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Myasthenia gravis (MG) is a neuromuscular junction disease with a complex 
pathophysiology and clinical variation for which no clear biomarker has been 
discovered. We hypothesized that because changes in gut microbiome composition 
often occur in autoimmune diseases, the gut microbiome structures of patients with 
MG would differ from those without, and supervised machine learning (ML) analysis 
strategy could be trained using data from gut microbiota for diagnostic screening 
of MG. Genomic DNA from the stool samples of MG and those without were 
collected and established a sequencing library by constructing amplicon sequence 
variants (ASVs) and completing taxonomic classification of each representative 
DNA sequence. Four ML methods, namely least absolute shrinkage and selection 
operator, extreme gradient boosting (XGBoost), random forest, and classification 
and regression trees with nested leave-one-out cross-validation were trained using 
ASV taxon–based data and full ASV–based data to identify key ASVs in each data set. 
The results revealed XGBoost to have the best predicted performance. Overlapping 
key features extracted when XGBoost was trained using the full ASV–based and 
ASV taxon–based data were identified, and 31 high-importance ASVs (HIASVs) 
were obtained, assigned importance scores, and ranked. The most significant 
difference observed was in the abundance of bacteria in the Lachnospiraceae and 
Ruminococcaceae families. The 31 HIASVs were used to train the XGBoost algorithm 
to differentiate individuals with and without MG. The model had high diagnostic 
classification power and could accurately predict and identify patients with MG. In 
addition, the abundance of Lachnospiraceae was associated with limb weakness 
severity. In this study, we  discovered that the composition of gut microbiomes 
differed between MG and non-MG subjects. In addition, the proposed XGBoost 
model trained using 31 HIASVs had the most favorable performance with respect 
to analyzing gut microbiomes. These HIASVs selected by the ML model may serve 
as biomarkers for clinical use and mechanistic study in the future. Our proposed ML 
model can identify several taxonomic markers and effectively discriminate patients 
with MG from those without with a high accuracy, the ML strategy can be applied as 
a benchmark to conduct noninvasive screening of MG.
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1. Introduction

Myasthenia gravis (MG) is a neuromuscular junction disorder 
that occurs when autoantibodies bind to components of the 
postsynaptic muscle membrane. The most easily observed symptom 
is fluctuating skeletal muscle weakness (Gilhus, 2016). The 
development of immunomodulating treatments has significantly 
improved the prognosis for patients with MG (Farrugia and 
Goodfellow, 2020; Narayanaswami et  al., 2021). Although well-
established management options for MG are widely available, MG can 
be  difficult to identify because its clinical symptoms often vary 
considerably and may overlap with those of other neurological 
disorders. Furthermore, antibody testing, which is crucial for 
confirming a diagnosis of MG, can be expensive, time-consuming, 
and not readily available and has a high rate of false negatives (Gilhus, 
2016). In addition, relapse-related symptoms and their severity can 
vary greatly by person to person (Hehir and Silvestri, 2018). 
Otherwise, the severity of MG can be difficult to assess in patients with 
positive for acetylcholine receptor antibodies because no clear 
association has been established between the antibody titer and 
disease severity (Berrih-Aknin and Le Panse, 2014). No marker of MG 
has been discovered that can assist in the diagnosis, follow-up, therapy 
response monitoring, and clinical variability determination of 
the disease.

Research revealed that gut microbiomes may contain biomarkers 
that can be used to evaluate several neurological diseases, such as 
Parkinson’s disease (Lin et al., 2019). A growing body of evidence 
indicates that gut microbiota may be associated with immune function 
dysregulation, which can result in several autoimmune diseases 
(Pianta et al., 2017; Shahi et al., 2017; Gopalakrishnan et al., 2018; Qiu 
et al., 2018). Evidence also indicates that T-regulatory cells are present 
in large quantities in the intestinal mucosa and that microbial 
components and their metabolites may be involved in maintaining the 
homeostasis of the immune system (Chen and Tang, 2021). While 
several studies have demonstrated dysbiosis in autoimmune diseases, 
there remains a limited focus on neuromuscular disorders. Recently, 
there has been growing attention to the disturbance of microbiome 
composition and gut dysbiosis in MG, as well as its comorbidity with 
anxiety (Zhang et al., 2022; Kapoor et al., 2023). However, how gut 
microbiota alterations affect the course of such diseases remains 
unclear, and no method for identifying key features in gut microbiota 
has been discovered.

Machine learning (ML) methods, as a strategy of artificial 
intelligence (AI), that can successfully recognize patterns in clinical 
data, it can be efficiently used for triage, screening, diagnosis, and 
biomarker identification, and the joint use of manual and ML 
evaluations can offer more efficient and accurate results than the use 
of one method alone (Liu et al., 2019). Numerous studies have applied 
ML techniques to collect and analyze human microbiome data to 
elucidate the diverse taxonomies and functions of microbial 
communities and their effects on human health. However, no 
one-size-fits-all ML technique is available for analyzing gut 
microbiomes or determining which bacteria is most associated with 
MG. The identification of a simple screening test for the early 
detection of MG would allow for a timely diagnosis and the initiation 
of prompt treatment intervention.

Some studies have reported that the microbiota composition in 
the fecal samples of MG groups differed from those of healthy control 

groups (Moris et al., 2018; Qiu et al., 2018). Gut microbiota has been 
proposed as a potential diagnostic biomarker for MG therapies and 
early detection of progression (Kang et al., 2022; Thye et al., 2022). 
However, few studies have compared the feasibility and potential 
accuracy of applying an ML strategy to evaluate the gut microbiomes 
of individuals with MG. Our study hypothesized that the 
compositions of the gut microbiomes of individuals with and without 
MG would differ and that supervised ML models could be trained 
using gut microbiota data to provide diagnostic screening results for 
MG and predict clinical severity. Our study tested several ML 
analysis methods to identify the most favorable strategy for 
identifying MG. The results indicate that ML-based strategies can aid 
in identifying how microbiomes change in relation to MG and that 
the tree-based method extreme gradient boosting (XGBoost) 
performs the best (Chen and Guestrin, 2016). In addition, an 
ML-based support tool for measuring gut microbial populations 
was developed.

2. Materials and methods

2.1. Human subjects and sample/data 
collection

In this prospective study, 19 individuals with MG and 10 
individuals without were consecutively recruited from Fu-Jen Catholic 
University Hospital. Individuals were enrolled in the MG group if they 
(1) were given a diagnosis of MG on the basis of having the 
combination of symptoms and signs that are characteristic of muscle 
weakness with diurnal changes and either (2a) had a positive test 
result for specific autoantibodies or (2b) had a positive 
electrophysiological diagnosis obtained using single-fiber 
electromyography and repetitive nerve stimulation (Rousseff, 2021). 
None of the participants had received any abdominal chirurgic 
intervention; consumed antibiotics, probiotics, or antacids during the 
previous 6 months; or reported gastrointestinal symptoms during the 
previous year. This study was approved by the Research Ethic 
Committee of Fu-Jen Catholic University Hospital and written 
informed consent was obtained from each participant (No. 
FJUH109042). All experiments were completed in accordance with 
the Declaration of Helsinki’s Ethical Principles for Medical Research 
Involving Human Subjects and under a set of approved guidelines and 
regulations. The severity of MG was determined using quantitative 
MG (QMG), MG activities of daily living (MG-ADL), MG 
composition (MGC), and MG quality of life (MG-QoL) scores 
(Jaretzki et al., 2000). Using the categories of the QMG and MGC 
scales, we categorized the scores on these scales into ocular, bulbar, 
and limb groups. Figure 1 summarizes the overall study workflow.

2.2. Sample collection and processing

After the participants have completed the informed consent form 
and agreed to participate in the study, fecal samples from each 
volunteer were collected after enrollment. Volunteers self-collected 
Fresh stool samples after defecation in the hospital and immediately 
transferred the samples to a laboratory freezer at −80°C 
for cryopreservation.
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Each stage in the process, including the sample testing and 
polymerase chain reaction (PCR) and library creation and sequencing, 
can affect the quality of the data, and the accuracy of analytical 
findings is directly influenced by the quality of data. Therefore, quality 
control measures were implemented at each stage of the process to 
ensure data accuracy.

2.3. DNA extraction and 16S metagenomics 
sequencing

Genomic DNA was extracted from the samples using the 
EasyPrep Stool Genomic DNA Kit (Biotools, New Taipei City, 
Taiwan). The DNA concentration was determined and adjusted to 
5 ng/μL for subsequent processing. In accordance with the 16S 
Metagenomic Sequencing Library Preparation protocol (Illumina), 
the specific primer set 341F: 5’-CCTACGGGNGGCWGCAG-3′, 
806R: 5’-GACTACHVGGGTATCTAATCC-3′ was employed to 
amplify the variable regions V3 and V4 of the 16S rRNA gene. A PCR 
was conducted using KAPA HiFi HotStart ReadyMix (Roche) and 
12.5 ng of genomic DNA (gDNA) under the following conditions: 
95°C for 3 min, 25 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, 
and a final extension of 72°C for 5 min. The reaction was subsequently 
maintained at 4°C. The products of the PCR were evaluated using 
1.5% agarose gel, and samples with a bright main strip at approximately 
500 bp were selected for further library preparation. The selected 
samples were purified using AMPure XP beads.

A sequencing library was prepared using the 16S Metagenomic 
Sequencing Library Preparation procedure (Illumina). To summarize, 
the 16S rRNA V3–V4 region PCR amplicon was subjected to a 
secondary PCR, which was conducted using the Nextera XT Index Kit 
with dual indices and Illumina sequencing adapters from Illumina. 
The indexed PCR product was evaluated for quality by using the Qubit 
4.0 Fluorometer (Thermo Scientific) and a Qsep100™ system. The 
indexed PCR products were mixed in equal amounts to create a 
sequencing library. The library was sequenced on an Illumina MiSeq 
platform, which generated 300-bp paired reads.

2.4. Microbial community analysis and 
statistical analysis

Amplicon sequencing was performed using 300-bp paired-end 
raw reads, and each sample was demultiplexed on the basis of their 
barcode identification. Primer and adapter sequences were removed 
from the paired-end reads by using the QIIME2 cutadapt plugin 
(Martin, 2011). To construct amplicon sequence variants (ASVs), 
a denoising pipeline was applied using the QIIME2 DADA2 plugin 
(v2021.4) to implement quality filtering, dereplication, dataset-
specific error model learning, denoising, paired-end-read joining, 
and chimera removal (Callahan et  al., 2016). Trimming and 
filtering were performed with a maximum of two expected errors 
per read (maxEE = 2). The DADA2 algorithm was used to solve the 
problem of exact merged paired-end reads with an overlapping 
12-base pair near-zero error rate. The feature-classifier and 
algorithm of QIIME2 was employed to annotate the taxonomic 
classification of each representative sequence on the basis of 
information retrieved from the Silva database (Bokulich et  al., 
2018). To analyze the sequence similarities among the ASVs, 
multiple sequence alignment was conducted, with the QIIME2 
alignment MAFFT used against the Silva database (Katoh and 
Standley, 2013). A QIIME2 phylogeny fast tree was used to 
construct a phylogenetic tree with a set of sequences representative 
of the ASVs (Price et al., 2010).

2.5. Taxonomic analysis

The taxa that significantly differed between the MG and non-MG 
samples were identified, and an analysis of the overlap between the taxa 
of these samples was conducted. Significant biomarkers were identified 
through Linear discriminant analysis effect size (LEfSe) analysis 
(Segata et al., 2011). Subsequently, linear discriminant analysis (LDA) 
is applied for the bacterial taxa identified as significantly different to 
determine the effect size of each differentially abundant taxon. In the 
present study, taxa with an LDA score > 2 were considered significant.

FIGURE 1

Overall study workflow. MG, myasthenia gravis; BW, body weight; BH, body height; QMG, quantitative MG score; MGC, MG composite score; MG-ADL, 
MG activities of daily living score; ASV, amplicon sequence variants; ML, machine learning.
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2.6. Supervised ML modeling and proposed 
ML analytical strategy

This study applied four ML methods, namely least absolute 
shrinkage and selection operator (Lasso), XGBoost, random forest 
(RF), and classification and regression trees (CART). Because 
taxonomy or ASVs-based ML approaches provide different types of 
information, the present study proposed an ML analytical strategy 
that combines the benefits and valuable information of each approach 
that can be used to effectively screen key taxon features. Figure 2 
presents the proposed ML analytical strategy. In the strategy, two sets 
of data obtained using different approaches, namely ASV taxon–based 
data and full ASV–based data, are prepared. Four ML methods (Lasso, 
CART, XGBoost, and RF) and nested leave-one-out cross-validation 
(LOOCV) are applied to complete ML model building for each data 
set, and the model with the highest performance is selected. The key 
features of each data set are extracted, and the overlapping key features 
of the data sets are screened to obtain a final set of key features.

LOOCV was executed for the construction of each ML model. In 
essence, LOOCV is similar to k-fold cross-validation. The primary 
difference between the two is that k-fold cross-validation involves 
validation with one of several equally sized folds that have been 
randomly divided from the data whereas LOOCV involves using a single 
subset of the data for all rounds of the validation process (Vabalas et al., 
2019). Figure 3 illustrates the nested LOOCV process used in this study.

The performance of the model was evaluated on the basis of its 
accuracy (ACC), precision (PRE), sensitivity (SEN), specificity (SPE) 
and area under the receiver operating characteristic curve (AUC). The 
study experiments were conducted using Python (version 3.8.8) and 
Jupyter Notebook (version 6.3.0) softwares (Van Rossum and Drake, 
1995; Kluyver et  al., 2016). XGBoost was implemented using the 
XGBoost package (version 1.3.3) (Chen and Guestrin, 2016), and 
Lasso, CART, and RF were implemented using the scikit-learn package 
application programming interfaces (API) (version 0.24.2) (Pedregosa 
et al., 2011; Buitinck et al., 2013). LOOCV and hyperparameter tuning 
were implemented using the scikit-learn API (Pedregosa et al., 2011).

3. Results

Individuals who met the criteria for a diagnosis of MG were included 
in the present study. The mean age at enrollment was 51.5 years, and the 
majority of the participants were women (68%). The mean disease 
duration was 59.2 months. In addition, 36% of the patients with MG had 
a history of an MG crisis, and 21% had experienced life-threatening 
events at the onset of the disease. The clinical characteristics of the 19 
individuals in the MG groups and 10 individuals in the non-MG group 
were obtained from their medical records (Table 1). The two groups did 
not significantly differ with respect to their age, sex, body weight, and 
height. To investigate the bacterial gut microbiota associated with MG, 
we conducted high-throughput sequencing of the V3–V4 region of the 
16S ribosomal RNA gene. We obtained 1,544 ASV observations and 
used these ASVs to extract taxonomic information from the samples 
obtained from the MG and non-MG groups. A Venn diagram of the 
results that revealed 766 and 332 ASVs to be specific to individuals with 
and without MG, respectively, and 446 ASVs to be shared by individuals 
with and without MG (Figure 4). We also created cumulative bar charts 
for each taxonomic class (Supplementary Figure S1).

3.1. Differences in bacterial taxa between 
the MG and non-MG groups

To identify the significant differences in the gut microbiota 
between the MG and non-MG groups, we used LEfSe to identify eight 
taxonomic features with notable significant differences between the 
two groups (LDA > 2; Figures 5A,B). At the genus level, Roseburia, 
Oscillospira, and Mitsuokella were more abundant in the non-MG 
group (Figure 5A); at the class level, Coriobacteriia was more abundant 
in the MG group; and at the order level, Coriobacteriales was more 
abundant in the MG group. The abundances of several major bacterial 
taxa in the MG and non-MG groups and their phylogenetic 
relationships are presented in a cladogram in Figure  5B. The 
abundance of many species in the gut microbiomes of the MG and 
non-MG groups significantly differed. Figures  5C,D presents 
representative examples of the bacterial abundance at the family- and 
genus-levels in the two groups. These results support the hypothesis 
that the composition of gut microbiota of the MG and non-MG 
groups differed considerably.

FIGURE 2

Proposed machine learning (ML) analytical strategy. After amplicon 
sequence variants (ASVs) are obtained, two sets of data obtained 
through different approaches, namely an ASV taxon–based data set 
(blue boxes) and full ASV–based data set (green boxes), are prepared. 
For the ASV taxon–based data, taxon analysis is used to screen 1,544 
observed ASVs for key features. LEfSe is applied to identify taxonomic 
features with a linear discriminant analysis value of >2 to develop an 
ASV taxon–based data set. For the full ASV–based data, the 1,544 
ASVs are directly used without any modifications. After the ASV 
taxon–based and full ASV–based data sets are created, four ML 
methods (Lasso, CART, XGBoost, and RF) and leave-one-out cross-
validation (LOOCV) are applied, and the model with the best 
performance is selected. Key features are identified by applying the 
selected model to the key features identified in the aforementioned 
data sets. Because each approach provides different types of 
information, the overlapping key features identified in the two data 
sets are screened and collected to obtain a final set of key features. 
The output of key bacterial taxonomic features was used to identify 
the taxa associated with myasthenia gravis.
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FIGURE 3

Model building involving a nested leave-one-out cross-validation (LOOCV) structure. Data are split into 28 samples for training and 1 sample for 
testing. To tune the hyperparameters of the ML model, the training data set with 28 samples is further split into 27 samples for training and 1 sample for 
validation. Each sample is used once for validation until all 28 samples have been used to validate all potential hyperparameter sets. A tuned model is 
then constructed using the training data (28 samples) and the best hyperparameter set. The testing data are used to evaluate the performance of the 
tuned model. The aforementioned process constitutes one iteration and is repeated until each sample has been used once as testing data. Key features 
are then extracted from the tuned model.

TABLE 1 Characteristics of subjects with MG and non-MG groups.

Characteristic MG (n  =  19) Non-MG (n  =  10) p-value
Sex Female, n (%) 13 (68) 8 (80) 0.8212

Age (year) 51.5 ± 14.4 49.8 ± 13.9 0.7731

Height (cm) 161.4 ± 7.9 161.4 ± 4.7 0.9941

Weight (kg) 64.9 ± 15.9 63.7 ± 12.4 0.8432

BMI (kg/m2) 26.7 ± 4.4 24.3 ± 3.3 0.8141

Age at onset (age) 45.6 ± 14.9 – –

Disease duration (month) 59.2 ± 77.8 – –

Serology of AchR antibody, n (%) 18 (95)

History of MG crisis, n (%) 7 (36) – –

Life threatening at onset, n (%) 4 (21) – –

Thymic pathology – –

Thymoma, n (%) 8 (42)

Thymic hyperplasia, n (%) 1 (5)

Previous Thymectomy 6 (32) – –

MGFA clinical class, n (%) – –

Class II 12 (63)

Class III 4 (21)

Class IV 3 (16)

Daily Pyridostigmine dose (mg) 192 ± 114 – –

PSL dose per day (mg) 9.2 ± 10.5

IS usage, n (%) 2 (11) – –

MGQOL score 12.8 ± 13.7 – –

QMGS 10.3 ± 4.2 – –

QMGS – ocular 1.7 ± 1.4 – –

QMGS – bulbar 2.4 ± 2.2 – –

QMGS – limbs 5.1 ± 2.8 – –

MGC 8.5 ± 8.7 – –

MGC – ocular 1.7 ± 1.6 – –

MGC – bulbar 5.8 ± 6.9 – –

MGC – limbs 0.9 ± 1.6 – –

MG-ADL 4.74 ± 4.33 – –

Antibody titer (Nmol/L) 81.2 ± 70.8 – –

Anti-AChR Ab, antibody against acetylcholine receptor; Anti-MuSK Ab, antibody against Muscle-specific tyrosine kinase; dSN, double seronegative; AZA, treatment with azathioprine; MMF, 
treatment with mycophenolate; OT, treatment with tacrolimus; IVIG, treatment with intravenous immunoglobulin; PP, treatment with plasmapheresis; PSL, prednisolone.
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FIGURE 4

Comparison of the gut microbial composition among the two groups at ASV levels. A Venn diagram demonstrated a total of 1,544 ASVs, 446 were 
detected in both groups and 766, and 332 were unique to participants with (blue circle, n  =  19) and without (pink circle, n  =  10) MG, respectively.

3.2. Supervised ML analysis using enriched 
taxonomic features

To investigate the performance of ML methods based on different 
datasets, we trained supervised ML models with the taxonomic or 
ASV features for predictive classification and diagnostics of MG and 
non-MG. When enriched taxonomic features (ASV taxon–based data) 
were used for training, the four ML models were trained using eight 
taxonomic features (described above) to complete predictive 
classification and diagnosis of MG. Table 2 presents the performance 
results for the four ML models trained with ASV taxon–based data. 
As indicated in the table, XGBoost had the highest AUC (90.00), 
followed by RF (75.26), Lasso (67.89), and CART (35.26). Precision 
was used to measure the overall correctness of predictions of positive 
cases. The XGBoost model had a precision score of 100, indicating that 
a positive prediction by XGBoost is most likely correct. Overall, 
XGBoost had the highest performance when ASV taxon–based data 
were used for training and is thus promising as a means of correctly 
predicting positive cases.

3.3. Supervised ML analysis using ASV 
features

The four ML models were trained with all 1,544 ASV features (full 
ASV–based data) to investigate the effectiveness of diagnostic 
classifications made on the basis of all ASVs. Table 3 presents the 
results. Similar to the ASV taxon–based models, the full ASV–based 

models were such that XGBoost had the highest AUC score (87.89), 
followed by RF (63.68), Lasso (56.32), and CART (46.32). In the full 
ASV–based model, XGBoost had a promising precision score of 100. 
The results indicated that XGBoost had the highest performance when 
the full ASV–based data were used. A comparison of the AUCs of 
XGBoost when ASV taxon–based data (AUC = 90.00) and full ASV–
based data (AUC = 87.89) were used was conducted using the Delong 
test. The results revealed no statistical difference between the two 
(p = 0.43), indicating that XGBoost performed well regardless of which 
data set was used. Through the combination of two distinct datasets 
analysis, XGBoost emerges as the superior ML method for effectively 
distinguishing between MG and non-MG subjects. This robust 
outcome underscores the promising potential of ML methods in 
disease diagnosis within gut microbiomes.

3.4. XGBoost performance higher than RF 
on training data with enrich taxonomic and 
ASV features

To further assess the performance of XGBoost compared to 
traditional machine learning methods, we  utilized the receiver 
operating characteristic (ROC) curve for additional verification. 
The performance of XGBoost remained similar when different 
forms of data were used as inputs (Figure  6). For purposes of 
comparison, RF was also included because it is commonly used in 
gut microbiome–related studies (Lee and Rho, 2022). The 
comparison of the XGBoost and RF models when different types of 
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data were used (ASV taxon–based and full ASV–based data) 
revealed that XGBoost had a higher AUC than RF did, and the 
results were similar when the full ASV–based and ASV taxon–based 
data were used (Figure 6). In summary, XGBoost demonstrates high 
performance when trained using both general ASV data and key 
taxonomy features, making it a reliable tool for screening and 
diagnosing MG.

3.5. ML models trained with a combination 
of taxonomic and ASV features able to 
identify markers of MG

To improve the diagnostic classification performance of the ML 
model, we integrated the results obtained from both the full ASV–
based and ASV taxon–based datasets. The overlapping key features 

FIGURE 5

Taxonomic differences between the fecal microbiota of the MG and non-MG groups. (A) Cladogram created using linear discriminant analysis effect 
size (LEfSe) and presenting the phylogenetic distribution of the fecal microbiota of individuals with and without MG. (B) Linear discriminant analysis 
(LDA) and LEfSe revealed significant differences in the fecal microbiota of the MG (positive LDA score) and non-MG groups (negative LDA score). LDA 
scores (log10)  >  2 are presented. (C,D) Representative examples of the relative abundances of Lachnospiraceae and Roseburia in individuals with and 
without MG, with each bar representing the abundance in a given sample. Solid and dashed lines indicate the mean and median, respectively.

TABLE 2 ML analysis using taxonomic features (ASV taxon–based ML analysis).

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC

Lasso 75.86 80.00 84.21 60.00 67.89

CART 41.38 66.67 21.05 80.00 35.26

XGboost 82.76 100 73.68 100 90.00

RF 75.86 100 63.16 100 75.26

AUC, area under the curve.

TABLE 3 ML results when full ASV–based data (full ASV–based ML analysis).

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC

Lasso 72.41 76.19 84.21 50.00 56.32

CART 65.52 71.43 78.95 40.00 46.32

XGboost 86.21 100 78.95 100 87.89

RF 58.62 100 36.84 100 63.68

AUC, area under the curve.
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FIGURE 6

ROC curve of XGBoost and random forest (RF) with different types of data. The horizontal axis indicates the false positive rate (1–SPE), and the vertical 
axis indicates the true positive rate (SEN). The results for XGBoost trained with the full ASV–based and ASV taxon–based data are indicated in blue and 
red, respectively, and the results for RF trained with the full ASV–based and ASV taxon–based data are indicated in orange and green, respectively. ASV, 
amplicon sequence variant; XGBoost, extreme gradient boosting; RF, random forest.

extracted when XGBoost was trained using the full ASV–based and 
ASV taxon–based data were identified and are presented in Figure 7. 
Thirty-one high-importance ASVs (HIASVs) were identified in the 
ML model when the full ASV–based and ASV taxon–based data were 
used. The HIASVs were assigned variable importance scores and 
ranked (Figure 8; Supplementary Tables S1, S2). All of the overlapping 
microorganisms belonged to the phylum Firmicutes. The findings 

revealed that the most significant difference between the gut 
microbiota of the individuals with and without MG was in the 
abundance of bacteria in the Lachnospiraceae and Ruminococcaceae 
families. The XGBoost algorithm was reapplied with the 31 HIASVs 
used to differentiate individuals with and without MG. In the XGBoost 
trained with the HIASVs, the dimensionality of the feature space was 
reduced, and the model had the highest AUC (90.53) and performed 
slightly better than the other ML models (Figure  9; 
Supplementary Table S3). The ML strategy we developed provided 
compelling evidence supporting our hypothesis, as it demonstrated 
high diagnostic classification power and generated accurate diagnostic 
screening results for MG.

3.6. Associations between gut microbiota 
and clinical characteristics of MG

To investigate the potential links between gut microbiome 
disruptions and MG clinical symptoms, a correlation analysis was 
conducted with a focus on the taxa of Firmicutes, Lachnospiraceae, 
Roseburia, and Eubacterium, the abundance of which was determined 
to significantly differ between the MG and non-MG groups. A heat 
map was used to present the spearman’s rank correlation coefficients 
of the 4 significant taxa and results on 22 clinical indices. 
We discovered that the abundance of Lachnospiraceae was generally 
associated with the severity of limb weakness, that is, with the limb 
portion of the QMG (Figure 10). These findings demonstrate that 
certain gut microbiota levels are associated with clinical parameters 

FIGURE 7

XGBoost feature selection results when the model was trained using 
full ASV–based and using ASV taxon–based data for comparison. 
The results revealed that of the 1,544 ASVs in total, 31 were selected 
by XGBoost when it was trained using the full ASV–based and ASV 
taxon–based data (red square), which indicated these were high-
importance ASVs (HIASVs).
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and have the potential to serve as valuable tools for assessing disease 
severity in the future.

4. Discussion

In this study, we discovered that the structures and composition 
of the gut microbiome were differed between MG and non-MG 
subjects. Among our research participants with MG, 21% had 
experienced a life-threatening episode upon diagnosis resulting in 
more severe morbidity. Additionally, 36% of the patients had a 
history of myasthenic crisis, indicating a potential risk of clinical 
deterioration in MG. Antibody titers are traditionally used to 
support MG evaluations but not directly correlation with clinical 
symptoms (Berrih-Aknin and Le Panse, 2014). Therefore, 
biomarkers to support MG diagnosis and disease severity screening 
must be identified. In the present study, the supervised ML model, 
XGBoost, was determined to have better performance with respect 
to analyzing gut microbiomes. This study’s use of LOOCV 
somewhat mitigated the study’s limitation of a small sample size and 
improved the reliability and generalizability of our findings. Our 
proposed ML model, which identifies several taxonomic markers, 
was able to effectively discriminate patients with MG from those 

without. Therefore, this approach has potential as a new form of ML 
analysis strategy for screening MG. In addition, we  identified 
overlapping ASVs that were identified when the ML model was 
trained using full ASV–based and using ASV taxon–based data to 
select 31 HIASVs. When the model was trained using these HIASVs, 
the AUC was better than it was when each data set alone was used 
for training. Our results reveal that microbiota in the families of 
Lachnospiraceae and Ruminococcaceae were the most abundant in 
individuals with MG. We  also identified microbiota potentially 
associated with symptoms of MG severity, that is, with limb 
weakness. The findings indicate that the proposed ML model based 
on microbiome data offers advantages and has high accuracy in 
identifying markers. Therefore, the model can be  a potential 
benchmark diagnostic tool that can identify the presence of MG and 
gut microbiota associated with MG’s severity through 
noninvasive analysis.

Changes in gut microbial composition were demonstrated to 
affect the immunology systems that regulate bodily function. Our 
study revealed the differences between the microbiomes of individuals 
with and without MG by determining the abundance of several 
microbiota. The microbiota of the family Lachnospiraceae, a member 
of the phylum Firmicutes and order Clostridiales, were determined to 
be significantly depleted (t test, p < 0.05). Our ML models based on 

FIGURE 8

Importance scores for 31 HIASVs for classifying the presence and absence of myasthenia gravis. A comparison of the ASV feature importance score is 
presented in the figure, with blue indicating an importance score assigned when XGBoost trained with full ASV–based data was used, orange indicating 
an importance score assigned when XGBoost trained with ASV taxon–based data was used, and red indicating the average of the importance scores 
assigned by the Full ASV–trained and ASV taxon–trained XGBoost models. The average score was used to rank the ASVs. ASV, amplicon sequence 
variant.
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FIGURE 9

Receiver operating characteristic curve for comparing variants of XGBoost trained using different data sets. After 31 ASVs were identified as important 
by both XGBoost models (i.e., the model trained using the full ASV–based and that trained using ASV taxon–based data), these high-importance ASVs 
were used to train XGBoost, and were determined to be able to distinguish individuals with and without MG with an AUC of 90.53 (red bar), which was 
higher than the AUCs of the XGBoost models trained using only full ASV–based and only ASV taxon–based data. MG, myasthenia gravis; ASV, amplicon 
sequence variant; XGBoost, extreme gradient boosting; AUC, area under the curve.

FIGURE 10

Association between gut microbiota and clinical indices of MG. Heat map of the Spearman’s rank correlation coefficient of 4 significant taxa as well as 
22 clinical indices. Red squares indicate positive associations between microbial species and clinical indices; blue squares indicate negative 
associations. Statistical significance is indicated within the squares (*p  <  0.05). The family Lachnospiraceae was associated with several clinical 
parameters. MG, myasthenia gravis; IS, immunosuppressant; MGQOL, MG quality of life; MGC, MG composite; QMGS, quantitative myasthenia gravis 
score; MG-ADL, MG activities of daily living.

different ASVs verified this finding, and feature selection revealed that 
the family Lachnospiraceae was the most crucial with respect to 
MG. Genera from the family Ruminococcaceae and Lachnospiraceae 

were determined to be the most crucial for determining a diagnosis of 
MG when the model was trained using the HIASVs. Lachnospiraceae 
and Ruminococcaceae were discovered to be the two most abundant 
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families of Clostridiales and have been reported to be associated with 
the maintenance of gut health and the production of short chain fatty 
acids (SCFAs) (Gopalakrishnan et al., 2018; Vojinovic et al., 2019). The 
two families are highly abundant in gut microbiota and were reported 
to be depleted in the gut environments of individuals with different 
autoimmune diseases (Biddle et al., 2013).

Lachnospiraceae has been indicated to potentially influence 
healthy gut activity, and literature reviews have revealed that different 
members of this family are associated with different diseases. 
Lachnospiraceae was reported to be involved in autoimmune disorders, 
such as multiple sclerosis and inflammatory bowel diseases (Baumgart 
et al., 2007; Shahi et al., 2017). However, the mechanisms underlying 
Lachnospiraceae’s regulation of immune responses and disease course 
remain unclear. A potential mechanism is the metabolism and 
production of SCFAs (Furusawa et al., 2013). This SCFA activity can 
modify the host immune system and function by lowering 
inflammatory marker levels and promoting regulatory T (Treg) cell 
accumulation (Atarashi et al., 2013). MG is an autoimmune condition 
because its pathogenesis involves disequilibrium between B cells and 
Treg cells, and patients with MG have a markedly lower abundance of 
Treg cells in their peripheral blood (Thiruppathi et al., 2012). The 
literature indicates that the abundance of Ruminococcaceae and 
Lachnospiraceae is negatively associated with these diseases (Biddle 
et al., 2013). A decrease in the abundance of Lachnospiraceae may lead 
to a reduction in Treg accumulation. New therapeutic strategies for 
treating MG should involve interventions focused on restoring 
Lachnospiraceae levels and thereby increasing Treg cell populations.

Many ML methods have been utilized in microbiota studies. ML 
can be used to perform numerous tasks, such as tracking phenotyping, 
classifying features, and identifying interactions and changes between 
microbiomes and other clinical variables (Gupta and Gupta, 2021; 
Marcos-Zambrano et al., 2021). Traditional ML models, including 
linear regression with Lasso and elastic nets, have been demonstrated 
to have higher performance in analyzing gut microbiome data and 
predicting dysbiosis (Pasolli et al., 2016; Lee and Rho, 2022). RF have 
also been used in microbiota studies. In RF models, trees are 
constructed to assist with decision-making and to group data into 
categories. In the current study, widely used ML models were used to 
select strategies for identifying the factors that influence MG risk (Lee 
and Rho, 2022). We applied XGBoost, an ensemble ML algorithm 
based on the decision tree method that can effectively match predicted 
outcomes (Chen and Guestrin, 2016). In XGBoost, many weak 
decision trees are integrated to form a model with strong predictive 
power. According to a study that compared common ML models, 
XGBoost, RF, and elastic nets have comparable performance when 
trained using microbiome data sets (Wang and Liu, 2020). In addition, 
XGBoost was reported to outperform a random model with respect 
to its cross-validation performance and to be able to forecast responses 
based on baseline microbiome data (Klimenko et  al., 2022). Our 
finding that the optimal data set for training XGBoost involved both 
taxonomic and ASV feature data related to MG is comparable to the 
findings of many other studies that have investigated the characteristics 
that predict risk. Our results increase the depth of the understanding 
of the ML-XGBoost algorithm’s potential for clinically supporting 
disease diagnosis on the basis of gut bacterial data. The proposed 
XGBoost-based model may be more useful as tool for identifying the 
features microbiomes features and have a better accuracy and AUC 
than RF and Lasso models. In the future, as the number of participants 

increases, we can persistently substantiate this hypothesis. XGBoost 
could be a potential useful method in ML-based microbiomes studies.

The ML model that was trained using different taxonomic 
features (i.e., the ASV taxon–based data) had the same performance 
as that trained using the full ASV–based data. We  identified the 
overlapping key features selected by these models to improve the ML 
model’s prediction power. Incorporating two sets of data to train an 
ML model using 31 HIASVs led to the model having the most 
accurate prediction. Most microbiome studies have used key 
operational taxonomic units to distinguish between study groups or 
used LDS-based taxonomic feature extraction to identify significantly 
different relative abundances between target groups. Our study 
combined genetic information (i.e., ASVs) and biological information 
(i.e., taxonomic features) to achieve more accurate prediction results. 
LOOCV was also applied and ensured that an unbiased estimate of 
the model’s performance was obtained because every instance in the 
data set is used for both training and validation. LOOCV is also more 
computationally expensive and particularly useful when the size of a 
data set is small. It allows for the data to be used to the fullest, for 
both training and validation (Cheng et al., 2017). Our use of LOOCV 
enabled us to improve the accuracy of the model’s performance and 
our ability to generalize our data. Furthermore, LOOCV can provide 
clear and interpretable results, which reduces study limitations.

Our findings are consistent with those of previous studies reporting 
a link between abnormalities in the gut microbiota and several 
autoimmune disorders (Qin et al., 2010; Chen et al., 2016; Zhou et al., 
2018). Nevertheless, many autoimmune diseases do not have similar 
patterns of microbial dysbiosis, and therefore, the changes in the 
microbiota of patients with MG may not be  generalizable to other 
autoimmune diseases. Studies have discovered that changes in gut 
microbiome composition can lead to inflammation that considerably 
affects immune responses in MG. A cohort study revealed that the gut 
microbiota of patients with MG was considerably altered, exhibiting a 
sharp decrease in the abundance of the bacterial taxa Clostridium 
correlated with a decrease in SCFA (Qiu et  al., 2018). Zheng et  al. 
demonstrated that individuals with MG often have significantly 
disturbed gut microbiomes and that this disturbance is associated with 
disease severity (Zheng et al., 2019). Another analysis revealed that MG 
is associated with a lower abundance of Verrucomicrobiaceae and 
Bifidobacteriaceae and an increased abundance of Bacteroidetes and 
Desulfovibrionaceae (Moris et al., 2018). Specially, Huang et al. found 
that AChR positive MG patients also experience changes in their oral 
microbiota (Huang et al., 2022). Our study identified bacterial genera 
for which the abundance differed in individuals with and without MG 
and applied two microbiomes-based ML models to identify key bacterial 
taxa. The findings may assist in improving the predictive outcomes of 
MG. In addition, LOOCV was used to improve the ML prediction 
performance. Most studies have used only OUTs or taxonomy data sets. 
A study reported that an ML model trained with OUTs to identify 
metabolite and microbiome markers was used to predict MG and that 
the model achieved an AUC of 0.76 (Moris et al., 2018). The model 
developed in our study achieved an AUC of 0.90 after being trained only 
with stool gut microbiome data. Stool gut microbiome data can be more 
easily and less expensively obtained than that of gut metabolites and 
metabolomes. Our findings demonstrate the potential of our proposed 
microbiome-based ML model as diagnostic support for identifying 
MG. The model can be further calibrated and the predictive capability 
can be improved by including more samples from different sources or 
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stratifying particular forms of MG and data from medical records in 
addition to gut microbiome data. Furthermore, the significant bacterial 
taxonomic features identified in our study may serve as novel 
biomarkers for clinical use and mechanistic study in the future.

ML has shown promise in predicting outcomes and identifying 
biomarkers for MG. A national study used an explainable ML-based 
model to accurately predict short-term outcomes in MG using various 
clinical parameters (Zhong et  al., 2023). The SHapley Additive 
exPlanations (SHAP) method allowed for assessing the impact of each 
factor on the outcome, making the results more interpretable and 
quantification. Supervise ML, the multinomial model has also 
successfully identified diagnostic biomarkers for neurological 
disorders, including MG, using big biological data such as genotyping, 
blood, and urine biochemistry data (Lam et al., 2022). During the 
COVID-19 pandemic, ML algorithms were utilized for telemedicine 
in MG, analyzing eye or body motions and vocalization for 
standardized data acquisition and real-time feedback (Garbey et al., 
2023). In contrast to the present work, the purpose of this study was 
aimed to investigate fecal specimens as a simple method for MG 
diagnostic screening despite the absence of patient blood or genetic 
data and the non-use of visual computing programs, these limitations 
did not impact the primary objectives of the research. Although 
interpretability ML was not utilized to assess the impact of various 
microorganisms on the outcomes, the study results still hold the 
potential to provide valuable information for MG diagnosis. Future 
studies may consider increasing the number of participants, 
incorporating blood and genetic data, and exploring the use of 
interpretable machine learning models to gain deeper insights into 
the influence of microbiota on MG.

Our study has some limitations. First, the numbers of recruited 
subjects were small and only from a single geographic region with lack 
of ancestry data, which limiting our ability to analyze potential 
confounding factors. Although we applied LOOCV to improve our 
model’s prediction, additional large, multi-national and multi-center 
cohort studies should be conducted to validate our results. Second, the 
medication status of the recruited patients with MG differed, which 
could have affected the microbial compositions of their guts. Third, 
we did not analyze the metabolome of the stool sample. Gut microbiotas 
changes cannot provide the total necessary quantitative functional state 
of the microbiomes (Zierer et al., 2018). Forth, we did not record the 
dietary status of the participants. Based on the literature review, dietary 
is indeed a crucial factor influencing gut microbiota composition 
(Leeming et al., 2019; Zhang, 2022). Therefore, future research should 
incorporate participants’ dietary records as a basis. Fifth, the proportion 
of males (32%) was relatively fewer in number. MG has been known to 
affect females more prominently (Jayam Trouth et al., 2012). The peaks 
was around at age 30 and 50 (Carr et al., 2010). Therefore, most of the 
research on MG and gut microbiota is based on female populations 
(Zheng et al., 2019; Tan et al., 2020). However, the limited number of 
male samples can be  considered a limitation in the search for 
biomarkers. Finally, our study did not determine whether dysbiosis is 
the consequence, cause, or both of MG. Future longitudinal, multi-
center, large cohort studies should be  conducted, combing the 
recording of dietary and the ancestry data with a focus on the 
pathophysiology of bacterial taxa involved in MG. Additional research 
should be  performed to identify the specific microbial species 
associated with MG and their corresponding metabolites to assist in 
defining targets for MG therapy.

5. Conclusion

Our study is the first to demonstrate the potential for using 
artificial intelligence through ML modeling to complete convenient 
diagnostic screening of MG on the basis of fecal microbiota 
composition. Our gut microbiome-based ML strategy can be used as a 
screening method to support the diagnosis and progression of MG. In 
addition, the combination ML-based feature selection approaches 
expand the knowledge on the biomarkers of MG. XGboost-based 
feature selection identified of HIASVs not only reduced the 
computational complexity of the ML model but also improved its 
diagnostic classification performance. These HIASVs may serve as 
novel biomarkers for clinical and mechanistic study in the future. 
Taken together, our findings provided a novel and user-friendly 
ML-based algorithm for explore critical microbiomes and diagnostic 
tools in MG. Future studies should prioritize conducting longitudinal, 
multi-center research to deepen the understanding of the mechanisms 
involved in the interactions of ASVs with hosts, which will aid in 
defining targets for MG therapy.
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