± 0.0142

X X Augmented Augmented 0.1824 ± 0.0176 0.1856 ± 0.0008

EVMP+DA SOTAMAE Enhance 17.95%

EVMP DA DA Method Valid R2 Test R2

Train Test

× × Fixed Fixed 0.55± 0.07 0.55± 0.01

X × Fixed Fixed 0.74± 0.05 0.71± 0.01

X × Rand Rand 0.62± 0.03 0.59± 0.04

X X Augmented Augmented 0.76 ± 0.06 0.74 ± 0.05

EVMP+DA SOTA R2 Enhance 7.25%

The entries EVMP and DA indicate whether to use EVMP and whether to use data

augmentation, respectively. The entries Train/Valid and Test refer to the dataset processing

method, where Fixed refers to using Ptrc as base promoter, Rand refers to randomly selecting

one of the 10 base promoters P1 , · · · , P10 as base promoter, and Augmented refers to

generating 10 copies of data by using all 10 base promoters. All MAEs and R2 are the results

of cross validation. Bold values are the best experimental results.

to be further explored. We found that EVMP reduces the over-

smoothing phenomenon, whichmay contributes to its effectiveness.

Over-smoothing phenomenon occurs when the outputs of different

inputs appear to be almost the same. Appropriate smoothing is

regarded as a symbol of robustness in other tasks like image

recognition (Ruderman et al., 2018). However, considering the

fact that the differences between synthetic promoters are much

shallower, over-smoothing phenomenon is likely to lead to a

poor performance.

We define the average embedding distance to study over-

smoothing phenomenon. Assume that synthetic promoters are

P1, · · · , PN , and P0 is the base promoter (Ptrc). The output

embedding vector el(P) ∈ R
nl are calculated for each layer l and

each input P. Denote the average embedding distance dl of each

layer as follows:

dl =
1

N

N
∑

i=1

‖(el(Pi)− el(P0)‖2√
nl

(6)

Average embedding distance measures the average distance of

each dimension of the embedding at the l-th layer, thus it is

capable to represent the dispersion of the output of each layer. In

particular, a higher average embedding distance indicates a lighter

over-smoothing phenomenon.

In Figure 5, the average embedding distance of each layer

was calculated for EVMP and non-EVMP implementations of

LSTM and Transformer, respectively, where LSTM calculated the

average embedding distance of each time step. Figure 5B showed

that the average embedding distance of EVMP-Transformer

was always much higher than that of non-EVMP Transformer.

Figure 5C showed that the growth rate of the average embedding
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FIGURE 4

Test MAE and R2 of EVMP models with di�erent k = 1, 3, 5, 8 (length of k-mer Mutations). As k increased, the e�ect of models first improved and then

tended to be the same. All MAEs and R2s are the results of cross validation. (A) Test MAE and R2 diagrams of EVMP-Transformer k = 5, 8 obtained the

best result. (B) Test MAE and R
2 diagrams of EVMP-RF, k = 8 obtained the best result.

FIGURE 5

Average embedding distance for each layer of deep learning models, with the 0-th layer serving as the input. Since BaseEncoder receives the same

base promoter Ptrc, non-EVMP models calculate the average embedding distance of each layer directly, while EVMP models calculate the average

embedding distance of VarEncoder. In synthetic promoter strength prediction, a larger average embedding distance is considered as the model is

better able to discriminate subtle di�erences between synthetic promoters. (A) Non-norm d0 (
√
n0d0) for LSTM and Transformer, which reflects the

degree of dispersion of the input data. (B) Average embedding distance for each layer of Transformer and EVMP-Transformer. (C) Average embedding

distance for each layer of LSTM and EVMP-LSTM, where LSTM calculates the average embedding distance for each time step.

distance of EVMP-LSTM from 0-th time step was much

higher than that of non-EVMP LSTM. The above experimental

results demonstrate that EVMP can effectively alleviate the

over-smoothing phenomenon.

4.2. Why EVMP: theoretical perspective

Section 4.1 offers a comparison of the average embedding

distance among layers of neural networks. The purpose is to

verify intuitively whether EVMP mitigates the over-smoothing

phenomenon and to elucidate the effectiveness of EVMP. In this

context, a theoretical illustration is presented to support the validity

of this perspective.

Zou et al. (2020) proved that when the width of each

layer in deep ReLU networks is at least
∼
�

(

n14L16/φ4
)

, gradient

descent can achieve zero training error within
∼
O

(

n5L3/φ
)

iterations, where n is the number of training examples, L

is the number of hidden layers, and φ is the maximum

lower bound of the L2-norm between every pair of the

training samples.

Here, we regard
√
n0d0 as an approximation of φ, where

n0 is the dimension of input. As shown in Figure 5A, EVMP

resulted in a noticeable increase in φ for deep learning models.

Since the size of the training set n and the number of model

layers L are remained unchanged, the overparameterizations

of layer width and training iterations are reduced, and the

model fitting effect tends to be improved. This statement is

also enabled to be applied to RNN and CNN (Zou et al.,

2020). The above discussion shows that EVMP can indeed

alleviate the over-smoothing phenomenon, which contributes to

its effectiveness.
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FIGURE 6

As the proportion of the training set decreased, the MAE of the validation set increased and the R2 decreased. When the proportion of training set to

validation set is higher than 5:1, EVMP-Transformer achieved lower MAE than SOTA non-EVMP models.

4.3. EVMP reduces the need for annotated
data under the same prediction accuracy

Enhancing performance of ML models is just one

aspect of EVMP. Another contribution of EVMP is to

reduce the requirement for costly strength-annotated

synthetic promoters under the original prediction accuracy.

Here, given a fixed validation set proportion (1/10 of the

original dataset), we randomly selected 1/9, 2/9, · · · , 9/9

of the remaining 9/10 dataset as training set proportion,

respectively. Figure 6 shows MAE and R2 (coefficient of

determination) of training and validation sets for each

EVMP-Transformer model.

According to our experimental results in Table 1, the SOTA

non-EVMP MAE was approximately 0.22, while Figure 6 shows

that EVMP only needed a training set of 5/9 original size to achieve

this effect. In other words, EVMP only needed 56% of the original

data while maintaining the same prediction accuracy, which greatly

reduces the dependence on high-quality labeled data.

4.4. Limitations and potential

EVMP has some limitations, that is, EVMP is only applicable

to synthetic promoter libraries based on random mutations. For

synthetic libraries built with other methods, EVMP does not

necessarily yield gains, but it is no worse, since we can always build

the original method as the BaseEncoder.

However, EVMP also has great potential. On the one

hand, random mutation is still the most convenient method

to construct synthetic libraries without prior knowledge.

On the other hand, EVMP is not only suitable for synthetic

promoters, but also theoretically applicable to other

kinds of synthetic biological sequences (e.g., protein). In

addition, in the discussion of data augmentation, we actually

recognized that EVMP has enough capacity to handle

multiple different synthetic promoter libraries, thus it has

high scalability.

EVMP is a highly conceptual framework, and it is

convenient to add additional components to EVMP. For

example, if we want to use EVMP for protein downstream

tasks, then additional information beyond sequence such

as 3D structure information is a worthwhile feature to

include, and multiple corresponding encoders can also

work in parallel. The high robustness and scalability of

EVMP provide the potential for it to be useful in more

bioinformatics tasks.

The mutation modeling of EVMP is also worthy of further

study, which includes 3D structural and different granularity

alignments, the development of mutation representations other

than Vars+PE and Mask, etc.

Finally, a suitable information interaction or aggregation

between the encoders may also be required. With the development

of attention technique, proper attention between different features

and their embeddings is regarded as a suitable information

interaction method.

5. Conclusions and future works

In this work, we proposed EVMP as a universal framework to

enhance machine learning models for synthetic promoter strength

prediction, which includes two steps: EVMP data processing

and EVMP framework. The original synthetic promoter data are

transformed into base promoter and k-mer mutations, which

are processed by BaseEncoder and VarEncoder, respectively, to

highlight mutation information. EVMP enhanced many models

and achieved new SOTA records. EVMP also provides optional

data augmentation based on multiple base promoters, which

can further improve the performance of EVMP. In further

study, We experimentally verified that extended vision, or
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k-mer, is critical for the effectiveness of EVMP. In terms

of interpretability, EVMP is proved to be able to alleviate

the over-smoothing phenomenon and thus improves the effect

of models.

EVMP is a highly robust and versatile machine learning

enhancement framework with the potential to be extended to

various mutation-based synthetic biology component libraries.

In future research, more features and components, information

interaction between encoders, and the application of EVMP

in other synthetic biological sequence tasks are worthy of

further exploration.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

WY and DL conceived and designed the study. WY conducted

the experiments and analyzed the results of the experiment.

WY, DL, and RH contributed to the writing of the manuscript.

DL and RH contributed to the manuscript editing. All authors

contributed to manuscript revision, read, and approved the

submitted version.

Funding

Thanks for the support of the National Natural Science

Foundation of China (Grant Numbers 31970113 and 32170065).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.

1215609/full#supplementary-material

References

Allesøe, R. L., Lemvigh, C. K., Phan, M. V., Clausen, P. T., Florensa, A. F.,
Koopmans, M. P., et al. (2021). Automated download and clean-up of family-
specific databases for kmer-based virus identification. Bioinformatics 37, 705–710.
doi: 10.1093/bioinformatics/btaa857

Alper, H., Fischer, C., Nevoigt, E., and Stephanopoulos, G. (2005). Tuning genetic
control through promoter engineering. Proc. Natl. Acad. Sci. U.S.A. 102, 12678–12683.
doi: 10.1073/pnas.0504604102

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A training algorithm
for optimal margin classifiers,” in Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, 144–152. doi: 10.1145/130385.130401

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Cazier, A. P., and Blazeck, J. (2021). Advances in promoter engineering: novel
applications and predefined transcriptional control. Biotechnol. J. 16, 2100239.
doi: 10.1002/biot.202100239

Chen, T., and Guestrin, C. (2016). “XGboost: a scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 785–794. doi: 10.1145/2939672.2939785

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297.

Cuperus, J. T., Groves, B., Kuchina, A., Rosenberg, A. B., Jojic, N., Fields, S., et al.
(2017). Deep learning of the regulatory grammar of yeast 5’ untranslated regions
from 500,000 random sequences. Genome Res. 27, 2015–2024. doi: 10.1101/gr.2249
64.117

de Boer, C. G., Vaishnav, E. D., Sadeh, R., Abeyta, E. L., Friedman, N.,
and Regev, A. (2020). Deciphering eukaryotic gene-regulatory logic with 100
million random promoters. Nat. Biotechnol. 38, 56–65. doi: 10.1038/s41587-019-
0315-8

de Jongh, R. P., van Dijk, A. D., Julsing, M. K., Schaap, P. J., and de Ridder,
D. (2020). Designing eukaryotic gene expression regulation using machine learning.
Trends Biotechnol. 38, 191–201. doi: 10.1016/j.tibtech.2019.07.007

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451

Gao, J., Jiang, L., and Lian, J. (2021). Development of synthetic biology tools to
engineer pichia pastoris as a chassis for the production of natural products. Synth. Syst.
Biotechnol. 6, 110–119. doi: 10.1016/j.synbio.2021.04.005

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to
forget: continual prediction with LSTM. Neural Comput. 12, 2451–2471.
doi: 10.1162/089976600300015015

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Kheradpour, P., and Kellis, M. (2014). Systematic discovery and characterization of
regulatory motifs in encode tf binding experiments. Nucleic Acids Res. 42, 2976–2987.
doi: 10.1093/nar/gkt1249

Kotopka, B. J., and Smolke, C. D. (2020). Model-driven generation of artificial yeast
promoters. Nat. Commun. 11, 1–13. doi: 10.1038/s41467-020-15977-4

Kumar, S., Nei, M., Dudley, J., and Tamura, K. (2008). MEGA: a biologist-centric
software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9,
299–306. doi: 10.1093/bib/bbn017

Liu, W.-L., and Wu, Q.-B. (2021). Analysis method and algorithm design of
biological sequence problem based on generalized k-mer vector. Appl. Math. A J. Chin.
Univ. 36, 114–127. doi: 10.1007/s11766-021-4033-x

McIsaac, R. S., Gibney, P. A., Chandran, S. S., Benjamin, K. R., and Botstein,
D. (2014). Synthetic biology tools for programming gene expression without
nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res. 42, e48.
doi: 10.1093/nar/gkt1402

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017).
metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834.
doi: 10.1101/gr.213959.116

Ruderman, A., Rabinowitz, N. C., Morcos, A. S., and Zoran, D. (2018). Pooling is
neither necessary nor sufficient for appropriate deformation stability in CNNs. arXiv
preprint arXiv:1804.04438. doi: 10.48550/arXiv.1804.04438

Frontiers inMicrobiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1215609
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1215609/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btaa857
https://doi.org/10.1073/pnas.0504604102
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/biot.202100239
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1101/gr.224964.117
https://doi.org/10.1038/s41587-019-0315-8
https://doi.org/10.1016/j.tibtech.2019.07.007
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.synbio.2021.04.005
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1093/nar/gkt1249
https://doi.org/10.1038/s41467-020-15977-4
https://doi.org/10.1093/bib/bbn017
https://doi.org/10.1007/s11766-021-4033-x
https://doi.org/10.1093/nar/gkt1402
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.48550/arXiv.1804.04438
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fmicb.2023.1215609

Tang, H., Wu, Y., Deng, J., Chen, N., Zheng, Z., Wei, Y., et al. (2020). Promoter
architecture and promoter engineering in Saccharomyces cerevisiae. Metabolites 10,
320. doi: 10.3390/metabo10080320

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
et al. (2017). “Attention is all you need,” in NIPS’17: Proceedings of the 31st
International Conference on Neural Information Processing Systems, 6000–6010.
doi: 10.5555/3295222.3295349

Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro-Montero, A.,
Drewe, P., et al. (2014). Determination and inference of eukaryotic transcription factor
sequence specificity. Cell 158, 1431–1443. doi: 10.1016/j.cell.2014.08.009

Wu, M.-R., Nissim, L., Stupp, D., Pery, E., Binder-Nissim, A., Weisinger, K.,
et al. (2019). A high-throughput screening and computation platform for identifying
synthetic promoters with enhanced cell-state specificity (specs). Nat. Commun. 10,
1–10. doi: 10.1038/s41467-019-10912-8

Zhao, M., Yuan, Z., Wu, L., Zhou, S., and Deng, Y. (2021). Precise prediction of
promoter strength based on a de novo synthetic promoter library coupled withmachine
learning. ACS Synth. Biol. 11, 92–102. doi: 10.1021/acssynbio.1c00117

Zou, D., Cao, Y., Zhou, D., and Gu, Q. (2020). Gradient descent optimizes
over-parameterized deep ReLU networks. Mach. Learn. 109, 467–492.
doi: 10.1007/s10994-019-05839-6

Frontiers inMicrobiology 12 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1215609
https://doi.org/10.3390/metabo10080320
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1016/j.cell.2014.08.009
https://doi.org/10.1038/s41467-019-10912-8
https://doi.org/10.1021/acssynbio.1c00117
https://doi.org/10.1007/s10994-019-05839-6
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	EVMP: enhancing machine learning models for synthetic promoter strength prediction by Extended Vision Mutant Priority framework
	1. Introduction
	2. Materials and methods
	2.1. EVMP architecture
	2.1.1. EVMP data processing
	2.1.2. Data augmentation
	2.1.3. EVMP framework
	2.1.4. Promoter strength prediction

	2.2. Mutation representation paradigms
	2.2.1. Vars+PE
	2.2.2. Mask

	2.3. Datasets and models

	3. Results
	3.1. EVMP discards redundant bases
	3.2. EVMP enhances the effect of ML models
	3.3. Data augmentation further enhances EVMP
	3.4. Extended vision is necessary for EVMP

	4. Discussion
	4.1. Why EVMP: experimental perspective
	4.2. Why EVMP: theoretical perspective
	4.3. EVMP reduces the need for annotated data under the same prediction accuracy
	4.4. Limitations and potential

	5. Conclusions and future works
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


