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Animal manure improves soil fertility and organic carbon, but long-term 
deposition may contribute to antibiotic resistance genes (ARGs) entering the soil-
water environment. Additionally, long-term impacts of applying animal manure to 
soil on the soil-water microbiome, a crucial factor in soil health and fertility, are 
not well understood. The aim of this study is to assess: (1) impacts of long-term 
conservation practices on the distribution of ARGs and microbial dynamics in soil, 
and runoff; and (2) associations between bacterial taxa, heavy metals, soil health 
indicators, and ARGs in manures, soils, and surface runoff in a study following 
15  years of continuous management. This management strategy consists of 
two conventional and three conservation systems, all receiving annual poultry 
litter. High throughput sequencing of the 16S ribosomal RNA was carried out 
on samples of cattle manure, poultry litter, soil, and runoff collected from each 
manureshed. In addition, four representative ARGs (intl1, sul1, ermB, and blactx-m-32) 
were quantified from manures, soil, and runoff using quantitative PCR. Results 
revealed that conventional practice increased soil ARGs, and microbial diversity 
compared to conservation systems. Further, ARGs were strongly correlated 
with each other in cattle manure and soil, but not in runoff. After 15-years of 
conservation practices, relationships existed between heavy metals and ARGs. In 
the soil, Cu, Fe and Mn were positively linked to intl1, sul1, and ermB, but trends 
varied in runoff. These findings were further supported by network analyses that 
indicated complex co-occurrence patterns between bacteria taxa, ARGs, and 
physicochemical parameters. Overall, this study provides system-level linkages of 
microbial communities, ARGs, and physicochemical conditions based on long-
term conservation practices at the soil-water-animal nexus.
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1. Introduction

Animal manures are widely used in agriculture as it is a circular 
strategy for providing macro-and micro-nutrients for soils and crop 
production. It constitutes an excellent source of nutrients and organic 
matter (Gurmessa et al., 2021), increases soil carbon levels (Ashworth 
et al., 2014), enhances soil microbial activity (Ashworth et al., 2017), 
improves water-holding capacity (Rayne and Aula, 2020), and reduces 
soil erosion (Heuer et  al., 2011; Zhu et  al., 2013). However, the 
consistent surface application of animal manure to soil may also pose 
potential risks to human health. Studies have shown that manure 
applications can introduce and disseminate antibiotic residues, 
antibiotic-resistant bacteria, antibiotic resistance genes (ARGs), and 
heavy metals to downstream environments (McKinney et al., 2018; He 
et  al., 2020; Zhang et  al., 2022). Therefore, to develop effective 
management and mitigation strategies against the spread of ARGs to 
the environment, it is crucial to understand their occurrence and 
distribution in manure-applied systems, as well as their associations 
with microbial communities and heavy metals.

Manure application, both as deliberate fertilizer treatments and the 
natural deposition during grazing, likely influences ARGs prevalence 
in soils, which provides spatially and temporally variable inputs 
(Hilaire et al., 2022). Studies have shown that this can amplify ARGs 
levels in the soils and downstream environments (Heuer et al., 2011; 
Jadeja and Worrich, 2022; Zhang et al., 2022). Specifically, mobile 
genetic elements can aid in the spread of ARGs through horizontal 
gene transfer, exacerbating contamination in the environment (Zhang 
et al., 2017; Vinayamohan et al., 2022). Thus, exchange of ARGs from 
various environmental bacteria to human and animal pathogenic 
species poses a real challenge to alleviating global antibiotic resistance 
(Van Elsas et al., 2003; Forsberg et al., 2014; Nesme and Simonet, 2015; 
Smalla et  al., 2018). This can occur within both the animal 
gastrointestinal tract (GIT) and in crop production environment, like 
soil, and can be further facilitated by transferable genetic elements and 
selective chemical agents (pharmaceuticals, heavy metals and 
disinfectants) (Frost et al., 2005; Gillings, 2014; Zhao et al., 2019; Wang 
et al., 2020). Further, in soil fertilized with manure, the longevity of 
antibiotic-resistant bacteria and their corresponding resistance genes 
may be extended (Li et al., 2017; Chen et al., 2018; Rahman et al., 2018; 
Cheng et al., 2019; Yang et al., 2020, 2021). This prolonged survival can 
be attributed to selective agents that favor their growth, coupled with 
the extra nutrients the manure provides (Guber et al., 2005; Tien et al., 
2017; He et al., 2020; Mware et al., 2022). To date, large numbers of 
genes conferring resistance to sulfonamide, beta-lactam, macrolide, 
and tetracycline have been identified in soil that has been fertilized 
with manure (Peng et al., 2017; Yang et al., 2020).

Antibiotics in animals can select antibiotic-resistant bacteria in 
the GIT microbiome, which enhances the transfer of ARGs in their 
manure (Landers et al., 2012; Shterzer and Mizrahi, 2015). Further, 
antibiotics themselves are not always fully absorbed in the body and 

thus may be discharged unchanged in the waste, resulting in high 
antibiotic residuals in the downstream environment (Hilaire et al., 
2022). Introduction of animal manure may represent a critical pathway 
for resistance element introduction into the soil (Yang et al., 2019a,b) 
(Supplementary Figure S1). Once in the soil, resistance elements can 
be taken up by plants (Dolliver et al., 2007; Chen et al., 2018; Gao et al., 
2018), transported into groundwater or surface water bodies (Dolliver 
and Gupta, 2008; Song and Guo, 2014; Barrios et al., 2020), or retained 
in the soil (Cycoń et al., 2019) (Supplementary Figure S1). Studies have 
shown that ARGs can disseminate from animal farming operations to 
adjacent agricultural and non-agricultural regions, presenting a 
substantial risk to long-term environmental health (Wang et al., 2018; 
Cheng et  al., 2019). Given this dissemination, it underscores the 
critical importance of adopting a One-Health approach, where the 
interconnectedness of environmental, animal, and human health is 
recognized and addressed in a holistic manner to effectively combat 
the spread and impact of antibiotic resistance.

Soil physico-chemical characteristics, including pH, texture, 
nutrient content, and heavy metal levels, can impact the presence and 
spread of resistance genes in agricultural soils (Baker-Austin et al., 
2006; Rahman et al., 2018; Cycoń et al., 2019; Seyoum et al., 2021a). 
However, these associations are often complex. For example, the acid 
content of waste can enhance the antibiotic degradation and reduce 
corresponding ARGs (Wu et al., 2022). Further, studies analyzing 
ARGs in various soil types amended with a slurry from swine 
observed that ARG persistence was negatively linked to organic 
carbon (Sui et al., 2019; Conde-Cid et al., 2020; Wu et al., 2022). In 
addition, total nitrogen was also found to be positively linked with 
sul1 gene levels in soils (Sun et al., 2017). Such associations in a long-
term manure-applied soil and subsequent water runoff based on 
management is largely unknown.

Furthermore, despite the crucial role the soil microbiome plays in 
conservation agriculture, our understanding on the bacterial 
community’s response and ARG dynamics to sustained manure inputs 
remains limited, especially in relation to the soil’s physicochemical 
conditions under ongoing manureshed management. A “manureshed” 
refers to areas adjacent to animal feeding operations where nutrients 
from manure can be recycled for agricultural production (Spiegal 
et al., 2020). Gaining insight into the microbial community dynamics 
and ARGs within this context can further inform and enhance 
manureshed-based management practices, promoting better soil 
health, sustainability, and water quality.

In addition, the effects of cattle manure and poultry litter on the 
transfer of ARGs through surface transport, and the potential impact 
of agricultural conservation management practices on the soil and 
surface runoff microbiome, and the reduction of the spread of ARGs 
is not well understood. Previous analyses evaluated ARGs and/or 
microbial communities within specific production environments [i.e., 
manure (Gurmessa et al., 2021), soil (Yang et al., 2019a,b, 2020), or 
water (Yang et al., 2021) only]; however, no study has thoroughly 
evaluated system-level impacts from conservation and conventional 
practices on ARG dissemination and the manure-soil-water 
microbiome in long-term.

This research aimed to explore the impact of prolonged use of 
animal manures (cattle manure and poultry litter) on levels of ARGs, 
microbial community structures, and environmental parameters in 
relation to systems-level agricultural conservation management 
practices over a 15-year period, using a longitudinal study design. 

Abbreviations: ARGs, antibiotic resistance genes; CG, continuously grazed; EC, 

electrical conductivity; qPCR, quantitative polymerase chain reaction; intlI, integron 

integrase 1 gene; ermB, erythromycin resistance; ASV, amplicon sequence variant; 

H, hayed; R, rotationally grazed; LOQ, limit of quantification; MBC, microbial 

biomass carbon; SOC, soil organic carbon; POXC, permanganate 

oxidizable carbon.
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Specifically, authors set out to (i) evaluate the impacts of long-term 
application of animal manure on the distribution of ARGs in the soil 
and runoff, (ii) assess the microbial community dynamics across the 
animal manure-soil-runoff system based on long-term conservation 
(rotationally grazed, rotationally grazed with an unfertilized buffer 
strip, and rotationally grazed with a fenced unfertilized buffer strip) 
and conventional (continuously grazed and hayed) management, and 
(iii) reveal the relationship between the ARGs, bacterial taxa, 
microbial biomass carbon, and environmental factors in animal 
manure inputs, soils, and runoff. We predicted that practices such as 
riparian buffer strips and rotational grazing, which are considered 
conservation agricultural practices, can reduce the spread of ARGs, 
and may provide a solution to mitigate the antibiotic resistance 
associated with manure and/or litter inputs.

2. Materials and methods

2.1. Description of experimental set-up and 
treatments

The field setup utilized 15 sloped and individually isolated 
manuresheds at the USDA-ARS Research Center in Booneville, 
Arkansas that have been previously described (Pilon et al., 2017a,b, 
2019; Anderson et al., 2020; Yang et al., 2021) (Supplementary Figure S2). 
Three different agricultural conservation management practices were 
evaluated, including rotationally grazed (R), rotationally grazed with a 
buffer strip (RB), and rotationally grazed with a fenced riparian buffer 
(RBR). Two conventional practices were carried out including hayed 
(H) and continuously grazed (CG). For the H, manuresheds were 
mowed to 10 cm thrice a year using a rotary hay mower (April, June, and 
October) without cattle presence. Manuresheds designated as CG 
underwent year-long grazing, accommodating either one or two calves. 
R treatments practiced rotational grazing, introducing three steers when 
forages reached heights between 20 and 25 cm, as measured by a disc 
meter. These steers were removed when the height was reduced to 
10–15 cm.

The RB showcased a 15.3-m buffer strip at their base, uniform in 
vegetation and spanning an area of 283 m2. The RBR manuresheds 
were characterized by a cattle-excluding fenced riparian buffer zone. 
This zone was planted in 2003 with a diverse tree assortment: white 
oak (Quercus alba L.), green ash (Fraxinus pennsylvanica Marshall), 
and pecan [Carya illinoinensis (Wangenh.) K. Koch], as described in 
Pilon et al. (2017a).

Each manureshed was divided into three (or four in the RBR 
treatment) slope positions on the landscape. All manuresheds received 
poultry litter (excluding the grass buffer strips and riparian buffer 
strip) and were managed consistently from 2004 to 2019.

2.2. Manure sampling and processing

Samples from poultry litter (n = 12) were collected at specific 
timepoints in the spring 2018 and 2019 from in-house piles gathered 
from a local typical broiler production system. Whereas fresh cattle 
manure was sampled following typical cattle manure land application 
practices. For this, 1–2 kg of freshly deposited cattle manure (n = 12) 
was collected from each manureshed undergoing grazing during those 

springs as described in Gurmessa et al. (2021). The samples were 
stored in −80°C until further processing. Physico-chemical 
parameters such as EC, pH, soluble metals, moisture content, total C 
and N, ammonium-N and nitrate-N were analyzed from both litter 
and cattle manures as described (Gurmessa et al., 2021).

2.3. Soil sampling and processing

From each manuresheds, samples (n = 120) were collected from 
topsoil (0–15 cm) as previously described (Yang et al., 2019a,b, 2020). 
Samples from each zone (Supplementary Figure S2) were processed 
and stored in −80°C until further processing. The physico-chemical 
parameters were evaluated as previously described (Yang et  al., 
2019a,b; Amorim et al., 2020; Xu et al., 2021; Ashworth et al., 2022). 
Soil pH was determined with a pH electrode and conductivity meter. 
Nutrients and heavy metals (Supplementary Table S3) were measured 
with ICP (I61E Trace analyzer, Thermo Fisher Scientific, Waltham, 
MA). Total nitrogen (TN) and organic carbon (TOC) were analyzed 
using the catalyzed high-temperature combustion method (Amorim 
et al., 2020), and total soil organic carbon (SOC), microbial biomass 
carbon (MBC) and permanganate oxidizable carbon (POXC) were 
measured following the procedures in Xu et al. (2021).

2.4. Surface runoff sampling and 
processing

Sampling, filtration, and processing of 100 mL samples from every 
95 litter of surface runoff water (n = 60) were conducted in 2018 and 
2019 as previously described (Yang et al., 2021). To prepare for DNA 
extraction and subsequent analyses, each runoff sample from the 
manuresheds was passed through a filtration system. Initially, a sterile 
membrane filter (45 mm, 0.45-μm pore size, polycarbonate) was 
positioned on the filter base with its grid side upwards. This was then 
followed by placing a secondary filter (47 mm, 1.2 μm, cellulose) on 
top of the initial polycarbonate filter.

2.5. DNA extraction, qPCR, and sequencing

DNA was obtained from 0.5 g of poultry litter, cattle manure, and 
soil (wet weight) as well as runoff water (filter) using MpBio FastDNA 
Spin extraction kit (MpBio Laboratories, SKU 116560200-CF) 
following manufacturer’s procedures and used for 
downstream analysis.

Copy numbers of three representative ARGs (ermB, sulI, and 
blactx-m-32) and Class 1 integron (intl1), were tracked by quantitative 
PCR (qPCR) from cattle manure, poultry litter, manure applied soil 
and surface runoff water samples. These ARGs were targeted because 
they encodes for antibiotics categorized as “Critically Important” for 
human health according to world health organization reports (WHO, 
2014). The standards, primers, amplifications and thermocycling 
conditions were performed as previously described (Yang et al., 2020, 
2021; Gurmessa et al., 2021).

To study microbial communities in manures, soils and surface 
runoff, the samples were sequenced using Illumina MiSeq sequencing 
facility targeting the 16S rRNA gene amplicons. The extracted DNA 
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was sent to the Genomic Services Laboratory at the University of 
Tennessee, where the amplification of the V4 region of the 16S rRNA 
gene was conducted using barcoded primers 515F and 806R using 
protocols and conditions described in Yang et al. (2021).

2.6. Bioinformatics analysis

Sequences were processed using Qiime2 (v.2021.2) (Bolyen et al., 
2019). The analyses code used for this work is available in GitHub 
repository as Jupyter notebooks (https://github.com/MitikuSeyoum). 
PCR primers and adaptors were trimmed using Cutadapt (Martin, 
2011). The reads were trimmed at 267 and 238 bp for the forward and 
reverse reads respectively, using the method in the DADA2 (Callahan 
et al., 2016). Additionally, the initial two bases were removed from 
both reads.

The sequence reads underwent a process of quality filtering, 
correction, merging, and removal of chimeric sequences. Then, 
amplicon sequence variant (ASVs) at 100% sequence identity were 
generated. Assigning taxonomy was conducted using Naive Bayesian 
classifier which was trained using the SILVA 138 database (Quast 
et al., 2013) for bacterial classification.

Bacterial ASVs identified as chloroplast or mitochondrial or 
non-bacterial, and sequence reads that are unassigned were also 
removed. A phylogenetic tree for ASV was constructed using the 
q2-phylogeny plugin, which employed MAFFT 7.3 for sequence 
alignment and FastTree 2.1 with default settings, as described in Katoh 
and Standley (2013) and Price et al. (2010) respectively. Measures of 
alpha diversity such as the number of ASVs, Faith’s phylogenetic 
diversity, Pielou’s evenness, Shannon’s diversity were calculated as 
described (Pielou, 1966; Faith, 1992). In addition, beta diversity was 
estimated based on Bray-Curtis distance (Lozupone et  al., 2011) 
matrices. The beta-diversity distance was ordinated using principal-
coordinate analysis (PCoA) and a biplot analysis was conducted to 
identify the taxa that play a major role in explaining the beta diversity 
(Halko et al., 2011).

2.7. Co-occurrence network analysis

Co-occurrence network was used to uncover the potential 
interactions between bacteria and ARGs, heavy metals, and microbial 
biomass carbon in manure, soil, and runoff. A correlation matrix was 
constructed using all possible pairwise Spearman correlation 
coefficients (ρ) among bacterial taxa and ARGs abundance data 
obtained from the targeted amplicon analysis and qPCR, respectively. 
Only statistically significant links with p values <0.05 were selected for 
the network visualizations. Finally, the correlation networks were 
visualized using Cytoscape (v3.8.2).

2.8. Data analysis

Data analyses and graphical visualizations were performed using 
R (R Core Team, 2020). To determine statistically significant 
differences, group comparisons were evaluated using non-parametric 
tests such as the Wilcoxon rank sum test and the Kruskal-Walli’s test. 
Additionally, spearman’s rank correlation test was also performed to 

illustrate the link between physico-chemical properties, ARGs and 
metals and in samples from cattle manure, poultry litter, soil, and 
runoff water.

Distance metrics were exported from QIIME2 and imported 
into R to be visualized in a PCoA plot using the available package 
qiime2R (Bolyen et al., 2019). The Kruskal-Wallis’s test evaluated 
significant differences in alpha diversity between samples. To 
visualize microbial community compositions shifts across 
treatments, PCoA with Bray–Curtis dissimilarity matrices were 
performed. Pairwise comparisons of beta diversity of microbial 
community composition between manures, different treatments of 
soil and surface runoff, and their interactions were performed using 
PERMANOVA with 999 permutations. When necessary, p values 
were corrected using the Benjamini-Hochberg procedure 
(Benjamini and Hochberg, 1995) and are described as “q values” in 
the text.

3. Results

3.1. ARGs and intl1 in the manure, soil, and 
runoff

Across the years, ARGs differed in both cattle manure and poultry 
litter. Specifically, abundance of both ARGs (ermB and sulI) and intl1 
gene was higher in cattle manure compared to poultry litter 
(Figure  1A). Among the targeted ARGs, blactx-m-32 was below the 
quantification limits and thus not considered in the data analysis. 
Among management practices tested, 15 years of continuous grazing 
resulted in the highest levels sul1 and intl1 in the soil (Figure 1B). The 
monitored ARGs concentration in conservation practices showed 
reductions (one order of magnitude) compared to conventional 
practices (Figure 1B). Particularly, differences were observed in both 
intl1 (Kruskal-Wallis, H = 6.88, p = 0.03) and sul1 (Kruskal-Wallis, 
H = 13.032, p = 0.0015). Moreover, the levels of intl1and sul1 were 2-log 
units higher than ermB. The absolute abundance of ermB was not 
different (Kruskal-Wallis, H = 5.06, p = 0.08) across management 
practices (Figure 1B).

Similar to manure sources and soil, ARGs such as sul1 and ermB, 
and intl1 were consistently found in all runoff water samples, while 
blactx-m-32 was below the limit of detection (Figure 1C). Additionally, 
among the targeted ARGs, ermB was always less concentrated (2-log 
units lower). Furthermore, there was no difference between pasture 
management treatments in the quantification of intl1, sul1, or ermB 
from runoff samples (Figure 1C).

3.2. Microbial community structures in 
manure, soil, and runoff

To evaluate changes in alpha diversity based on long-term 
management differences in manuresheds, we calculated total observed 
ASV, Shannon’s diversity, Pielou’s evenness, and Faith’s PD indices per 
sample. Results showed that all alpha diversity measures of bacteria 
increased for cattle manure compared to poultry litter (Figures 2A,B; 
Supplementary Figure S3). In the soil, alpha diversity measurements 
of bacteria increased (p < 0.05; Kruskal Wallis) in CG compared to H 
and RG soils in both a and b landscape positions (Figures  2C,D; 
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Supplementary Figure S3). Yet, this trend was not observed in runoff 
treatments (Figures 2E,F; p > 0.05; Kruskal-Wallis).

Analyses of beta diversity in the manures revealed distinct 
clustering of poultry litter from cattle manure (Pseudo-F = 22.97, 
p = 0.001; PERMANOVA), as shown in the PCoA plots (Figure 3A). 
Notably, in the soil, CG plots showed a separate clustering from 
conservation practices (Figure  3C). Unlike soil, surface runoff 
microbial community composition was not changed following 
agricultural conservation management practices (p > 0.05; Figure 3B).

3.3. Correlations between bacterial 
communities, ARGs and environmental 
factors in manure, soil, and runoff

In the cattle manure, the intl1 gene was positively correlated with 
sul1, ermB (Supplementary Table S3; Figure 4A), and pH (Figure 4A), 
but not with any of the metals or nutrients monitored (Figure 4A). 
Similarly, sul1 was positively correlated with ermB in cattle manure 
(Supplementary Table S3; Figure 4A). Conversely, none of the detected 
ARGs were positively correlated with each other or intl1 in the poultry 
litter samples (Figure  4B). However, intl1 showed a positive 
relationship with Mg (Supplementary Table S3; Figure 4B).

In soil, positive connections were observed between ermB and 
sul1 (Supplementary Table S3), sul1 and intl1 (Supplementary Table S3), 
as well as ermB and intl1 (Supplementary Table S3; Figure  4C). 

Similarly, there was a strong correlation between sul1 and Mn 
(Supplementary Table S3; Figure  4C), as well as sul1 and Cu 
(Supplementary Table S3), sul1 and Fe (Supplementary Table S3; 
Figure 4C), and sul1 and P (Supplementary Table S3; Figure 4C). 
However, no correlation was found between the detected ARGs and 
measures of alpha diversity (p > 0.05; Figure 4C). Further, spearman 
analysis revealed that intl1 was positively linked with Cu 
(Supplementary Table S3), Fe (Supplementary Table S3), P 
(Supplementary Table S3), and Mn (Supplementary Table S3; 
Figure 4C). In addition, MBC, POXC, SOC, and other soil health 
metrics exhibited non-significant positive associations with ARGs and 
intl1 in the soil receiving manure (p > 0.05; Figure 4C). In the runoff, 
inconsistent patterns of relationships were observed compared to soil 
(Supplementary Table S3). For instance, sul1 was positively linked 
with ermB (Supplementary Table S3) but not with intl1 
(Supplementary Table S3).

3.4. Co-occurrence network analysis in the 
manure, soil, and runoff

The co-occurrence networks representing the associations among 
ARGs, metals and bacterial taxa were examined to further elucidate 
potential linkages across properties within the management system 
for manure, soil, and runoff (Figure 5). Similar to correlation analysis, 
the co-occurrence analysis demonstrated that both ARGs and heavy 

FIGURE 1

Levels of antibiotic resistance genes in the manures (A), soil (B), and surface runoff water (C) samples. RB – rotationally grazed with riparian buffer; R 
– rotationally grazed; RBR – rotationally grazed with fenced riparian buffer; H – hayed; CG – continuously grazed.
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metals were positively linked in cattle manure and soil samples 
(Figures 5A,C), whereas fewer associations were noticed in poultry 
litter and runoff samples (Figures 5B,D).

In cattle manure, sul1 showed positive associations with bacterial 
taxa such as Bacteroidota (ρ = 0.6, p = 0.00), Proteobacteria (ρ = 0.44, 
p = 0), Acidobacteriota (ρ = 0.22, p = 0.00). Similarly, intl1 showed 
positive associations with Bacteroidota (ρ = 0.62, p = 0.00), Firmicutes 
(ρ = 0.55, p = 0.00) and Myxoocooccota (ρ = 0.3, p = 0.00).

Notably, Actinobacteriota and Proteobacteria were negatively 
correlated with sul1 in the soil (p < 0.01). Further, Actinobacteriota has 
a positive association with Bacteroidota (ρ = 0.8, p = 0.000), but 
negatively linked with Firmicutes (ρ = −0.81; Figure  5C) and 
Proteobacteria (ρ = −0.45, p = 0.00; Figure  5C). Similarly, 
Myxoocooccota had a positive association with Gemmatimonadota 
(ρ = 0.3, p = 0.00), Firmicutes (ρ = 0.4, p = 0.00), Acidobacteriota 
(ρ = 0.83, p = 0.00), but negative association with Bacteroidota 
(Spearman, ρ = −0.51, p = 0.000) and Actinobacteriota (Spearman, 
ρ = −0.59, p = 0.000; Figure 5C).

In the runoff, sul1 showed a positive association with Firmicutes 
(ρ = 0.75), Bacteroidota (ρ = 0.62, p = 0.000), Acidobacteriota (ρ = 0.22, 
p = 0.000; Figure  5D). Similarly, a positive linkage was observed 
between intl1 and Bacteroidota (ρ = 0.6, p = 0.000), and ermB and 
Gammatimonadota (ρ = 0.64, p = 0.04; Figure  5D). Furthermore, 
Firmicutes has a positive association with Chloroflexi (ρ = 0.54, 

p = 0.00), Gemmatimonadota (ρ = 0.94, p = 0.00) and Acidobacteriota 
(ρ = 0.67, p = 0.00; Figure  5D). Likewise, Myxococcota showed a 
positive linkage with Firmicutes (ρ = 0.71, p = 0.000) and 
Gemmatimonadota (ρ = 0.70, p = 0.000; Figure  5D) whereas, 
Actinobacteriota had a negative connection with Chloroflexi (ρ = −0.73, 
p = 0.000) and Myxococccota (ρ = −0.78, p = 0.000; Figure 5D).

4. Discussion

Cattle manure and poultry litter contains considerable levels of 
antibiotic resistant bacteria and ARGs and its applications to soil can 
enhance the presence of clinically relevant ARGs (Heuer et al., 2011; 
McKinney et al., 2018; Chi et al., 2022). This study suggests that the 
increases in the abundance of ARGs and intl1 in soil that has been 
continuously grazed may be a result of the direct addition of ARGs 
and intl1 via cattle manure as reported by Mware et al. (2022) and 
Yang et al. (2020), as well as from the indirect enhancement of native 
soil bacteria that carry ARGs as reported by Macedo et al. (2021). 
We also observed higher levels of ARGs and intl1 in cattle manure 
when compared to poultry litter (Figure 1A), potentially attributable 
to the administration of antibiotics in cattle farming. Further, the 
elevated nutrient addition provided by manure inputs, can promote 
the growth of the soil bacterial community and enrich native bacteria 

FIGURE 2

Alpha diversity measures of bacterial communities in different treatments. Evenness and Shannon indices were evaluated in manures (A,B), soil (C,D) 
and surface runoff water (E,F).
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that are resistant to antibiotics (Udikovic-Kolic et al., 2014; Wang 
et al., 2020). This was also supported by our study where we found a 
strong association of P with sul1 and intl1 in the soil (Figure 4C). In 
addition, these ARGs are also common in cattle manure (Gurmessa 
et al., 2021), manure received soils (Chi et al., 2022), and surface water 
(Yang et al., 2021). Previously, it was reported that levels of sul1, intI1, 
ermB genes in the soil were greater in overgrazed or continuously 
grazed pasture fields compared to rotationally grazed pastures, 
indicating that continuous inputs of manure enhances the levels of 
ARGs in the soil. Similarly, another study also demonstrated 
persistence of several ARGs in the soils after 7 years of continuous 
cattle grazing (Agga et al., 2019).

The proliferation of bacteria introduced via manure, which carry 
ARGs, can be influenced by the native bacterial community in the soil 
(Pérez-Valera et  al., 2019; Mware et  al., 2022). This influence is 
possibly attributable to competitive interactions (Tien et al., 2017; 
Barrios et al., 2020). For example, a study found that an initial increase 
in manure-derived E. coli in the soil started to decline, likely due to 
competition with native bacteria, as well as exposure to UV light and 
dehydration (Oladeinde et al., 2014; Barrios et al., 2020).

In runoff, there was no significant variation in the prevalence of 
ARGs between treatments (Figure 1C). There are several possible 
explanations for differences in the fate of ARGs in runoff. First, ARGs 

can be taken up by forages in these manuresheds. It is expected that 
the presence of ARGs and mobile genetic elements reside on the grass 
of this manuresheds. Consequently, future studies need to include 
ARG uptake and removal by plants to better understand ARGs fate 
and uptake pathways in pasture systems. In addition, the levels of 
ARGs in the surface runoff water can also be impacted by the manure-
borne bacteria that can grow and die in the soil. Finally, the majority 
of manure-associated bacteria may not be available to surface water as 
most of them remained in the soil zone and thus soil likely became a 
reservoir that retained significant portion of ARGs.

Strong correlations were identified among ARGs, heavy metals, 
and physicochemical parameters (Figure 4). We observed positive 
linkages between intl1, ermB, and sul1 in both cattle manure and soil 
samples. It is possible that these genes are found together on the same 
genetic material or within the same host organism, indicating a 
co-resistance mechanism, as reported by Wang et al. (2019), Wang 
J. et al. (2022) and Wang Y. et al. (2022). Previously, correlations were 
also found between sul1 and intI1 (Cacace et al., 2019; Seyoum et al., 
2021b), which suggests that the spread of sul1 primarily occurs 
through lateral gene transfer. Integrons, especially intl1, is important 
genetic elements that plays a vital role in the spread of ARGs (Gillings 
et al., 2015). Integron genes enable horizontal gene transfer through 
facilitation of gene addition into other genetic sequences such as 

FIGURE 3

Beta diversity of the manures (A), surface runoff (B), and soil (C) microbial communities. Principal coordinates analysis (PCoA) plot based on the Bray-
Curtis distance matrix. On the ordination, data points that are closer together are more similar communities.
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plasmids, chromosomes, and transposons (Summers, 2006; Van Hoek 
et al., 2011; Gillings, 2017).

Co-occurrence network was performed to further understand the 
linkage patterns of targeted ARGs, heavy metals and bacterial taxa. 
The microbiome dynamics is considered the key parameter impacting 
the dissemination of ARGs and the positive linkage between bacterial 
taxa and ARGs can be predicted as a potential hosts (Awasthi et al., 
2019; Deng et al., 2020; Zhu et al., 2021; Chen et al., 2022). In this 
study, we demonstrated the complexity of associations between tested 
ARGs and the major bacterial taxa across the manure, soil, and runoff 
(Figure 5). Such complexity can be important for predicting bacterial 
species that could be linked with ARGs in different environments. 
Several previous studies reported microbial taxa as potential ARG 
hosts (Li et al., 2015; Chen et al., 2019; Wang et al., 2019) and predicted 
that a strong positive association between the co-existing bacterial 
taxa and ARGs might provide ARGs related information in the host 
taxa. In the present study, both Chloroflexi and Bacteroidota were 
positively associated with sul1, intl1, and ermB indicating that these 

taxa might be  suitable potential hosts. In previous reports 
Actinobacteria, Firmicutes, Bacteroidota, and Proteobacteria were 
identified to be as the primary hosts associated with ARGs (Peng et al., 
2022). Conversely, ARG-carrying bacterial taxa in different 
environmental matrices may have strong tolerance to environmental 
stressors (e.g., heavy metals), consequently ARG types carried by them 
were not affected. For instance, links between microbial community 
members varied considerably in this study (Figure 5), with some links 
potentially enabling growth and others inhibiting it. Thus, both 
Proteobacteria and Actinobacteria were negatively associated with sul1 
and intl1, implying they may function to inhibit proliferation and 
dissemination of antibiotic-resistant bacteria and their associated 
ARGs (Zhang et al., 2018; Wang J. et al., 2022; Wang Y. et al., 2022). 
Several other studies also reported that resistome changes are strongly 
impacted by microbiomes (Xiang et al., 2018).

In addition, in our study, there were associations between targeted 
ARGs, heavy metals, and physico-chemical parameters in cattle 
manure and manured-soil, which is in line with the findings of 

FIGURE 4

Correlations between heavy metals, levels of ARGs and physicochemical parameters for the cattle manure (A), poultry litter (B), soil (C) and runoff (D). 
Negative relationships are displayed in blue color while positive relationships are displayed in red. The size of the circles and color intensity are 
proportional to the correlation coefficients. Cross (X) indicates non-significant difference (p  >  0.05).
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previous investigations (Zhao et al., 2017; Seyoum et al., 2021a,b). 
Heavy metals (e.g., Cu, Mn, Zn, and Fe) that accumulate in the soil 
and runoff can cause co-selection of bacteria, thereby contributing to 
the dissemination and propagation of ARGs. In our study, Mg showed 
a positive relationship with ermB in runoff. It plays a crucial role in 
many enzymatic reactions that support microbial metabolism and 
could potentially affect the relationship with ARGs (Bruna et  al., 
2022). Furthermore, nutrients in poultry litter and animal manure 
impacts microbiome, proliferate ARGs-carrying taxa, and affect 
dissemination ARGs in manured soil and runoff. Previous findings 
have indicated that ARG levels in animal waste was linked with 
bacterial community structures (Luo et al., 2017; Shi et al., 2020; Xu 
et al., 2020; Gurmessa et al., 2021). Previous work also highlighted that 
composition of bacterial community and gene transfer were primary 
factors on diversity of ARG in poultry litter, and the poultry 

environment (Gurmessa et al., 2021; Mazhar et al., 2021), although, 
the present study identified that poultry litter is not a likely source of 
ARGs entering the environment (relative to cattle manure).

Overall, conservation pasture systems such as unfertilized edge-
of-field grass buffer strips or fenced off riparian buffers can provide a 
wide range of environmental advantages, such as increased 
biodiversity, reduction in sediment erosion, and enhanced water 
quality (Schulte et al., 2016; Anderson et al., 2020; Flater et al., 2022). 
These buffers were also an effective mitigation strategy for reducing 
ARGs entering surface waters by an order of magnitude, relative to 
continuously grazed manuresheds. However, we did not observe any 
difference in the surface runoff compared to conventional practices. 
Filter strips mitigate manure-borne microbe and ARG transport and 
contributes to their use as a best management practice for the 
important use of manure and poultry litter resources for improving 

FIGURE 5

Co-occurrence network associations among ARGs, heavy metals and bacterial taxa at the phylum level in poultry litter (A), cattle manure (B), soil (C), 
and surface runoff water (D). Purple nodes represent ARGs and intl1, light green nodes represent bacterial taxa and orange represent heavy metals and 
soil properties. The node size is proportional to the connection numbers. The thickness of edge indicates Spearman’s correlation coefficient. Red lines 
represent positive and significant relationships (p  <  0.05), and blue lines represent negative and significant relationships between the ARGs, metals and 
bacterial communities (p  <  0.05).
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manuresheds’ One Health. Additionally, the concept of One Health 
acknowledges the interconnectedness of animal, human, and 
environmental well-being, and requires the cooperation of multiple 
fields and levels of study to address these issues (McEwen and 
Collignon, 2018; Banerjee and van der Heijden, 2022). Animal 
manure introduces organic matter and a diverse array of microbes into 
soil, directly influencing the quality and safety of both surface and 
groundwater. Imprudent use of antibiotics in livestock may result in 
leaching of ARGs into the soil, posing a risk to ground water supplies 
(Zhang et al., 2021). Manuresheds play a critical role in channeling 
these ARGs, alongside other contaminants to downstream 
environments, potentially impacting aquatic ecosystems and human 
health (Kaiser et al., 2022). Moreover, healthy soils serve as a natural 
filter, capturing and breaking down many of these potential 
contaminants. The vitality of the soil microbiome is thus crucial for 
ensuring both agricultural productivity and the broader ecosystem 
resilience (Peng et al., 2022). Hence, an integrated One Health strategy 
that encompasses animal husbandry practices, soil health 
enhancement, and water quality management is of paramount 
importance. Recognizing and acting upon these interdependencies 
can lead to holistic solutions that promote sustainability and health 
across all three domains.

5. Conclusion

This study presents a thorough investigation of system-level 
linkages of microbial communities, ARGs, heavy metals and 
physicochemical parameters based on long-term conservation 
practices at the soil-water-animal nexus. Results demonstrated that 
conventional systems (continuously grazing) increased soil ARGs 
compared to conservation practices. Similarly, the diversity and 
abundance of soil microbial communities increased following long-
term continuous grazing compared to conservation management, 
which was believed to be caused by the consistent addition of manure 
from animal excrement. Furthermore, there was strong link among 
heavy metals (Cu, Zn, Fe, and Mn) and targeted ARGs in cattle 
manure and manured soils, indicating that these elements may play a 
role in selecting for these genes. However, this linkage was not 
observed in surface runoff.

While conservation methods, especially the use of unfertilized 
grass buffer strips and riparian filter strips, have been effective in 
limiting the spread of ARGs in the soil, the same effect was not 
demonstrated in runoff. This emphasizes a key observation that 
conservation efforts lower ARG levels in soil compared to conventional 
methods, yet the runoff stays largely unchanged. This brings up 
important questions about how ARGs move and persist in runoff, 

highlighting a vital area for future research. Understanding this will 
be essential for developing plans that comprehensively manage the 
spread of ARGs, focusing on both soil and surface runoff. 
Furthermore, in line with the One Health perspective, these findings 
emphasize the need for strategies that consider the interconnected 
impact on environmental, animal, and human health.
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