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The gut microbiome profile in patients with pathological scars remains rarely

known, especially those patients who are susceptible to pathological scars.

Previous studies demonstrated that gut microbial dysbiosis can promote the

development of a series of diseases via the interaction between gut microbiota

and host. The current study aimed to explore the gut microbiota of patients

who are prone to suffer from pathological scars. 35 patients with pathological

scars (PS group) and 40 patients with normal scars (NS group) were recruited

for collection of fecal samples to sequence the 16S ribosomal RNA (16S rRNA)

V3-V4 region of gut microbiota. Alpha diversity of gut microbiota showed

a significant difference between NS group and PS group, and beta diversity

indicated that the composition of gut microbiota in NS and PS participants was

different, which implied that dysbiosis exhibits in patients who are susceptible to

pathological scars. Based on phylum, genus, species levels, we demonstrated that

the changing in some gut microbiota (Firmicutes; Bacteroides; Escherichia coli,

etc.) may contribute to the occurrence or development of pathological scars.

Moreover, the interaction network of gut microbiota in NS and PS group clearly

revealed the different interaction model of each group. Our study has preliminary

confirmed that dysbiosis exhibits in patients who are susceptible to pathological

scars, and provide a new insight regarding the role of the gut microbiome in PS

development and progression.
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Introduction

Human body harbors trillions of microbial cells, which play a key role to our human
life. Moreover, the highest density of these microbial cells are found in the intestinal
compartment, and these microbial cells form a complex microbial community in the
intestine known as gut microbiota (Lozupone et al., 2012). Numerous studies have indicated
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that the gut microbiota communicate with multiple distant organs
through a variety of signal transduction pathways, and they are
closely related to many diseases in the human body, including
Alzheimer’s disease, hypertension, colon cancer (Li et al., 2017;
Zheng et al., 2020; D’Argenio et al., 2022). In addition, it was
reported that DNA originating from gut microbes has been found
in the bloodstream of patients who are experiencing active psoriasis
(Ramírez-Boscá et al., 2015). In recent years, a lot of studies
have raised a concept of the gut-skin axis aiming to discover the
relationship between gut microbiota and skin (Salem et al., 2018;
Fang et al., 2022; Mahmud et al., 2022), previous studies revealed
that there may be a positive feedback loop between dysbiosis
of intestinal microbiota related to Faecalibacterium prausnitzii
and disruption of the epithelial barrier caused by uncontrolled
inflammation in the epithelium (Song et al., 2016). It was found that
oral administration of Lactobacillus plantarum HY7714 prevented
ultraviolet-induced photoaging in mice by inhibiting MMP-1
expression in dermal fibroblasts (Kim et al., 2014). Moreover, De
Pessemier et al. (2021) found that the gut–skin axis links the gut
microbiota to skin diseases via the metabolites, gut barrier and
inflammatory mediators.

Skin wound healing, a complicated pathophysiological process,
is generally divided into three stages including inflammation,
proliferation and reshaping phases (Martin, 1997). The formation
of scar is caused by excess extracellular matrix (ECM) deposition
in the place of the normal dermal tissue in the process of skin
repair (Jackson et al., 2012). Pathological scars, which mainly refer
to keloid and hypertrophic scars, are dermal connective-tissue
disorders after dermal injury caused by inflammatory response
and speed healing, and it may affect patients both esthetically and
psychosocially (Lau et al., 2009; Huang et al., 2014). In addition,
the treatment of pathological scars presents a significant burden for
patients and has always been bothering doctors for a long term,
especially those patients with multiple pathological scars (Avram
et al., 2009; Pai and Cummings, 2011; Jfri et al., 2015; Ogawa, 2022).
Pathological scars can be influenced by numerous local, systemic,
and genetic factors that affect their characteristics and quantity
(Avram et al., 2009). Most prior studies are focusing on the local
lesions rather than the systemic factors in regard to scars, especially
those affected by gut microbiota. Therefore, in current study, we
decided to found out the relationship between gut microbiota and
pathological scars.

In this study, regarding the patients who are susceptible to
pathological scars, we present a pioneer work to investigate the
generalizable pathological scar-associated microbial signatures and
examine the relationship between the pathological scars and gut
microbiota by 16S rRNA gene sequencing technology. Hence, the
community composition and distribution were characterized to
provide an experimental basis for future studies aimed at improving
the prevention and treatment of pathological scars.

Materials and methods

Participants

In the current study, 35 patients with pathological scars
(≥3 lesions throughout the body) were recruited, and 40

patients with normal scars were distributed to the control
group. Participants met the following criteria were enrolled: for
pathological scar (PS) group: developing lesions in the past year;
with pathological scar-related symptoms such as itching, pain,
etc; scar recurrence after a series of therapy resection, such
as resection, local radiotherapy, drug injection, etc; for normal
scar (NS) group: scar formation within 2 years after injury or
surgery. Subjects who met any of the following criteria were
excluded: taking antibiotics/microecological preparation/immune
modulators/hormonal drugs/traditional Chinese medicine in the
past month; with endocrine system disease/Inflammatory bowel
disease/frequent diarrhea; digestive system surgical procedures
within 3 years; with hemodialysis/cleansing enema or oral taking
bowel cleansing agent within 2 weeks. This study was approved
by the Ethics Committee of the Fujian Medical University Union
hospital (No. 2021KJCX020), and all participants provided written
informed consent.

Collection of fecal samples and DNA
extraction

In all participants, the fecal samples were collected into stool
specimen collection tubes containing DNA stabilizer, immediately
afterward, they were flash-frozen on dry ice and stored at a
temperature of −80◦C until analysis. The genomic DNA of
microbes was extracted from fecal samples using the E.Z.N.A. R©

soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) following the
manufacturer’s instructions. The quality and concentration of DNA
were determined using 1.0% agarose gel electrophoresis and the
NanoDrop R© ND-2000 spectrophotometer (Thermo Scientific Inc.,
USA), then the DNA samples were stored at a temperature of
−80◦C for further use.

16S rRNA amplicon sequencing

V3-V4, the hypervariable region of the bacterial 16S
rRNA gene, were amplified with primer pairs 338F (5′-ACTC
CTACGGGAGGCAGCAG-3′) and 806R(5′-GGACTACHVGGGT
WTCTAAT-3′) (Liu et al., 2016) using an ABI GeneAmp R© 9700
PCR thermocycler (ABI, CA, USA). The PCR reaction mixture
contained 4 µL 5 × Fast Pfu buffer, 2 µL 2.5 mM dNTPs, 0.8 µL
forward primer (5 µM), 0.8 µL reverse primer (5 µM), 0.4 µL
Fast Pfu polymerase, 0.2 µL BSA, 10 ng of template DNA, and
ddH2O was added to reach a final volume of 20 µL. The PCR
amplification protocol was as follows: initial denaturation at
95◦C for 3 min, followed by 30 cycles of denaturing at 95◦C
for 30 s, annealing at 55◦C for 30 s and extension at 72◦C for
45 s, and single extension at 72◦C for 10 min, and end at 10◦C,
and all samples underwent amplification in triplicate. For all
samples, the PCR product was extracted from 2% agarose gel,
and purified by the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA), following the manufacturer’s
instructions. The purified product was quantified using the
QuantusTM Fluorometer (Promega, USA). Subsequently, the
purified amplicons were combined in equimolar amounts and
subjected to paired-end sequencing using an Illumina NovaSeq
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PE250 platform (Illumina, San Diego, USA), following the standard
protocols provided by Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China).

Microbiome analysis and statistical
analysis

The initial demultiplexing of the raw FASTQ files was
performed using a custom Perl script, followed by quality filtering
using fastp version 0.19.6 (Chen et al., 2018), and subsequently
merging using FLASH version 1.2.7 (Magoč and Salzberg, 2011).
The sequences underwent filtration and clustering to form
operational taxonomic units (OTUs) using UPARSE 7.1 at a 97%
similarity threshold. The taxonomy of OTU was analyzed by
QIIME (Version 1.9.1) against the 16S rRNA database (Silva V138),
with a confidence threshold of 70%.

The α-diversity was measured with the Ace, Chao, Shannon,
Simpson and Coverage indexes using Mothur software. To identify
differences in abundance in the gut microbiota between patients
with NS and PS, the β-diversity was estimated by computing
the Bray-Curtis (ANOSIM). Data are analyzed by wilcoxon rank-
sum test with Benjamini-Hochberg false discovery rate multiple
test correction. In the analysis of seeking significantly changed
taxa between two groups, data were analyzed by wilcoxon rank-
sum test with Benjamini-Hochberg false discovery rate multiple
test correction. In LEfSe analysis, p < 0.05 (Kruskal–Wallis
test) and log10[LDA] ≥ 3.0 were considered to indicate a
significant difference in gut microbiota. P < 0.05 was considered
statistically significant.

Results

Characteristics of participants

Based on the inclusion and exclusion criteria, fecal samples
were collected from 35 patients with pathological scars and 40
patients with normal scars. In addition, the fecal samples derived
from patients with pathological scars were distributed to the PS
group and derived from patients with normal scars are distributed
to the NS group. As seen in Table 1, there were no significant
differences in gender, age, systolic blood pressure and diastolic
blood pressure among the PS and NS groups. Details of the
participants are shown in Table 1.

Alpha-diversity and beta-diversity
analysis

Alpha-diversity and beta-diversity analysis had been performed
to compare the similarities and differences in species diversity of
the gut microbiota between the NS and PS groups. According
to the α-diversity analysis, the Ace, Chao, Shannon and
Simpson indexes indicated that PS group showed no significant
difference of community diversity compared with the NS group
(Figures 1A–D). However, Coverage index demonstrated that

TABLE 1 Characteristics of participants.

NS (n = 40) PS (n = 35) P-value

Gender, male/female 17/23 14/21 0.826

Age, years 28.92± 10.31 29.51± 11.12 0.812

BMI, kg/m2 21.75± 3.69 22.45± 3.07 0.378

Systolic blood pressure, mmHg 121.93± 8.78 119.20± 13.53 0.298

Diastolic blood pressure, mmHg 72.40± 6.69 71.31± 8.64 0.542

Blood glucose, mmol/L 4.67± 0.41 4.75± 0.56 0.508

Ca2+, mmol/L 2.33± 0.10 2.33± 0.12 0.987

Cholesterol, mmol/L 4.67± 0.89 4.44± 0.81 0.243

Dietary habits

Meat (%) 13 (32.5) 11 (31.43) 0.921

Dessert (%) 11 (27.5) 12 (34.29) 0.618

Spicy food (%) 6 (15) 9 (25.71) 0.386

Data were compared using the χ2 test, or student t-test. P > 0.05 means no statistically
significant difference.

there was a significant difference between PS and NS group
(Figure 1E).

The microbiota’s overall diversity was evaluated using the
PCoA analysis based on the Bray-Curtis distance, and the results
of the ANOSIM test indicated a significant difference between
the PS and NS groups (R = 0.5801, p = 0.001, Figure 1F).
The sample clustering tree and histogram combination analysis
diagram (Figure 1G) clearly revealed that those with comparable
β-diversity were grouped together, and the samples from the PS
and NS groups could be well-clustered into two groups indicating a
different composition of gut microbiota in PS and NS participants.
Therefore, these findings revealed that PS patients exhibit dysbiosis,
an imbalance in their gut microbial composition.

Gut microbiome composition of PS and
NS groups

In our study, Venn diagram showed that PS and NS groups
shared 12 phyla, with 2 and 2 phyla unique to the NS group and
PS group, respectively; shared 238 genera, with 20 and 58 genera
unique to the NS group and PS group, respectively; shared 425
phyla, with 64 and 149 species unique to the NS group and PS
group, respectively (Supplementary Figure 1).

Subsequently, as shown in Figure 2, we conducted bar plot
and Circos analyses to illustrate the differences of the microbiota
composition between PS and NS. The bar plot was used to
roughly indicate the relative abundance of varied gut microbiota
at phylum, genera and species levels (Figures 2A–C). At phylum
level (Figure 2A), in the NS group, Bacteroidota was the most
abundant phylum, followed by Firmicutes, Proteobacteria and
Fusobacteriota, however, in the PS group, Firmicutes was the
most abundant phylum, followed by Proteobacteria, Bacteroidota,
Actinobacteriota and Fusobacteriota. The proportion of Bacteroides
and Faecalibacterium was larger, while Escherichia-Shigella, Blautia,
Bifidobacterium and Subdoligranulum were smaller in the NS group
than the PS group at Genus level (Figure 2B). At species level
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FIGURE 1

The α-diversity is analyzed by the (A) Ace, (B) Chao, (C) Shannon, (D) Simpson, (E) Coverage indexes. (F) The β-diversity is shown by principal
coordinate analysis (PCoA) based on Bray–Curtis Dissimilarity index (ANOSIM, R = 0.5801, P = 0.0010). (G) A sample clustering tree and histogram
structure analysis diagram at the genus level is shown. The hierarchical clustering analysis between samples based on community composition is on
the left side and the right side indicate the histogram of a community composition of the samples.

(Figure 2C), NS patients were characterized by a higher relative
abundance of Bacteroides vulgatus and a lower relative abundance
of Escherichia coli compared with PS patients. The utilization of
Circos analysis allowed for the depiction of the correlation in
abundance of bacterial communities at the phylum (Figure 2D),
genus (Figure 2E) and species (Figure 2F) levels between PS and
NS, thereby corroborating the findings from the bar plot analysis.

Comparison of the relative abundance of
gut microbiota between PS and NS
groups

Those patients with PS displayed a relative difference of
distinct gut microbiota, when compared with NS patients. The
differentially abundant microbiota at the phylum, genus and
species levels in PS versus NS were shown in Figure 3. At the
phylum level (Figure 3A), PS showed a significant increase in
Firmicutes, Actinobacteriota, Synergistota, Patescibacteria and
Cyanobacteria but decrease in Bacteroidota compared with NS.
At genus level (Figure 3B), the proportions of Bacteroides and

Parabacteroides were significantly larger in NS, while Escherichia-
Shigella, Blautia, Bifidobacterium, Subdoligranulum, Prevotella,
Klebsiella, Eubacterium hallii group, Anaerostipes, Collinsella,
Dorea, Ruminococcus torques group, Erysipelotrichaceae UCG-003
and Streptococcus were significantly enriched in PS. At the species
level (Figure 3C), NS showed a significant decrease in Escherichia
coli, unclassified Blautia, uncultured bacterium Subdoligranulum,
unclassed Prevotella 9, Bifidobacterium pseudocatenulatum DSM
20438 = JCM 1200 = LMG 10505, Klebsiella variicola, unclassified
Eubacterium hallii gourp, Anaerostipes hadrus, unclassified
Ruminococcus torques group and unclassified Erysipelotrichaceae
ucg-003, while increase in Bacteroides vulgatus, Bacteroides
xylanisolvens, Bacteroides stercoris ATCC 43183, Bacteroides
uniformis and uncultured organism Bacteroides.

We conducted the LEfSe analysis to identify the biological
taxonomic differences between PS and NS. We found 6, 31 and
43 differentially abundant taxa at the phylum level (Figure 4A),
genus level (Figure 4B) and species level (Figure 4C), respectively.
According to the LEfSe analysis, the PS group exhibited a
predominance of Firmicutes, Actinobacteriota, and Patescibacteria,
while presented a decrease in Bacteroidota at phylum level. At genus
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FIGURE 2

Relative abundance of microbial community at phylum, genus, species levels. (A–C) Bar plots show the average relative abundance of gut microbiota
in NS, PS group. Circos analysis shows the corresponding abundance of fecal microbiota in NS, PS group at phylum (D), genus (E), species (F) levels.

level, the proportion of Escherichia-Shigella, Blautia, Prevotella 9
were larger, but the proportion of Bacteroides, Parabacteroides
and Lachnospiraceae UCG-004 were smaller. At species level,
PS showed a significant increase in Escherichia coli, uncultured
bacterium Subdoligranulum and unclassified Prevotella 9, but
decrease in Bacteroides vulgatus, Bacteroides xylanisolvens and
Bacteroides stercoris ATCC 43183. More details of the differences
were shown in Figure 4.

Correlation network analysis

The gut microbiota forms an intricate network in which
specific species are influenced not only by the host, but also by
other bacteria present within the community. We performed a
correlation network analysis to visualize the relationship between
varied gut microbiota in PS and NS patients based on the
top 50 relative abundance of OTUs. Among the 50 OTUs,
33 and 36 had associations with other OTUs in NS and PS
respectively with an absolute coefficient value > 0.5, p-value < 0.05
(Supplementary Figure 2). Moreover, degree centrality (DC),
closeness centrality (CC), and betweenness centrality (BC)
centrality were performed to evaluate the taxa importance within
the network (Supplementary Table 1).

Notably, the correlation network of NS group (Figure 5A)
showed a simpler and similar microbial relationship, however, the
PS group (Figure 5B) presented a substantially more complicated

microbial network. These findings suggested that gut microbial
dysbiosis might exist in PS patients, and implied that the interaction
changing between gut microbiota might led to the occurrence of
pathological scars. In addition, in the gut microbial community
network of PS patients, Firmicutes had a higher prevalence while
Bacteroidota had a lower prevalence. Whereas, in the group of
NS, both Bacteroidota and Firmicutes played dominant role in the
correlation structure of gut microbiota. These results indicated
that Bacteroidota and Firmicutes might play a crucial role in
maintaining scar-related gut ecosystem in patients.

Discussion

In recent years, there has been extensive research focused on the
correlation between the human microbiome and various disorders.
Currently, consistent evidence has demonstrated that the gut
microbiota plays crucial roles in the development of skin diseases
by interacting with the host system (Fang et al., 2021; Sinha et al.,
2021; Moniaga et al., 2022). The current study focused on exploring
the generalizable pathological scar-associated microbial signatures
and determining the relationship between the gut microbiota and
pathological scars using 16S rRNA gene sequencing technology
with 35 PS patients and 40 NS patients’ fecal samples.

Regarding PS group, we found a significant difference
in microbiota alpha diversity compared with NS group,
and then we performed microbial beta-diversity analysis to

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1215884
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1215884 June 23, 2023 Time: 10:46 # 6

Li et al. 10.3389/fmicb.2023.1215884

FIGURE 3

Comparison of the relative abundance of gut microbiota between NS and PS groups. Significantly changed taxa between two group at panel (A)
phylum, (B) genus, (C) species levels. Data are analyzed by wilcoxon rank-sum test with Benjamini-Hochberg false discovery rate multiple test
correction.

examine the similarity in the overall community structure
between two groups, and beta-diversity revealed a significant
difference in microbiota community structure between PS
and NS patients. The sample clustering tree and histogram

combination analysis diagram obviously demonstrated that the
samples from the PS and NS groups could be well-clustered
into two groups, which indicated that there was a different
composition of gut microbiota in PS and NS participants.
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FIGURE 4

LDA diagram of LEfSe analysis at panel (A) phylum, (B) genus and (C) species levels. The red histogram represents NS group, and blue histogram
represents PS group. The length of the histogram represents LDA score. P < 0.05 (Kruskal–Wallis test); log10[LDA] ≥ 3.0.

FIGURE 5

Correlation network analysis of the 50 most abundant OTUs for panel (A) NS and (B) PS. The networks display significant positive (red lines) and
negative (green lines) correlations between operational taxonomic units (OTUs). The thickness of the lines represents the magnitude of the
correlation coefficient, with thicker lines indicating a stronger correlation between OTUs. The size of the nodes represents the abundance of OTUs.
OTUs are colored by phylum affiliation.

Moreover, these results implied that gut microbial dysbiosis
exists in PS patients.

There are four primary phyla in the human gut microbiota,
which are named as Actinobacteria, Bacteroidetes, Firmicutes,
and Proteobacteria (Arumugam et al., 2011). We found that the
relative abundance of Firmicutes was higher in PS participants
compared with NS group based on our 16s rRNA gene sequencing.
In previous study, it was pointed out that the abundance of
Firmicutes was increased in old female mice compared with the
young ones with higher systemic inflammation (Ma et al., 2020).
According to the prior research, we found that Firmicutes is closely
associated with inflammatory diseases. During the preclinical stage

of arthritis, the intestinal microbiota is primarily dominated by
Firmicutes (Rogier et al., 2017). Hypertrophic scars and keloids
are two types of pathological scars that result from differences in
the intensity and duration of inflammation present in a wound,
therefore, among them, hypertrophic scars are caused by mild
inflammation, while keloids are caused by severe inflammation
(Berman et al., 2017). In addition, Huang et al. (2013) claimed
that the systemic factors in pathological scar patients could
directly influence the process of angiogenesis, local inflammation,
fibrosis and pathological scars remodeling. According to the prior
research, we found that Firmicutes is closely associated with
inflammatory diseases. Hence, these results implied that Firmicutes
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in human gut might play an important role in the occurrence of
pathological scar via promoting systemic inflammatory response in
the human.

At genus level, the proportion of Bacteroides was larger,
while the ratio of Escherichia-Shigella was smaller in patients
with NS. Previous study found that almost a quarter of the
intestinal microbiota in humans is constituted by Bacteroides,
making it a predominant genus (Ochoa-Repáraz et al., 2010).
Due to their long-term existence in the host’s intestinal niche
and co-evolution with the host, they have established a stable
mutually beneficial symbiotic relationship (Faith et al., 2013). Since
Bacteroides is significant decreasing in patients with inflammatory
bowel disease (IBD) when compared with healthy control, it
is considered to have potential anti-inflammatory properties
(Takahashi et al., 2016; Brown et al., 2019; Zhong et al., 2019). In the
opposite, Escherichia-Shigella is characterized by proinflammatory
properties, prior studies revealed that the reduction of blood
pro-inflammatory mediators may associated with the decreasing
of Escherichia-Shigella in gut (Chen et al., 2021; Pivari et al.,
2022). Escherichia-Shigella showed a positive correlation with
inflammatory diseases in the human gut, however, Bacteroides
demonstrated negatively correlated with inflammatory diseases,
these results indicated that the adjustment of the proportion of
Bacteroides and Escherichia-Shigella in the human gut may reshape
the structure of the gut microbiota and subsequently improve the
patient’s condition or prevent the occurrence or development of
pathological scars.

On the changed species, we found that Escherichia coli
significantly increased in PS group. An et al. (2021) demonstrated
that the formation of CaOx stone in kidney can be facilitated
by Escherichia coli through enhancing oxidative injury and
inflammation. Moreover, it is found that Escherichia coli is
responsible for the colorectal cancer susceptibility in patients by
inducing inflammatory bowel disease (IBD) (Khan et al., 2017).

Franceschi et al. (2018) claimed that chronic and low-grade
sterile inflammation throughout the body is an important
pathogenic mechanism for various age-related diseases,
including cardiovascular disease and metabolic diseases, they
also demonstrate that gut microbiota plays a crucial role in both
immunity and metabolism by constantly interacting with other
organs and tissues throughout the body, resulting in significant
effects. Pathological scars often occur after dermal injury and they
are characterized by abnormal deposition of extracellular matrix
and proliferation of fibroblasts (Lee et al., 2004; van der Veer et al.,
2009; Huang and Ogawa, 2020). In clinical, a part of patients is
prone to suffering from multiple pathological scars throughout the
body for unknown reason. The delayed healing can be reversed
through the use of exogenous estrogen treatment, applied either
topically or systemically, via inflammation down-regulation
inflammation (Ashcroft et al., 1997; Son et al., 2005). Moreover,
xanthohumol and oxandrolone have been proven to accelerate
wound healing by modulating the systemic inflammatory response
(Costa et al., 2013; Ahmad et al., 2019). Therefore, the systemic
inflammation caused by gut microbial dysbiosis may lead to the
occurrence or development of pathological scars, it means that the
microbiome directly or indirectly affects the balance of systemic
inflammatory response in the human, and thus, perhaps, reshaping
the proportion of microbiota in gut could improve the condition
of patients who are susceptible to pathological scars.

Overall, based on the phylum, family, and genus
levels, the current study found that the gut microbiota
structure in patients who are susceptible to have pathological
scars was different to that of patients with normal scars.
Through their diverse biological effects, the varied gut
microbiota played a crucial role on the occurrence and
development of pathological scars by inducing systemic
inflammation. Moreover, as shown in the correlation network,
the interaction model between varied gut microbiota in
patients with PS was greatly different to that of patients
with normal scars.

Conclusion

We provide a valuable and complete dataset, it will be helpful
for the future studies which are aiming at exploring the relationship
between gut microbiota and susceptibility to pathological scars.
Our findings help clarify the proportion of gut microbiota in
patients with PS and NS. In conclusion, our study has preliminary
confirmed that dysbiosis exhibits in patients who are susceptible to
pathological scars, and provide a new insight regarding the role of
the gut microbiome in PS development and progression.
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OTU Venn diagram, red circle indicates the number of OTUs unique to NS,
blue circle indicated the number of OTUs unique to PS, the overlap part
shows the number of OTUs shared by the two groups.

SUPPLEMENTARY FIGURE 2

Heatmap of the 50 most abundant OTUs using Pearson correlation analysis.
(A) NS group. (B) PS group. Correlation coefficient | r| ≥ 0.50, P < 0.05.
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Network central coefficient table of NS and PS.
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