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Introduction: Antimicrobial resistance (AMR) is an increasing public health

concern for humans, animals, and the environment. However, the contributions

of spatially distributed sources of AMR in the environment are not well defined.

Methods: To identify the sources of environmental AMR, the novel microbial Find,

Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-

associated genes (ARGs), namely, erm(B), tet(W), qnrA, sul1, and intI1, quantified

from riverbed sediment and surface water from a mixed-use region.

Results: A one standard deviation increase in the modeled contributions of

elevated AMR frombovine sources or land-appliedwaste sources [land application

of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic

(i.e., municipal and septage)] was associated with 34–80% and 33–77% increases

in the relative abundances of the ARGs in riverbed sediment and surface water,

respectively. Sources influenced environmental AMR at overland distances of up

to 13 km.

Discussion: Our study corroborates previous evidence of o�site migration of

microbial pollution frombovine sources and newly suggests o�sitemigration from

land-applied waste. With FIT, we estimated the distance-based influence range

overland and downstream around sources tomodel the impact these sourcesmay

have on AMR at unsampled sites. This modeling supports targeted monitoring of

AMR from sources for future exposure and risk mitigation e�orts.

KEYWORDS

microbial FIT, antimicrobial resistance, surface water, sediment, animal feeding

operations, land application

1. Introduction

Antimicrobial resistance (AMR) currently exists at higher than natural levels

due to antibiotics use and misuse in human and animal medicine and livestock

production (Davies and Davies, 2010). Wastes from these origins contain pathogens

and associated antibiotic resistance genes (ARGs), which can be dispersed via runoff

into rivers in the environment (Amarasiri et al., 2019). While putative geographical
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sources of pathogens and ARGs have been identified, the extent

of their contributions to elevated AMR in the environment

remains unknown. Characterizations of AMR spatial sources, their

contributions (Nappier et al., 2020), and modeling approaches that

suit the conceptual framework of ARG transport, attenuation, and

amplification (Singer et al., 2006; Pruden et al., 2012) are needed.

Antibiotic resistance genes and antibiotic-resistant bacteria

(ARB) can become elevated intracellularly due to the impacts

of human and animal sources by (1) direct dissemination or

extracellularly and through horizontal gene transfer (HGT), (2)

organic matter enrichment of ARGs, and (3) the dissemination

of selective factors (e.g., antibiotics) from sources (Xie et al.,

2018). A geospatial study of surface water in the United States

supports that land use is a driver of AMR (Keely et al., 2022).

Potential sources of elevated AMR in the environment have been

identified at locations where human, animal, and industrial waste

meet with the environment (Nappier et al., 2020; Zainab et al.,

2020; Zheng et al., 2021). Animal feeding operations (AFOs) are

likely sources due to frequent antibiotic use for disease treatment

and prevention or use in animal feed, often at sub-therapeutic

doses (Pruden et al., 2012; Ling et al., 2013; Heaney et al., 2015;

Li et al., 2015; Rogers et al., 2018; Lopatto et al., 2019). Other

potential sources include wastewater treatment plants (WWTPs)

(Bueno et al., 2018; Brown et al., 2019; Pazda et al., 2019; Beattie

et al., 2020b) and land application sites of treated (i.e., biosolids and

semi-solids) and untreated wastes (i.e., biosolids and wastewater)

from agricultural (e.g., manure spreading), industrial, or municipal

origins (Munir and Xagoraraki, 2011; Beattie et al., 2018, 2020b;

Pepper et al., 2018; Yang et al., 2018; Duarte et al., 2019; Jacobs

et al., 2019). Additionally, elevated AMR levels have been detected

in groundwater near septic systems (O’Dwyer et al., 2017), and

low-intensity developed land cover is a fecal contamination source

(Crowther et al., 2003; Alford et al., 2016; Bucci et al., 2017;

Hinojosa et al., 2020; McKee et al., 2020; Wiesner-Friedman et al.,

2021a). However, ARGs predate manufactured antimicrobials and

exist in natural environments (D’Costa et al., 2011; Van Goethem

et al., 2018), and different soil types can represent sources (Zhang

et al., 2018, 2021; Macedo et al., 2020). Additionally, season (Beattie

et al., 2018, 2020a; Zheng et al., 2018; Liu et al., 2020) and

precipitation (Ahmed et al., 2018; Keen et al., 2018) are temporal

factors to consider.

To model contributions from these sources with known

mechanistic approaches (Wang et al., 2019; Costa et al., 2021),

knowledge of loadings and decay is needed. While current research

shows that first-order decay can represent ARG levels over distance

and time and that ARG decay occurs over long time scales (e.g.,

weeks to months), the decay rate varies depending on the ARG

and environmental variables (Mao et al., 2014; Lopatto et al.,

2019; Macedo et al., 2020; Barrios et al., 2021; Burch et al.,

2021). Furthermore, loadings at sources are not well characterized.

Statistical models incorporating first-order decay are helpful to

screen potential sources of elevated AMR without requiring

mechanistic information (Wang et al., 2019; Costa et al., 2021).

Here, we use land-use regression (LUR) to identify the sources of

contaminants and quantify their association with environmental

responses (Messier et al., 2014). By constructing source terms

that characterize contributions through spatial predictor models

(SPMs), LUR leverages hyperparameters and databases of spatially

distributed sources to describe the decayed range of influence

around sources (Wiesner-Friedman et al., 2021b). LUR studies can

increase the ecological understanding of how sources influence

ARG levels and help develop microbial risk assessments for AMR

(Nappier et al., 2020).

To the best of our knowledge, only two studies using LUR

or SPMs have characterized source contributions to the AMR

levels of rivers and their quantified associations (Pruden et al.,

2012; Amos et al., 2015). Pruden et al. (2012) explored different

SPMs that account for average upstream capacities and found that

WWTPs and AFOs were associated with sul1 relative abundance

in sediment (2012). A recent study (Amos et al., 2015) modeled

the decaying contributions [i.e., decaying concentrations of cellular

and extracellular intI1 (i.e., genes related to ARG mobility

and pollution) and concentrations of selective pressures (e.g.,

antibiotics, biocides, microplastics, etc.)] coming from upstream

WWTPs, leading to higher levels of intI1 relative abundance

in sediment.

These two LUR studies implemented different SPMs.

Pruden et al. (2012) used the inverse distance-weighted (IDW)

interpolation of pollution capacities upstream of the sampling

location. This SPM is an interpolation of pollution capacities

upstream of the sampling point. Therefore, it does not guarantee

that pollution decreases away from sources, as would be expected

from dilution and degradation processes. Amos et al. (2015) used

a sum of exponentially decaying contributions (SEDC) applied

to upstream sources. This model is different from the IDW

interpolation in that it accounts for the density of sources, and

it is such that the predictor value decreases away from sources,

which is physically meaningful. Factors including dilution due

to flow (Knapp et al., 2012), overland flow, and manure hauling

from AFOs to application fields contribute to the dissemination

of microbial contamination to rivers (Wiesner-Friedman et al.,

2021a,b). Our goal is to expand upon previous modeling with a

generalized SPM that incorporates these four components (i.e.,

density and proximity of upstream sources, overland flow, and

dilution) to screen many potential sources of elevated AMR.

By implementing a LUR approach in a new region with a more

generalized SPM, we aimed to (1) estimate relative abundance (i.e.,

ARG/16S rRNA gene) ratios (RARs) that express how AMR levels

respond to the influence of different types of upstream sources,

(2) characterize the overland range of influence around AMR

sources, and (3) predict AMR levels at unsampled river sites. We

were further interested in studying source impacts on riverbed

sediment and surface water, representing time-integrated effects

and transient contamination (Wiesner-Friedman et al., 2021a).

To accomplish this, we applied the newly developed microbial

Find, Inform, and Test (FIT) framework (Wiesner-Friedman et al.,

2021b), which uses LUR and novel SPMs, and applied FIT to a panel

of four ARGs (ermB, tetW, qnrA, and sul1) and one resistance-

associated gene (intI1) (collectively called ARGs throughout)

quantified from riverbed sediment and surface water from amixed-

use Great Lakes watershed area. The panel of ARGs in this study

were selected for their associations with agricultural resistance [i.e.,

tet(W) and erm(B)], clinical significance (i.e., qnrA), and as mobile

genetic elements (i.e., intI1 and sul1) (Beattie et al., 2018). Three
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ARGs have been previously studied using LUR [i.e., tet(W), sul1,

and intI1] but were only measured from sediment (Pruden et al.,

2012; Amos et al., 2015), and two [i.e., erm(B) and qnrA] have

not been studied with LUR. Compared to these previous studies,

we modeled contributions from new types of spatially distributed

sources (e.g., land-applied waste from municipal or industrial

origins) and for ARG responses in sediment and surface water.

2. Methods

2.1. Sampling and sample analysis of
antibiotic resistance genes

The data used for this study were originally collected and

processed by Marquette University researchers (Beattie et al., 2018)

based on (1) the number and spatial distribution of samples and (2)

the high detection rate of ARGs in riverbed sediment and surface

water. The samples were obtained from Kewaunee, Ahnapee, and

East Twin Rivers in Kewaunee County, Wisconsin during five

sampling events representing four seasons and 20 sampling sites

(sampling sites are depicted as circles in Figure 1). Sites were

selected based on the impacts of expected variability from the dense

livestock agriculture in Kewaunee County and public access to

the sites (Beattie et al., 2018). DNA was extracted from samples,

and quantitative PCR was used to quantify AMR-associated genes

[i.e., erm(B), qnrA, tet(W), sul1, and intI1] and the 16S rRNA

gene. Antibiotic resistance gene selection is detailed in a previously

published study (Beattie et al., 2018); briefly, genes resistant to

antibiotics commonly used in agriculture (tetracycline, macrolides,

and sulfonamides; tet(W), erm(B), and sul1), genes found on

mobile genetic elements (intI1 and sul1), and genes conferring

resistance to clinically important antibiotics (fluoroquinolones;

qnrA) were chosen to explore the diversity of environmental

resistance in the study area. Values measuring below the detection

limit (<8% of the data points; see Supplementary Table S1) were

set to half the detection limit. Detailed sampling methods, DNA

extraction, qPCR protocols, and the full ARG dataset (relative and

absolute abundances) can be found in a previously published study

(Beattie et al., 2018). River network, precipitation, temperature, and

source location data and processing can be found in previously

published studies (Wiesner-Friedman et al., 2021a,b).

2.2. Physically meaningful land-use
regression model

This study uses a physically meaningful LURmodel (i.e., source

terms are not allowed to have negative regression coefficients)

implemented in FIT without modifiers (i.e., attenuators or

amplifiers) to focus on characterizing source contributions to each

ARG response, yi (Wiesner-Friedman et al., 2021b):

yi = β0 + P1i (β1 + β2P2i) + β3Freezingi

+
{

∑U
u=1 βus

(u)
i

(

α(u)
) }

+ εi (1)

The ARG response, yi, represents log10 of the relative

abundance zi, where zi is the ratio of ARG copies to 16S rRNA gene

copies. The first three variables, namely, P1i, P2i, and Freezingi,

represent recent precipitation, antecedent precipitation, and a

seasonal, Bernoulli-distributed variable representing whether the

monthly average temperature was freezing for each ithsample.

The first term, β0, and the last term, εi, represent the regression

intercept and random error, respectively. β1, β2, and β3 are

associated regression coefficients, and
∑U

u=1 βus
(u)
i

(

α(u)
)

is a sum

of contributions from spatially distributed sources. Each source

term, s(
u)
i

(

α(u)
)

, is defined as a function of ground hauling,

overland, and downstream decay hyperparameters; α(u), the flow-

connected distances (i.e., overland and downstream distances)

from the spatial locations of sources of type u (e.g., WWTPs)

to the sampling locations of each ithsample; and sample site

flow (proxied by Strahler stream order) (Wiesner-Friedman et al.,

2021b). The sources can also be weighted by information associated

with their scale (e.g., size of the land cover area, gallons of manure,

or equally weighted) (Wiesner-Friedman et al., 2021a). Because

hyperparameters describe the distance decay of dimensionless

quantities that denote the scale of sources, source terms describe

dimensionless source contributions to sampling sites. All source

terms s(
u)
i are SPMs equal to the z-scored Sum of Exponentially

Decaying Contributions (SEDC) so that a one standard deviation

increase in the uth SEDC represents a βu increase in the response.

An RAR expresses the ratio of relative abundances for a one

standard deviation increase in source u. In other words, a one-

unit increase in SPM s(
u)
i results in a

(

100(RAR(u) − 1)
)

percentage

increase in relative abundance z (Wiesner-Friedman et al., 2021b).

See Supplementary material S5 for details.

2.3. Data for spatially distributed sources

Multiple spatial databases are available to represent

potential sources in Kewaunee County. While many sources

of elevated ARGs exist globally, we identified thirteen categories of

potential sources that may be important to Kewaunee County (u

= 1,2,. . . ,13).

The first eight potential sources of the uth categories were

spatially related to sampling site locations with SPMs, which are

the z-scored overland and river-distance with flow (ORF) SPM:

(1) AFOs, (2) manure application fields, (3) septic systems, (4)

industrial land application sites, (5) municipal or septage (i.e.,

domestic-originating) land application sites, (6) WWTPs, (7) low-

intensity developed land cover representing rural accumulations

on imperviousness, and (8) high-intensity developed land

cover representing more urban/residential accumulations on

imperviousness. The next three potential sources were soil sources

represented by the dominant soil type within a 1-km radius of the

sampling location: (9) Type A represents soils with the highest

infiltration rate when saturated, likely consisting of sand, sandy

loam, loamy sand, or gravel soil types; (10) Type C represents

soils with a low infiltration rate when saturated, likely consisting

of clay loam, silty clay loam, sandy clay, or silty clay; and (11)

Type D represents soils with a very low infiltration or high run-off

potential, likely consisting of clay loam, silty clay loam, sandy clay,
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FIGURE 1

Conservative values of the standardized sum of exponentially decaying contribution (SEDC) are shown for two types of spatial prediction models: (A)

AFOs via manure application at agricultural application fields, and (B) land application sites with municipal or industrial wastes and septage. These

standardized SEDCs are conservative in using the maximum hyperparameter values α(u) (see Equation 1) found across ARG responses. For subpanel

a, we used the maximum hyperparameter values α(u) obtained across three relative abundance responses [erm(B), tet(W), and sul1] in sediment

[max(α(u)) = {γG = 14 km, αO = 13 km, αR = 2 km}]. For subpanel b, we used the maximum hyperparameter values α(u) obtained across two

relative abundance responses [tet(W) and intI1] in surface water [max(α(u)) = {αO = 10 km, αR = 10 km}]. An increase of 1 on the color scale

corresponds to a one standard deviation increase of the corresponding SEDC. The multiplication of the standardized SEDC shown here with a given

regression coe�cient βu from Table 1 gives the increase in the corresponding log10 relative abundance y. Circles represent the sampling locations

associated with this study and highlight the conservative value of the standardized SEDC at that site. For example, for erm(B) in sediment, the βu for u

= AFO via manure application fields is βu = 0.199, therefore, a one standard deviation increase (shown in orange in the map) in the standardized

SEDC for AFO via manure application fields increases y (the log10 relative abundance) by 0.199, or conversely, the relative abundance z increases by

a relative abundance ratio (RAR) of 10βu = 1.58, which corresponds to a 58% increase in relative abundance z. Database representations are detailed

in Supplementary material S7.

or silty clay. The last two source categories were those related to

the sampling site locations using the ground hauling, overland, and

river distance with flow (GORF) SPM. Here, the SPM leverages two

source locations to capture how land application occurs on land

disproportionately closer to the origin of the waste [e.g., manure

is hauled from AFOs (u = 1) to manure application fields (u =

2), and AFOs will minimize hauling distances for cost purposes

(Hadrich et al., 2010)]. The sources defined with this SPM are 12)

AFOs via the ground transport or hauling of manure to fields and

13) domestic-originating land application sites (u = 5) with waste

that is applied more greatly in proximity to denser residential areas

represented by septic system locations (u = 3). See previous study

for SPM equations and descriptions (Wiesner-Friedman et al.,

2021b).

2.4. Application of the FIT framework to
ARG responses

The microbial FIT framework is a three-step approach

(Wiesner-Friedman et al., 2021b) using the physically meaningful

LUR (Equation 1). The three stages of the FIT framework, Find,

Inform, and Test, were applied independently to the 10 ARG

responses (i.e., sediment and water measurements of five ARGs).

This modeling was implemented in MATLAB 2020b (https://

scicrunch.org/resolver/RRID:SCR_001622).

In Find reliable databases of spatially distributed sources, many

candidate databases can be explored for their ability to reproduce

source-term relationships for unseen data. Here, for each of the

potential ARG source categories (u = 1,2,. . . ,13), we explored

the candidate options for representing the sources based on (a)

available databases [e.g., the Wiscland-2 land cover database,

the Wisconsin Pollution Discharge Elimination System (WPDES)

database, and county databases available for manure storage and

septic systems], (b) coding options, (c) different classes of data, and

(d) weighting options (see Supplementary material S2 for details).

The find stage obtains a reliability score for each candidate

database option. The reliability score is calculated by obtaining

hyperparameters for the SPM for a training set of response

data. Using training hyperparameters for a test set (see

Supplementary material S4), we calculated a reliability score

with test-set regression coefficients. The score rewards candidate

databases with the most consistently positive test-set regression

coefficients [i.e., sign stability score (SSS)], the largest sum

of test-set coefficients (M), and the lowest variability of the

test-set coefficients (Wiesner-Friedman et al., 2021b). See

Supplementary material S2 for the reliability score equation.

In the inform stage, source terms are informed with transport-

characterizing hyperparameters in ORF and GORF SPMs. In this
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TABLE 1 Symbols and abbreviations from Equation 1.

Term Description

yi log10 of the relative abundance zi , where zi is the ratio

of ARG copies to 16S rRNA gene copies for each

ithsample.

P1i Recent precipitation for each ithsample.

P2i Antecedent precipitation for each ithsample.

Freezingi Bernoulli distributed variable representing whether the

monthly average temperature was freezing for each

ithsample.

s(u)i

(

α(u)
)

The impact on each ithsample from the uthsource type

modeled with the Sum of Exponentially Decaying

Contributions (SEDC) Spatial Predictor Models (SPMs)

that account for the ground hauling, overland, and river

distance flow (Wiesner-Friedman et al., 2021a,b).

β0 The regression intercept.

β1 The increase in yi for a one standard deviation increase

in recent precipitation.

β2 The effect that a one standard deviation increase in

antecedent precipitation has on the effect of recent

precipitation β1 .

β3 The effect of freezing temperatures on yi .

βu The increase in yi for a one standard deviation increase

in the source term s(u)i

(

α(u)
)

.

εi The random error for each ithsample.

stage, hyperparameter values, α(u) (i.e., describing average ground

hauling distance γG, decay overland αO, and downstream αR),

were obtained by independently maximizing the RAR (10β(u)
) for

every source type. This maximization was subject to a penalty on

very low or high values of overland decay and ground hauling

hyperparameters, αO and γG, that yielded poor regression qualities

(Wiesner-Friedman et al., 2021b). The spatial predictor models

leveraging the hyperparameters, α(u), are described in detail in the

microbial FIT framework (Wiesner-Friedman et al., 2021b).

The goal of the last stage is to test the predictive ability of

informed source terms to identify key sources of elevated ARGs

in Kewaunee County Rivers and Streams. Before model selection,

if the correlation of informed source terms was large (ρ ≥0.7),

those yielding the highest univariate R-squared were chosen

over correlated options (Dormann et al., 2013). Then, seasonal,

precipitation, and source terms were stepwise selected with

AIC. The prediction of individual source impacts on unsampled

locations was initially assessed through the find stage based on

the robustness of the source term’s consistent contributions and

the ARG’s log10 relative abundance across training and test sets.

Ultimately, the prediction of total source impacts was assessed with

the adjusted R2 resulting from the test stage.

2.5. Conducting interviews/surveys with
Wisconsin dairy cattle veterinarians

To understand which ARGs are likely to be shed by bovines

based on antibiotic usage, we reviewed information from a

thorough systematic review outlining and quantifying antibiotic

usage on Wisconsin dairy farms (Pol and Ruegg, 2007). Since

the publishing of that study, practices may have changed, and

a previous ARG study found local knowledge to be beneficial

(Rogers et al., 2018). We conducted a small survey with dairy

cattle veterinarians and asked Wisconsin dairy cattle veterinarians

about the changes they have observed in antibiotic use over

their careers. Google Maps was used to search for veterinarians,

veterinary services, and “large animal” services. In total, 12

veterinary offices were identified as serving the dairy cattle

industry, representing the practices of over 30 veterinarians.

Surveys were sent to all 12 offices, and four returned our

surveys. See Supplementary material S6.1 for survey questions and

veterinarian responses.

3. Results

3.1. The ARGs in this study are biologically
linked to antibiotic usage in Wisconsin
AFOs

According to the four veterinarians we interviewed, ceftiofur,

a beta-lactam (Dowling, 2004), was the most frequently prescribed

antibiotic for disease treatment (Dowling, 2004). Other antibiotics

that veterinarians prescribe are enrofloxacin, florfenicol,

tulathromycin, and oxytetracycline. These interviews (see

Supplementary material S4 for interview details and discussion)

reflected antibiotic use for disease treatment that was consistent

with the findings of the 2007 study on antibiotic usage at

AFOs in Wisconsin (Pol and Ruegg, 2007). These antibiotics

belong to the broader classes of fluoroquinolones, sulfonamides,

macrolides, and tetracyclines, which correspond well with

resistance encoded by or co-occurring with the ARGs used

for this LUR modeling (Pal et al., 2015; Beattie et al., 2018).

Our interviews did indicate that some antibiotics are still used

preventatively (e.g., tetracycline flushes) because operations have

difficulty monitoring large herds. Preventative antibiotic use is

therefore a missing component in understanding the frequency

and dose associated with these classes of antibiotics. However, our

interviews and the 2007 study provide a biological link between

the panel of ARGs from our study and dairy AFOs. Additionally,

although intI1 has been identified as a marker for anthropogenic

pollution more broadly, clinical class I integrons can carry ARG

cassettes, conferring multidrug resistance with the ability to

spread rapidly through horizontal gene transfer (Gillings et al.,

2015).

We could not directly obtain information on clinical

antibiotic usage in rural Wisconsin. However, one wastewater

study (Karthikeyan and Meyer, 2006) indicates a total of

six classes of antibiotic compounds found in the influent

of municipal wastewater from across Wisconsin. Based

on the frequency of the detection of different antibiotic

classes, the study indicates that the ARGs for this study may

also well represent the anthropogenic impacts of clinical

antibiotic use.
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3.2. Overland and downstream flow from
bovine sources consistently contribute to
elevated ARGs

After implementing the FIT framework across five ARGs in

sediment and surface water, we found that all five of the ARG

responses (see Table 2) are positively associated with bovine sources

(i.e., AFOs, AFOs via the ground hauling of manure to application

fields, or manure application field locations) in at least surface

water or sediment. For ARG responses in sediment, FIT selected

the GORF AFO source term, which represents the contributions

from AFOs via the ground hauling of manure to application fields.

A one standard deviation increase in GORFAFO contributions was

associated with RARs of 1.58 and 2.01, representing 58% and 101%

increases (p< 0.10) in the relative abundance of erm(B) and tet(W).

Across ARG responses in surface water, FIT selected the GORF

AFO source term for erm(B). A one standard deviation increase

in these AFO contributions was associated with a 45% (p < 0.05)

increase in the relative abundance of erm(B) in surface water. For

tet(W) and qnrA responses, FIT selected the ORF AFO source

term, representing the contributions directly from AFO locations.

A one standard deviation increase in AFO contributions was

associated with 77% (p < 0.05) and 49% (p < 0.05) increases in the

relative abundance of tet(W) and qnrA, respectively. For sul1 and

intI1, FIT selected the ORF manure application fields representing

contributions directly from field locations (i.e., irrespective of

AFOs). A one standard deviation increase in manure application

field contributions was associated with 41% (p < 0.10) and 36%

(inclusion lowers AIC) increases in the relative abundance of sul1

and intI1, respectively.

In sediment and surface water, the magnitude of the association

between tet(W) and AFOs was greatest compared to other ARG

responses. A greater association may indicate that more tet(W)

genes are located at AFOs or may suggest that oxytetracycline is

used frequently to prevent diseases at dairy AFOs compared to

other antibiotics. Some studies suggest that tet(W) and tetracycline

resistance may be more specific to dairy feces than other ARGs and

antibiotic resistance phenotypes (Srinivasan et al., 2008; Kyselková

et al., 2015). The strength of the associations from our study

supports that tet(W) is correlated with dairy manure.

This is the first study to characterize ARG contributions with

GORF or ORF SPMs for bovine sources. Our findings imply that

overland and downstream transport and dilution from flow are

key processes in disseminating AMR from AFOs and manure

fields. This study also suggests that manure hauling to application

sites is a factor in elevated ARGs in the environment. Our novel

spatial predictors and modeling approach are in agreement with

AFO’s association with ARGs found by Pruden et al. (2012) using

a different SPM and applied to a different geographical region.

Pruden et al. (2002) found that the relative abundance of sul1 in

sediment was positively correlated (R2 = 0.35, p < 0.001) with the

average upstream capacities of AFOs. However, these authors found

no significant relationship with the relative abundance of tet(W)

in sediment (Pruden et al., 2012), which could reflect differences

in livestock and antibiotic use. Our study quantified seven novel

associations between bovine sources and ARG responses. We have

quantified the associations between bovine sources and levels of

erm(B), tet(W), qnrA, sul1, and intI1 in surface water (i.e., five

novel associations) and the association between bovine sources

and levels of erm(B) and tet(W) in sediment (i.e., two novel

associations), which can inform ecological studies of AMR and

microbial risk assessment.

3.3. Flow a�ects consistent detection of
signals from bovine sources

The find stage of FIT enables the exploration of many databases

of collocated, spatially distributed sources. The result is the set

of source locations and associated information that consistently

represent sources to the response from a cross-validation approach.

Here, we report the find stage results for bovine sources because

they were the most consistently selected source from the test stage

of FIT. Across ARG responses in surface water, FIT modeled

contributions from AFOs with the county manure storage option

and contributions from manure application fields with the crop

rotation land cover option.

For ARG responses in sediment, FIT modeled contributions

from AFOs with WPDES CAFO locations, but differences existed

in CAFOweightings. The difference in weighting CAFOs by animal

units for erm(B) and tet(W) and equal weighting for sul1may reflect

differences in the transport processes resulting in elevated relative

abundance, independent of the number of animal units (e.g., some

other selective pressure emanating from sources).

One key difference in FIT’s database selection was that, to

represent AFOs, the WPDES CAFOs option was selected for

sediment responses and the county’s manure storage option for

surface water responses. One explanation for this difference is that

sediment sampling was impossible at three sites during one high-

flow event (Beattie et al., 2018). These manure storages are known

to overflow during high-flow events (Burch et al., 2021), and the

additional surface water samplesmay have better captured transient

contamination from manure storages.

3.4. Land application of septage, municipal,
and industrial waste is another source of
elevated ARGs in the environment

After implementing FIT across 5 ARGs in sediment and

surface water, we found that three of the ARG responses (Table 2)

are positively associated with land-applied waste sources in

sediment (sul1 and intI1) or surface water [tet(W) and intI1].

ARG responses in sediment, municipal waste, or septage land

application characterized land-applied residential waste sources.

For sul1, FIT selected the ORF land-applied residential waste source

term representing land-applied waste from residential origins

(i.e., land application of municipal waste or septage consisting

of solid or semi-solid residue generated during the treatment of

domestic sewage via primary, secondary, or advanced wastewater

treatment and the wastewater contents of septic or holding tanks,

dosing chambers, grease interceptors, seepage beds/pits/trenches,

privies, or portable restrooms (Wis. Admin, 2021). A one standard

deviation increase in contributions from land-applied waste from
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TABLE 2 Regression results for predicting the relative abundance of erm(B), tet(W), qnrA, sul1, and inI1 (log10 gene copies per 16S-rRNA copies) in riverbed sediment (columns toward the left) and surface water

(right-most five columns).

Environmental matrix Riverbed sediment Surface water

ARG (n = sample size) erm(B)
(n = 91)

tet(W)
(n = 91)

sul1 (n = 91) intI1 (n = 91) erm(B)
(n = 98)

tet(W)
(n = 98)

qnrA (n =
98)

sul1 (n =
98)

intI1
(n = 98)

Recent precip. Std. Regression

Coefficient (β1)

−0.723∗∗ 0.654∗∗ NS −0.330∗∗ 0.415∗∗ 0.635∗∗ 0.213∗∗ 0.637∗∗ 0.277∗∗

Recent x

antecedent

precip.

Std. Regression

Coefficient (β2)

0.561∗∗ 0.923∗∗ NS 0.256∗∗ −0.394∗∗ −0.300∗∗ −1.10∗∗ NS 0.637∗∗

Freezing Regression

Coefficient (β3)

−0.621∗ NS NS −0.801∗∗ 1.94∗∗ NS NS NS NS

Bovine sources Bovine Source

Description

GORF AFO (via

ground hauling of

manure to

application fields)

GORF AFO (via

ground hauling of

manure to

application fields)

NS NS GORF AFO (via

ground hauling of

manure to

application fields)

ORF AFO ORF AFO ORF Manure

app. fields

ORF Manure

app. fields

Std. Regression

Coefficient (βu)

0.199∗ 0.303∗ NS NS 0.162∗∗ 0.247∗∗ 0.173∗∗ 0.148∗ 0.134

RAR (10βu ) 1.58∗ 2.01∗ NS NS 1.45∗∗ 1.77∗∗ 1.49∗∗ 1.41∗ 1.36

Influence Range

(αO)

< 13 km < 10 km

Land-app.

waste sources

Land applied

waste Source

Description

NS NS Land-applied

waste- residential

Septage ground

transport to land

app. sludge-

residential

NS Land-applied

waste-

industrial

NS NS Land-applied

waste-

industrial

Std. Regression

Coefficient (βu)

NS NS 0.211∗∗ 0.155∗ NS 0.134∗ NS NS 0.148∗

RAR (10βu ) NS NS 1.63∗∗ 1.43∗ NS 1.36∗ NS NS 1.41∗

Influence Range

(αO)

< 8 km < 10 km

Soil sources Soil Source

Description

NS NS Type A (Sand,

Sandy loam, Loamy

sand, and Gravel)

Type A (Sand,

Sandy loam, Loamy

sand, and Gravel)

Type D (Clay loam,

silty clay loam,

sandy clay, and silty

clay)

NS NS NS NS

Regression

Coefficient (βu)

NS NS 0.402∗∗ 0.253 0.231 NS NS NS NS

RAR (10βu ) NS NS 2.52∗∗ 1.79 1.70 NS NS NS NS

Influence Range

(αRadius)

1 km

∗p < 0.10, ∗∗p < 0.05. NS indicates that no terms were selected for the source category. Other source categories not selected: wastewater treatment plants (WWTPs), septic systems, and developed land cover. No terms were selected for the log10 relative abundance

of qnrA in sediment. The sample size is indicated for each of the responses in each column. For each of the climatic and source terms, the standardized regression coefficient, β , is provided resulting from the Test stage of FIT. For each source term, two additional

rows result from the Find and Inform stages of the FIT framework. For each source term category (i.e., bovine, land-applied waste, or soil), the source description, the relative abundance ratio (RAR = 10β ), and hyperparameters indicating the influence range around

sources, α, are summarized. Precipitation-term associations are shown in blue. The associations with freezing temperatures are shown in white. Bovine source associations are in red. Land-applied waste sources are shown in yellow.

F
ro
n
tie

rs
in

M
ic
ro
b
io
lo
g
y

0
7

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fmicb.2023.1223876
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wiesner-Friedman et al. 10.3389/fmicb.2023.1223876

residential use was associated with a 63% (p < 0.05) increase in the

relative abundance of sul1. For intI1, FIT selected the GORF land-

applied waste source term, representing land-applied residential

waste weighted by the density of nearby septic systems. A one

standard deviation increase in land-applied waste from residential

use was associated with a 43% (p < 0.05) increase in the relative

abundance of intI1.

For ARG responses in surface water, industrial waste’s land

application characterized these five ARGs’ secondary sources. For

tet(W), FIT selected the ORF land-applied industrial waste source

term representing by-product solids from the animal product

or food processing industry (i.e., remains of butchered animals,

paunch manure, cheese production waste, and vegetable waste

materials). A one standard deviation increase in land-applied waste

from industrial use was associated with a 36% (p < 0.10) increase

in the relative abundance of tet(W). Then, for intI1, FIT selected

the ORF land-applied industrial waste source term [i.e., “both the

by-product solids from the animal product or food processing and

liquid waste such as silage, leachate, whey, whey permeate, whey

filtrate, contact cooling water, cooling or boiler water containing

water treatment additives, and wash water generated in industrial,

commercial, and agricultural operations” (Wis. Admin, 2021)].

A one standard deviation increase in land-applied waste from

industrial use was associated with a 41% (p < 0.10) increase in the

relative abundance of intI1.

Our findings are consistent with current knowledge that ARGs

are enriched in biosolids from treatment processes (i.e., primary,

secondary, or advanced wastewater treatment) (Chen and Zhang,

2013; Burch et al., 2014; Pepper et al., 2018). This is the first

study to report an association betweenmodeled contributions from

spatially distributed land-applied waste and ARGs recovered from

riverbed sediment and surface water. This is also the first study

to show that septage and municipal or industrial waste disposal

on land pollute and correspond with a quantifiable environmental

impact on antibiotic resistance levels in sediment and surface water.

The WPDES database lists the facility names associated with the

land application sites. After searching on company websites for

the products associated with each facility producing industrial

wastewater or sludge destined for land application, we found that

88.8% of the industrial land-applied waste sites are associated with

dairy and meat products. None (i.e., 0%) of the facilities were

associated with pharmaceuticals. This suggests that the disposal

of industrial wastes from dairy and meat processing extends

the polluting ability of industrial livestock agriculture and that

industrially produced, land-applied pharmaceutical waste is not a

source of elevated ARGs in this region.

3.5. Sandy soils are associated with
sediment ARGs, and clay soils are
associated with surface water ARGs

The bottom of Table 2 shows the results from the Inform and

Test stages corresponding to the soil as a source. For surface water

responses, only soil type D (clay loam, silty clay loam, sandy clay,

or silty clay) coverage was associated with a 70% increase in the

log10 relative abundance of erm(B). In sediment responses, soil

type A (i.e., sand, sandy loam, loamy sand, or gravel) coverage was

associated with 152% and 79% increases in sul1 and intI1 log10

relative abundances, respectively.

Soil type D contains clay, and we expect ARGs to correlate

with clay based on previous research (Mao et al., 2014; Wang

et al., 2016). A previous study also suggests that clay microbial

communities are more resilient to change from anthropogenic

sources compared to other soil types, like sand (Neumann et al.,

2013). Therefore, this contribution to erm(B) relative abundance of

clay soil sources may suggest the long-term impacts of agricultural

sources on clay microbial communities. However, we found

different results from the surface water results. Overall, soil appears

to significantly contribute to the relative abundance of these

ARGs, and the differences in soil sources for surface water and

sediment in this study have many potential explanations (e.g.,

adsorption, desorption, and absorption between overland soil,

riverbed sediment, and surface water). More observational data

and controlled mesocosm-scale experiments are needed to validate

these findings and characterize these complex dynamics.

3.6. Regional di�erences may a�ect the
primary sources of elevated ARGs

WWTPs were expected to show associations with sul1 and

intI1, as sul1 is often conserved in integron-integrase mobile

genetic elements (Pruden et al., 2012; Amos et al., 2015), but

the FIT model selected neither municipal nor industrial WWTPs

associating with any of the five relative abundance responses across

surface water or sediment. One explanation is that in this rural

area of ∼20,000 people (US Census Bureau, 2022), only five of the

WWTPs were flow-connected to the 20 sampling sites. Our study

area consists of a larger bovine–human ratio (Borchardt et al., 2021;

Burch et al., 2021; Wiesner-Friedman et al., 2021a) compared to

the study areas of previous ARG research in the South Platte River

Basin in Colorado, United States (Pruden et al., 2012), and the

Thames Watershed in Oxfordshire, United Kingdom (Amos et al.,

2015).

In our study, both sul1 and intI1 were associated with land-

applied municipal waste and septage. The land-applied municipal

waste and septage represent the aggregation of treated septage

and wastewater, suggesting that some ARGs may originate from

WWTPs, but most likely, the persistent application of biosolids

on land represents a more significant source than WWTP effluent

or septic systems in this region. Quantitation methods with low

detection limits for intI1, more flow-connected sampling sites to

sources, or a different ARG panel may be needed to detect the

impacts of WWTP effluent or septic systems.

3.7. The overland influence range around
sources extends up to 13 km

Bovine source terms associated with elevated ARGs in

sediment had exponential influence ranges of αO<13 km

on the river network, indicating that decayed contributions

would still be detected in the river when manure fields were
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up to 13 km away from the river network. For all bovine

source terms associated with ARG responses in surface water,

decayed contributions would still be detected when sources were

up to 10 km from the river network. For all land-applied

waste source terms associated with ARGs, the influence

range was up to 8 km for sediment and 10 km for surface

water responses.

These overland, exponential influence ranges, αO, were

determined from the inform stage of FIT. In a previous

study (Wiesner-Friedman et al., 2021a), we remarked that this

hyperparameter captures more than average overland transport.

This hyperparameter characterizes the extent to which a microbial

response can capture a signal from sources so that longer overland

influence ranges may indicate either A) longer transport and B)

an increased probability of detection, or both. Previously, we

found longer overland influence ranges around sources for host-

associated Bacteroides in sediment (i.e., αO > 1 km) vs. surface

water (i.e., αO < 1 km) (Wiesner-Friedman et al., 2021a).

In this study, on average, we found long overland influence

ranges [i.e., a mean value of α̂O =7.07 km (95%CI: 4.22 km,

9.92 km)] for both sediment and surface water. ARGs can exist

naturally in soils (D’Costa et al., 2011) and be carried by either

aerobic or anaerobic bacteria (Xu et al., 2021); They can be

transferred to other bacteria by several genetic mechanisms (Davies

and Davies, 2010). These factors may increase the transport of and

ability to detect ARGs in surface waters compared to anaerobic

Bacteroides gene markers. Furthermore, Bacteroides persist briefly

outside of the gut of their hosts (Ballesté and Blanch, 2010),

so shorter overland influence ranges would be expected. One

implication of longer influence ranges around bovine sources

for ARGs compared to host-associated Bacteroides genes is that

host-associated markers may underrepresent the risks associated

with fecal contamination from bovine sources in surface water.

Additionally, this research and previous studies have found an

increased probability of detecting microbial genes in sediments

compared to surface water (see Supplementary material S2) (Kasich

et al., 2012; Wiesner-Friedman et al., 2021a), which suggests that

risks associated with particular sources may be underrepresented

from sampling transient surface water compared to time-integrated

polluted sediment.

The FIT model of ARGs in the environment is the first to

characterize overland influence ranges around these sources. A

setback distance of 34–67m from surface water has previously

been recommended for manure and slurry land application under

experimental conditions (Hall et al., 2020). The exponential

influence ranges from our study indicate that sources very

close to the river will greatly contribute but that distant

sources up to 13 km away from the river network can also

impact ARG levels. A factor that may lead to long influence

ranges in this region is the karst geology, where fractures,

sinkholes, caves, disappearing streams, and springs may provide

direct pathways for contaminants, including antibiotics and

ARGs, to reach ground and surface waters (Stange and Tiehm,

2020; Xiang et al., 2020). Our findings are consistent with a

study in a karst region in Germany, where elevated ARGs

and human-specific fecal markers were detected in a spring

9 km away from the suspected source (Stange and Tiehm,

2020).

3.8. The modeling predicts localized
impacts to elevated ARGs in sediment and
dispersed impacts in surface water

Since this is the first study to report LUR results for erm(B) in

sediment and erm(B), tet(W), qnrA, sul1, and intI1 in surface water,

we identified the databases that most reliably report the spatial

location of bovine and land-applied waste sources associated with

elevated relative abundance of these ARGs and their corresponding

regression coefficients (Table 2), and we have shown the spatial

impact of these pollution sources (Figure 1).

Figure 1A shows the geographical distribution of an increase

expected in the relative abundances of erm(B), tet(W), and sul1

in sediment associated with risk-conservative contributions from

AFOs via the application of manure. This figure, which results

from a GORF SPM, suggests that elevated ARGs in riverbed

sediment are localized around manure application fields. However,

the extent to which those sources (viz., differently sized black

squares) qualify as polluters relates to their proximity to AFOs and

the scale of the operation (viz. differently sized blue diamonds).

This localized pollution may be influenced by ARG soil attachment

(Barrios et al., 2021). In previous LUR, AFOs were associated with

sul1 in sediment, but the spatial localization was not reported or

depicted (Pruden et al., 2012). Our LUR/FIT modeling showing

localized sediment ARG pollution is consistent with the field

studies of the enrichment of ARGs in AFO manure application

and dissemination into the environment (Fahrenfeld et al., 2014;

Wallace et al., 2018).

Figure 1B shows the geographical distribution of an increase

expected in the relative abundances of tet(W) and intI1 in surface

water associated with risk-conservative contributions from land

application sites. This figure, which results from an ORF SPM,

suggests that land application sites have a dispersed impact on

elevated ARGs in surface water.

These maps indicate locations where additional monitoring

may be needed to understand the impacts of different sources

on environmental and public (i.e., water users’) health. The

upper-bound hyperparameter values and database information also

serve other regions with similar geography, land use, agricultural

practices, and population to preliminarily define monitoring

locations for AMR studies.

4. Discussion

This is the first LUR study of ARGs in surface water and

the first LUR of more than two ARG responses from sediment

samples. Our primary finding is that bovine sources (i.e., AFOs

and manure application fields) were consistent sources of elevated

ARGs. This continues the large body of work that has detected

ARGs in livestock manure and slurry, on soil where the manure or

slurry is applied, and downstream of livestock operations (Joy et al.,

2013; Fahrenfeld et al., 2014; Peng et al., 2017; Wepking et al., 2017;

Guo et al., 2018; Lopatto et al., 2019; Hall et al., 2020; Miller et al.,

2020), but it is the first to connect modeled transport from manure

land application to elevated AMR.

Previous research has revealed that domestic and industrial

wasteland application sites are potential sources of elevated

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1223876
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wiesner-Friedman et al. 10.3389/fmicb.2023.1223876

ARGs (Bondarczuk et al., 2016; Murray et al., 2019). However,

our study distinguishes itself as one that found associations

with the collective contributions from spatially distributed land-

applied waste sites over a large spatial scale and measured ARG

levels in the environment. A large body of work has detected

microbial contaminants associated with land-applied wastes in

soils, groundwater, surface water, and the air near application sites

(Brooks et al., 2007; Lapen et al., 2008; Tanner et al., 2008; Edwards

et al., 2009; Gottschall et al., 2009; Zerzghi et al., 2010; Esseili et al.,

2012; Mohapatra et al., 2016; Pepper et al., 2019). Our research adds

to this body of evidence.

While the US Environmental Protection Agency’s (EPA’s)

Part 503 rule (Walker et al., 1994) regulates treatment and

land application standards for class A and B biosolids, there

are many similarities between pre-treatment class B biosolids

and anaerobically treated manure or slurry from dairy CAFOs.

Antibiotic-resistant bacteria, endotoxins, prions, pathogenic

bacteria, and protozoa have been reported in both (Pepper et al.,

2019). Few regulations exist for the treatment of livestock facility

waste and its application on land. Regulations of livestock waste

have focused on nutrient management, do not require treatment

for viruses and pathogens, and only apply to be permitted

CAFOs. Class B biosolids must meet minimal treatment and

land application requirements. Therefore, one explanation for the

increased consistency of association between bovine sources and

ARG responses compared to land-applied waste sources is that

this land application is more regulated compared to manure and

that this additional regulation of treatment and land application

locations has resulted in less harm to water quality than bovine

manure land application. Another explanation could be that

the quantity of bovine manure land application is much greater

than other types in this region. However, regulators may want to

evaluate current treatment standards, land application restrictions,

and environmental monitoring of land application of waste more

generally to improve water quality.

The dissemination of fluoroquinolone-associated resistance

encoded by both chromosomal and plasmid-derived qnrA may

increase the risks of quinolone-resistant human pathogens in

surface water from plasmid-mediated HGT (Cummings et al.,

2011). In the United States, fluoroquinolones are among the most

common clinically prescribed classes of antibiotics (Antibiotic Use

in the United States, 2017). Our findings that connect AFOs to the

levels of qnrA in surface water are concerning, and theUnited States

may want to consider broader enforcement of the recent policy

limiting the use of antibiotics that are clinically relevant to humans

in livestock settings (FDA, 2022).

Aside from the anthropogenic sources, the soil source

results in this study support that the processes involving the

interaction of anthropogenic sources, nearby soils, sediment,

and surface water are too complex for a linear modeling

approach to describe. The importance of soil sources in this

study shows that characterizing natural processes (i.e., physical,

biological, ecological, physicochemical, and chemical dynamics)

may help predict ARG levels and mitigate the impacts of

anthropogenic sources on AMR.Monitoring the impacts of chronic

and acute ARG-associated pollution events (i.e., pollution with

antibiotic-resistant bacteria and selective pressures) on adsorption,

desorption, and absorption processes for various soil types may

provide an additional benefit. More complex modeling calls for

refinement in spatial scale and improvement in the prediction of

soil characteristics.

A concern for the applicability of this study to other regions

may be the availability of spatial databases. However, we found that

a strength of this study is that the key ARG sources in this study

(i.e., CAFOs, class A and B land application sites, and soil type) are

represented by nationally available databases in the United States.

Expanding these databases to include industrial livestock land

applications and greater detail about application methods and the

types of applied waste may be beneficial.

Here, we have focused on spatial relationships. However,

we have modeled the impact of freezing temperature

and antecedent precipitation (see Table 2 for results and

Supplementary material S5 for details). We found that freezing

temperature is negatively associated with ARGs in sediment

and positively associated with one ARG in surface water, which

is consistent with a previous study that found higher ARG

abundances during the Wisconsin manure application season

(Beattie et al., 2018). In addition, we identified three patterns

of association for ARGs with antecedent precipitation (see

Supplementary material S5). However, due to the temporal

resolution of sampling approximately only once every 3 months,

our results can only be interpreted as seasonal effects rather than

impacts from recent and antecedent precipitation.

Additionally, due to this temporal resolution, our models may

only capture the long-tail decay of ARGs disseminating from

sources (Burch et al., 2014; Lopatto et al., 2019; Macedo et al.,

2020; Barrios et al., 2021), meaning that peak contamination

corresponding to periods directly following manure application

is not well-characterized. Sampling at a finer temporal resolution

could help to better capture these peaks as well as the impact of

different flow events and meteorological variables.

The reproducibility of associations between the three source

categories associated with increases in ARGs (i.e., bovine, land-

applied waste, and soil) and the ARG responses in sediment

and surface water provides evidence that elevated ARGs in the

environment are linked to natural occurrence soils and land-

applied wastes of bovine, residential, or industrial origins. In our

study, we found that a one standard deviation increase in source

impacts is associated with increases between 36 and 152%. This is

larger than the expected percentage increase (17%) in total relative

abundances of ARGs (TARG) in sediment and surface water

associated with a total antibiotic selection pressure (TASP) score of

1–2 reported from ameta-analysis (Duarte et al., 2019). The greater

association in our study may indicate the combined influence of

enrichment from organic matter, antibiotics, and intracellular or

extracellular ARGs disseminating from sources (Xie et al., 2018).

Our findings call for more robust treatment regulations to remove

or reduce ARBs and ARGs from wastes and policies to decrease

antimicrobial use in livestock and humans.

Due to measured negative changes to the environment and

public health of communities living nearby dense industrial

livestock agriculture and land application sites (Greger and

Koneswaran, 2010; Lowman et al., 2013; Hooiveld et al., 2016),

a collaborative One Health approach (Robinson et al., 2016) may
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be beneficial for evaluating the impacts of these sources of mixed

contaminants (i.e., pathogens, ARB and ARGs, heavy metals,

disinfectants, fire retardants, pharmaceuticals, and polycyclic

aromatic hydrocarbons) (Kinney et al., 2006;Ma et al., 2011; Pepper

et al., 2018; Murray et al., 2019) on the shared health of humans,

animals, and the environment.
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