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Karnal bunt (KB; Tilletia indica) is the prime quarantine concern for quality wheat 
production throughout the world. The most effective approach to dealing with 
this biotic stress is to breed KB-resistant wheat varieties, which warrants a better 
understanding of T. indica genome architecture. In India, the North Western Plain 
Zone is the prime hot spot for KB disease, but only limited efforts have been 
made to decipher T. indica diversity at the genomic level. Microsatellites offer a 
powerful and robust typing system for the characterization and genetic diversity 
assessment of plant pathogens. At present, inadequate information is available 
with respect to the development of genome-derived markers for revealing 
genetic variability in T. indica populations. In current research, nine complete 
genome sequences of T. indica (PSWKBGH_1, PSWKBGH_2, PSWKBGD_1_3, 
RAKB_UP_1, TiK_1, Tik, DAOMC236408, DAOMC236414, and DAOMC236416) 
that exist in the public domain were explored to know the dynamic distribution 
of microsatellites. Comparative genome analysis revealed a high level of relative 
abundance and relative density of microsatellites in the PSWKBGH_1 genome 
in contrast to other genomes. No significant correlation between microsatellite 
distribution for GC content and genome size was established. All the genomes 
showed the dominance of tri-nucleotide motifs, followed by mono-, di-, tetra-, 
hexa-, and penta-nucleotide motifs. Out of 50 tested markers, 36 showed 
successful amplification in T. indica isolates and produced 52 different alleles. 
A PCR assay along with analysis of the polymorphic information content (PIC) 
revealed 10 markers as neutral and polymorphic loci (PIC 0.37). The identified 
polymorphic SSR loci grouped a geographically distinct T. indica population of 50 
isolates representing seven Indian regions (Jammu, Himachal Pradesh, Punjab, 
Haryana, Uttarakhand, Uttar Pradesh, and Rajasthan) into four distinct clusters. 
The results of the analysis of molecular variance identified 94% genetic variation 
within the population and 6% among the population. Structure analysis also 
confirmed the existence of four genetically diverse groups containing admixtures 
of T. indica isolates across populations. In nutshell, the current study was 
successful in identifying novel, neutral and polymorphic microsatellite markers 
that will be  valuable in offering deep insight into the evolutionary relationship 
and dynamics of the T. indica population for devising effective KB management 
strategies in wheat.
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Introduction

Tilletia indica, which causes Karnal bunt (KB) disease, is an 
important quarantine fungus that negatively influences the quality of 
wheat produce throughout the globe (Emebiri et  al., 2021). The 
pathogen was first recorded in April 1931 from Karnal town in India 
(Mitra, 1931) and later reported from different countries, including the 
United  States, Brazil, Pakistan, Mexico, Nepal, South  Africa, 
Afghanistan, Syria, and Iran (Duhan et al., 2022). At present, more than 
86 countries have banned wheat imports by executing strong 
quarantine policies and following a zero tolerance policy on wheat 
trade from KB-affected countries (Rush et al., 2005; Sansford et al., 
2008; Bishnoi et al., 2020; Gurjar et al., 2021). In India, KB has been 
observed regularly in the North-Western plains and Tarai region of 
Himachal Pradesh, Jammu, Punjab, Uttrakhand, and Uttar Pradesh 
regions of India (Parveen et al., 2015; Kashyap et al., 2022). T. indica is 
a soil-, seed-, and air-borne fungus and has the potential to reside for 
several years in soil, wheat straw, and farmyard manure (Kashyap et al., 
2011). After wheat sowing, T. indica fungus enters the seed via the 
germinal point and produces a brownish-black mass of teliospores with 
a decaying fish-like smell by producing trimethylamine (Kumar et al., 
2004). Further, infected wheat seeds showed partial colonization and 
resulted in bunted grain (Riccioni et al., 2008; Bala et al., 2022). It has 
been noticed that the deterioration in the quality of wheat grain varies 
with the severity of T. indica infection during the spike growth stage 
(boot leaf stage or Zadok’s stage 49) in wheat (Kaur and Kaur, 2005; 
Goates and Jackson, 2006). Kashyap et al. (2018) documented that 
more than 3% KB infection in wheat grains had a negative impact on 
the appearance and taste of chapattis, cookies, and bread. However, 
>5% infection in wheat grains was unsuitable as a food source for 
humans (Sekhon et al., 1980; Warham, 1986; Ullah et al., 2012; Kumar 
et al., 2017; Kashyap et al., 2019a). Published literature also indicated 
that the wheat export from KB-affected areas resulted in production 
losses of 0.2–0.5% (Sharma et al., 2022). However, losses up to 40% 
have been observed in those areas where KB-susceptible varieties were 
grown by farmers (Bishnoi et al., 2021). In India, Shakoor et al. (2015) 
documented a yield loss due to KB of nearly 0.5%. However, yield 
losses up to 1% have been reported from Mexico (Iquebal et al., 2021). 
Unfortunately, effective and timely control of KB has become a difficult 
task because of several factors, including T. indica dispersal mode, the 
non-availability of KB-resistant wheat cultivars, and the survival of 
T. indica spores in the soil for several years (Parveen et al., 2013). 
Further, cultural and fungicide-based management strategies are not 
offering desirable results in managing KB because of the heterothallic 
nature and sporadic occurrence of T. indica (Parveen et  al., 2015; 
Kashyap et al., 2019a). Besides this, hybridization in T. indica spores 
also stimulates recombination and further helps in the rising genetic 
diversity spectrum of the fungus (Singh and Gogoi, 2011). In such a 
situation, virulence data alone is inadequate to offer a suitable and 
better insight into the existing diversity in the field population of 
T. indica. Hence, a deep and comprehensive understanding of genetic 

diversity at the genomic scale becomes obligatory for efficient 
utilization of resistance sources and to discover new changes in 
the  pathotype distribution or structure of the evolving 
T. indica population.

Over the past several decades, a series of traditional approaches, for 
instance, cultural distinctiveness, phenology, virulence, monosporidia, 
wheat-T. indica interaction at physiological and biochemical levels, etc., 
have been explored for resolving the mystery related to T. indica 
variability (Bonde et al., 1996; Pannu and Chahal, 2000; Sharma et al., 
2002; Kumar et al., 2004; Thirumalaisamy and Singh, 2012; Gupta et al., 
2015, 2017; Pandey et al., 2018, 2019; Kashyap et al., 2020). However, the 
laborious, time-consuming, and environmentally prejudiced nature of 
the aforementioned methods is their prime demerits. These methods 
also lack precision and accuracy. There are a flood of research reports 
that illustrate the potential of nucleic acid-derived markers for unzipping 
the variation among fungal pathogens at the genome level (Kumar et al., 
2013; Kashyap et al., 2015,2019b; Goswami et al., 2017; Choudhary et al., 
2018; Jiménez-Becerril et al., 2018; Prasad et al., 2018). For instance, 
genetic markers such as inter simple sequence repeats (ISSR) and 
random amplified polymorphic DNA (RAPD) have been extensively 
utilized to understand the genetic diversity of T. indica isolates (Avinash 
et al., 2000; Seneviratne et al., 2009; Aggarwal et al., 2010; Parveen et al., 
2015; Aasma et al., 2022). Unfortunately, the aforementioned markers 
are dominant and unable to determine analogous reproducibility across 
populations, thereby being of little significance, especially for 
comparative genotyping studies (Agarwal et al., 2008; Rao et al., 2018). 
Alternatively, microsatellites [Syn = simple sequence repeats (SSR)] have 
been recognized as one of the most popular and ideal technologies for 
unfolding genetic variation among fungal pathogens because of their 
ubiquitous nature, high polymorphism, co-dominance inheritance, and 
high level of allelic variation within the genome (Kumar et al., 2012; 
Singh et al., 2014; Kashyap et al., 2015; Rai et al., 2016; Savadi et al., 2020). 
Several research studies indicated the potential of microsatellites in 
dissecting the population genetic structure and defining the evolutionary 
relationships among myriads of fungi responsible for causing smut and 
bunt diseases in plants (Zhou et al., 2008; Zhang et al., 2015; Sharma 
et al., 2018; Kashyap et al., 2019b). Currently, few reports exist regarding 
the application of microsatellites in exploring genetic variation in 
T. indica (Kaur et al., 2015; Sharma et al., 2018; Gurjar et al., 2022). 
Moreover, no database has been developed that can provide information 
related to the distribution and dynamics of microsatellite markers in the 
T. indica genome. In recent time, the genomes of nine isolates of T. indica 
(PSWKBGH_1, PSWKBGH_2, PSWKBGD_1_3, RAKB_UP_1, TiK_1, 
Tik, DAOMC236408, DAOMC236414, and DAOMC236416) have been 
decoded, and information about them is available in the public domain.1 
Keeping the aforementioned points in mind, current research has been 
initiated to mine the multiple genomic resources of T. indica for the 

1 https://www.ncbi.nlm.nih.gov/genome/browse/eukaryotes/8345/
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discovery and characterization of microsatellite-based markers. The 
prime objectives of the study include (i) the investigation of nine different 
genomes of T. indica for finding out the distribution pattern and 
dynamics of microsatellites at inter-and intra-genome levels, (ii) the 
identification and validation of microsatellite-derived markers for 
dissecting genetic variation in T. indica isolates, and (iii) the assessment 
of diversity and structure of the T. indica population by polymorphic 
microsatellite markers.

Materials and methods

Tilletia indica isolates and culture 
conditions

The study was made on a set of fifty isolates of T. indica 
representing different geographical regions of North India (Table 1). 
T. indica isolates were isolated from KB-infected grain samples 
collected during 2019–2020 from grain mandies in seven different 
regions of North India (Haryana, Rajasthan, Punjab, Uttar Pradesh, 
Uttarakhand, Jammu, and Himachal Pradesh). Teliospores of each 
isolate were extracted by puncturing a sorus of T. indica-infected seed, 
and spores were processed for germination at 121°C in a Petri-plate 
amended with 2% water agar (HiMedia, India). It is important to 
mention that a single germinating teliospore was chosen in random 
fashion from a Petri-plate containing water agar with the help of a 
sterilized needle. The selected spore was further placed on a Petri-plate 
amended with potato dextrose agar (PDA; HiMedia, India) and 
incubated at 18 ± 2°C for 2 weeks under alternate cycles of dark and 
light conditions before executing further experiments.

Aggressiveness and virulence assessment

The aggressive nature of T. indica isolates was studied by 
inoculating each isolate independently on three susceptible wheat 
cultivars (WL711, WH542, and PBW343). The seeds were grown in 
one-meter-long strips with a strip-to-strip distance of 25 cm during 
the rabi cropping season (2021–2022) at the experimental field of the 
ICAR-Indian Institute of Wheat and Barley Research (IIWBR), 
Karnal, India. Three replicates of each genotype were maintained. The 
wheat sowing operation was performed during the second week of 
November and was similar to the period of normal sowing of wheat 
in North India. Bulk inocula of each T. indica isolate producing 
secondary sporidia (allantoids) were raised on PDA containing Petri-
plates. The load of the liquid suspension of secondary sporidia 
(6 × 106 mL−1) was optimized with a hemocytometer. During evening 
hours, two milliliter of standardized liquid suspension of each isolate 
in the ear-head was inserted with the help of a hypodermal syringe 
(Aujla et al., 1989) in ten main tillers of each cultivar (i.e., WL711, WH 
542 and PBW343) at Zadock’s growth stage (ZGS 49, i.e., boot leaf 
stage) (Zadocks et  al., 1974) (Supplementary Figure S1). A single 
sterilized syringe per isolate was employed to avoid the cross-
contamination of KB isolates among each other. After inoculation, 
each inoculated tiller was tagged. An environment of high humidity 
(>70%) was regularly maintained by performing mist sprays at regular 
intervals of 4 h. At crop maturity, inoculated ear heads were 
handpicked and threshed. Every seed of the inoculated tiller was 

visually examined. In the case of point infections in the seeds, a 
magnifying lens or a microscope was used to confirm the presence of 
KB teliospores. Data pertaining to the number of KB-infected grains 
per inoculated ear as well as their level of infection per grain was also 
recorded. The numerical values of 0, 0.25, 0.50, 0.75, and 1.0 were used 
to indicate the infection severity (infection grade) of 0, 1, 2, 3, and 4, 
respectively. The percent coefficient of infection (CI) was computed 
by employing the below-mentioned formula.

 
CI

X Y

N

i i= ∑ ×100

Where, CI = Per cent coefficient of infection; N = Numbers of total 
grains analyzed; i = infection severity grade (i = 0 to 4); X = Numerical 
value of ith grade of infection severity; and Y = Total number of grains 
of ith grade of infection severity.

The obtained CI values were further used to categorize aggressivity 
of each isolate inoculated on susceptible cultivars (WL711, WH542 
and PBW343). All the T. indica isolates under study were further 
classified into three major groups. These includes: highly aggressive 
(HA) isolates (CI >20%), moderately aggressive (MA) isolates (CI 
ranged between 10–20%) and least or weakly aggressive (LA) isolates 
(CI <10%).

Tilletia indica genomic resources and 
computational analysis

The sequence data used in the current study was collected from 
nine different whole genome sequences (PSWKBGH_1, 
PSWKBGH_2, PSWKBGD_1_3, RAKB_UP_1, TiK_1, Tik, 
DAOMC236408, DAOMC236414, and DAOMC236416) available in 
the public domain (NCBI; https://www.ncbi.nlm.nih.gov/genome/
browse/#!/eukaryotes/8345/) for the exploration of microsatellite 
rpeat motifs. The retrieved data was assessed on different parameters 
such as motif occurrence frequency, relative density (RD) of repeat 
motifs, and relative abundance (RA) of repeat motifs with the help of 
Krait software (Du et al., 2018). The numerical value setting criteria 
used to discover different microsatellite loci were fixed at 12 for mono-
repeat motifs, followed by 7 for di-repeat motifs, 5 for tri-repeat 
motifs, and 4 for the remaining tetra-, penta-, and hexa-repeat motifs. 
A random selection of fifty SSR primers from all nine genomes of 
T. indica was performed before amplified product validation using a 
polymerase chain reaction (PCR) assay. PRIMER3 online software2 
was used to develop and select primers for PCR assays.

PCR amplification and SSR genotyping

The genomic DNA of all 50 isolates of T. indica was isolated 
using the cetyl trimethylammonium bromide (CTAB)-based 
protocol of Kumar et  al. (2013). The quality and quantity of 
extracted genomic DNA from each isolate were determined using 
Scandrop2 spectrophotometers (Analytik Jena, Germany). A PCR 

2 https://primer3.org/
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TABLE 1 Description of Tilletia indica isolates collected from different states of North India.

Isolate(s) Location
Year of 

collection

NCBI gene 
bank 

accession No.

Coefficient of infection (%) after artificial 
inoculations

WL711 WH 542 PBW343

KTi-19-1 Punjab 2019 MT497985 39.62 ± 3.65i 36.40 ± 3.95ij 42.23 ± 1.05o

KTi-19-2 Punjab 2019 MT497986 17.04 ± 1.57 d 17.65 ± 2.12de 14.23 ± 0.81 f

KTi-19-3 Punjab 2019 MT497987 18.60 ± 2.09 d 18.47 ± 3.71e f 17.48 ± 0.69ij

KTi-19-4 Punjab 2019 MT497988 15.02 ± 3.25cd 15.37 ± 3.54d 17.64 ± 0.53ij

KTi-19-5 Punjab 2019 MT497989 20.70 ± 3.74de 21.33 ± 2.95ef 26.10 ± 0.52lm

KTi-19-6 Rajasthan 2019 MT497990 17.36 ± 4.71 d 18.11 ± 2.25e 16.10 ± 0.43 g

KTi-19-7 Uttarakhand 2019 MT497991 16.90 ± 1.62 d 17.22 ± 2.35 d 18.83 ± 0.77j

KTi-19-8 Uttar Pradesh 2019 MT497992 18.55 ± 1.25 d 18.67 ± 3.33 f 17.23 ± 0.29ij

KTi-19-9 Himachal Pradesh 2019 MT497993 16.22 ± 2.34d 16.12 ± 2.14d 18.28 ± 0.38jk

KTi-19-10 Rajasthan 2019 MT497994 26.99 ± 2.33f 28.90 ± 3.65gh 24.01 ± 0.86l

KTi-19-11 Rajasthan 2019 MT497995 15.80 ± 1.25cd 17.74 ± 1.61d 15.82 ± 0.79g

KTi-19-12 Jammu 2019 MT497996 29.78 ± 4.34de 22.24 ± 2.72f 27.47 ± 0.85lmn

KTi-19-13 Punjab 2019 MT497997 15.96 ± 2.22cd 17.24 ± 1.12 d 17.19 ± 0.43i

KTi-19-14 Rajasthan 2019 MT497998 13.93 ± 1.32 c 11.64 ± 3.11b 16.92 ± 0.22 h

KTi-19-15 Haryana 2019 MT497999 13.71 ± 1.14 c 11.46 ± 2.32b 16.65 ± 0.24 g

KTi-19-16 Jammu 2019 MT498000 13.50 ± 1.15 c 11.28 ± 1.41b 16.38 ± 0.59gh

KTi-19-17 Punjab 2019 MT498001 43.28 ± 1.22j 41.10 ± 4.33jk 46.11 ± 1.02p

KTi-19-18 Haryana 2019 MT498002 35.64 ± 1.04h 38.65 ± 3.13ijk 36.83 ± 1.01n

KTi-19-19 Uttarakhand 2019 MT498003 14.42 ± 1.07c 17.48 ± 1.27 d 15.56 ± 1.14 g

KTi-19-20 Jammu 2019 MT498004 15.43 ± 1.04 c 19.00 ± 1.29 e f 17.29 ± 1.18ij

KTi-19-21 Punjab 2019 MT498005 12.40 ± 3.09c 10.37 ± 2.28ab 15.02 ± 1.17fg

KTi-19-22 Punjab 2019 MT498006 18.18 ± 1.75 d 17.19 ± 2.31d 19.75 ± 2.15jk

KTi-19-23 Uttarakhand 2019 MT498007 31.96 ± 1.44g 30.01 ± 4.26hi 38.47 ± 3.13mn

KTi-19-24 Haryana 2019 MT498008 23.32 ± 2.37e 24.56 ± 3.29g 24.20 ± 2.72 L

KTi-19-25 Punjab 2019 MT498009 23.07 ± 2.36e 24.29 ± 2.34g 33.93 ± 3.66n

KTi-19-26 Punjab 2019 MT498010 12.83 ± 1.43c 14.03 ± 1.44c 13.66 ± 1.63f

KTi-19-27 Punjab 2019 MT498011 13.14 ± 2.31 c 14.17 ± 3.81c 13.39 ± 1.61e

KTi-19-28 Uttar Pradesh 2019 MT498012 24.65 ± 1.69e 15.22 ± 2.62d 13.11 ± 1.48e

KTi-19-29 Haryana 2019 MT498013 8.94 ± 1.70 a 7.64 ± 1.32a 12.84 ± 1.49e

KTi-19-30 Uttar Pradesh 2019 MT498014 7.40 ± 1.94a 7.17 ± 0.92 a 6.23 ± 0.92a

KTi-19–31 Uttar Pradesh 2019 MT498015 15.21 ± 1.35c 14.56 ± 1.52cd 12.30 ± 1.31e

KTi-19-32 Rajasthan 2019 MT498016 19.55 ± 2.75de 21.05 ± 2.14ef 19.03 ± 2.02jk

KTi-19-33 Haryana 2019 MT498017 9.31 ± 0.92a 8.20 ± 0.16ab 6.57 ± 0.22a

KTi-19-34 Punjab 2019 MT498018 9.15 ± 0.22a 8.02 ± 0.37a 7.48 ± 0.71ab

KTi-19-35 Rajasthan 2019 MT498019 10.33 ± 0.52b 11.84 ± 0.09b 14.21 ± 0.68f

KTi-19-36 Punjab 2019 MT498020 9.11 ± 0.75a 7.65 ± 0.62 a 9.24 ± 0.32d

KTi-19-37 Rajasthan 2019 MT498021 8.89 ± 0.43a 7.47 ± 0.92 a 9.67 ± 0.24d

KTi-19-38 Himachal Pradesh 2019 MT498022 8.68 ± 0.31 a 8.47 ± 0.26ab 8.39 ± 0.45 b

KTi-19-39 Himachal Pradesh 2019 MT498023 8.46 ± 0.29 a 8.61 ± 0.12ab 9.12 ± 0.72cd

KTi-19-40 Rajasthan 2019 MT498024 8.24 ± 0.24 a 7.93 ± 0.65 a 9.85 ± 0.05d

KTi-19-41 Rajasthan 2019 MT498025 7.87 ± 0.44 a 7.75 ± 1.92 a 8.98 ± 0.52c

KTi-19-42 Uttar Pradesh 2019 MT498026 16.49 ± 1.21d 13.23 ± 1.42c 18.51 ± 0.12jk

KTi-19-43 Uttar Pradesh 2019 MT498027 8.38 ± 0.22 a 8.74 ± 0.25ab 9.03 ± 0.42cd

(Continued)
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assay was conducted in a total of 25 μL of reaction and executed in 
a Q Cycler 96 (Hain Lifescience, United Kingdom) machine for 
amplification of each SSR locus marker. The PCR master reaction 
was prepared by incorporating T. indica DNA (50 ng μ1), GoTaq 
green master mix (12.5 μL; Promega, United States), and 1 μL of 
each primer (10 M) in a thin-walled PCR tube (Genaxy, India). The 
final reaction volume (25 μL) was fixed with the help of sterilized 
distilled water. The thermocycling program runs after setting the 
preliminary denaturation temperature at 95°C for 2 min, followed 
by six touch-down PCR cycles comprising 95°C for 20 s, 57/53°C 
for 15 s, and 72°C for 30 s. These cycles were followed by 40 cycles 
of denaturation at 95°C for 20 s with an invariable annealing 

temperature of 57 or 53°C (depending on the marker as mentioned 
in Table 2) for 15 s, extension at 72°C for 30 s, and a final elongation 
step at 72°C for 30 min. All the amplified products were visualized 
on a 3.5% agarose gel using ethidium bromide staining. A DNA 
ladder (100 bp; Promega, USA) was employed to compare and 
estimate the size of the amplified product.

Statistical analysis

Each T. indica isolate was monitored for the presence (recorded 
as 1) or absence (recorded as 0) of amplified products by each SSR 

Isolate(s) Location
Year of 

collection

NCBI gene 
bank 

accession No.

Coefficient of infection (%) after artificial 
inoculations

WL711 WH 542 PBW343

KTi-19-44 Jammu 2019 MT498028 7.85 ± 0.15 a 8.67 ± 0.26ab 8.76 ± 0.26 b

KTi-19-45 Jammu 2019 MT498029 10.70 ± 0.65b 18.69 ± 0.52e f 16.49 ± 0.29 g

KTi-19-46 Jammu 2019 MT498030 8.70 ± 0.45 a 7.29 ± 1.61a 8.22 ± 0.32 b

KTi-19-47 Himachal Pradesh 2019 MT498031 9.17 ± 0.39 a 8.76 ± 0.10ab 7.95 ± 0.94b

KTi-19-48 Himachal Pradesh 2019 MT498032 23.15 ± 2.99ef 30.48 ± 3.97hi 27.67 ± 3.12mn

KTi-19-49 Haryana 2019 MT498033 24.70 ± 2.56ef 20.96 ± 2.42f 25.97 ± 4.62klm

KTi-19-50 Himachal Pradesh 2019 MT498034 13.26 ± 2.63c 12.12 ± 1.32b 15.67 ± 1.52fg

Coefficient of infection (CI) = [(0·25 × seeds in grade 0·1 to 1) + (0·50 × seeds in grade 2) + (0·75 × seeds in grade 3) + (1·0 × seeds in grade 4)] × 100/total number of grains HA: Highly aggressive 
(CI = > 20.0%); MA = Moderately aggressive (CI = 10.0–20.0%); LA: Least aggressive (CI = <10.0%).

TABLE 1 (Continued)

TABLE 2 Details of primer sequences, motifs, annealing temperatures (Ta), and other indices of polymorphic simple sequence repeat (SSR) markers in 
the 50 geographical distinct Tilletia indica isolates.

Marker Sequence (5′-3′) Motif Ta (°C) Alleles (AS) He PIC

TiSSR10 F:CTGTAGATGATGGGCCCATTCC (CCT)5 54 2 (170–180) 0.50 0.37

R:GATTATCTATATGCGGTCACGGC

TiSSR17 F:TGTACTGCTGACATCTCTCTCC (CTT)7 56 3 (130–280) 0.62 0.55

R:GTATGGTGCTTTGTCGAGTTCG

TiSSR19 F:TGTAGTACCAGCATCCAAGAGC (CCT)3 53 2 (150–170) 0.50 0.37

R:GAAAATGGCGAATCGGATGAGG

TiSSR20 F:GCCGTTCGAAGTTGATATCTTGC (TCG)5 53 2 (120–140) 0.50 0.37

R:ACAGCCTTCTTCATCTTCCAGG

TiSSR27 F:TCTGGCTATTACCACTGTTCACC (TAGTCA)3 54 7 (180–580) 0.83 0.81

R:CAGTGATCGGCGTGACTATGG

TiSSR40 F:GACATCATCGCCCAACAAATCG (GTC)2 54 2 (170–210) 0.50 0.37

R:TCTCAATCCCCTCTTTTCTCGC

TiSSR41 F:CCCATCCACATTCACACAAACC (ACCC)3 54 2 (165–185) 0.50 0.37

R:TGGTGGCGAAATAGACTCACC

TiSSR42 F:AGCGGAAGAATGAGAGCATAGG (AGG)4 53 2 (155–175) 0.50 0.37

R:CGGAAGGAGGTAGTAAGGAAGG

TiSSR45 F:ATACCATGTGAAAGAGAGGCCG (AGA)2 52 2 (165–195) 0.50 0.37

R:ATAGAACCGGTTTTCTCCTCGG

TiSSR47 F:TCCCGACTATCATACAACCACC (CCT)10 52 2 (110–140) 0.50 0.37

R:CTTCGTTGACTGTGAGGTCTCC

He, Expected heterozygosity; PIC, Polymorphism information content; AS, amplicon size in base pair.

https://doi.org/10.3389/fmicb.2023.1227750
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kashyap et al. 10.3389/fmicb.2023.1227750

Frontiers in Microbiology 06 frontiersin.org

primer used in the PCR assay. The 0/1 matrix was used to compute 
the similarity genetic distance using the Simqual option available in 
the computer-driven numerical taxonomy and multivariate analysis 
system (NTSYS) software, version 2.1 (Rohlf, 2002). To deduce the 
genetic relationships among different isolates of T. indica, the 
resultant similarity coefficients were taken into consideration for the 
generation of a dendrogram based on the unweighted paired group 
method of arithmetic averages (UPGMA) algorithm and sequential 
agglomerative hierarchical non-overlapping (SAHN) grouping. The 
computation of heterozygosity (He) and polymorphism information 
content (PIC) was made according to Botstein et al. (1980). The PIC 
value was determined by using the below-mentioned formula:

 
PIC Piji

j

n

= −
=
∑1

1

2

where Pij depicts frequency of the jth allele for the marker 
i allessles.

Analysis of molecular variance (AMOVA) was computed by using 
GenAlEx 6.5 (Peakall and Smouse, 2012) to figure out the role of 
variance components in genetic variation at the inter-and intra-
population levels. Population structure was determined by Structure 
2.3.4 (Pritchard et al., 2000). The STRUCTURE program was run by 
giving command of five independent runs of 50,000 burns in period 
length at fixed iterations of 1,00,000. Further, the methodology of 
Evanno et al. (2005) was referred to fix the optimum K-value. Besides 
this, field experiments performed to check the aggressiveness of each 
T. indica isolate were statistically arranged in a randomized block 
design (RBD) with three independent replicates. An analysis of 
variance (ANOVA) was conducted to test the significance of the 
generated data. Duncan’s multiple range test (DMRT) is used to make 
post hoc comparative analyzes of the mean data.

Results

Aggressiveness assessment of Tilletia indica 
isolates

All the 50 isolates of T. indica were assessed on the parameter of 
their aggressivity on three susceptible wheat cultivars (cv. WL711, 
WH542 and PBW343) and obtained data was presented in Table 1. 
The range of CI in all the three cultivars viz., WL711, WH542 and 
PBW343 was 7.40–43.28%, 7.17–41.10% and 6.23–46.11%, respectively 
(Table 1). Isolate KTi-19-17 was found highly aggressive in nature as 
revealed by CI values more than 41% in all the three cultivars. 
Similarly, KTi-19-30 was found least aggressive as lowest CI was 
recorded in WL711 (7.40%) followed by WH542 (7.17%) and PBW343 
(6.23%) cultivars. Further, it was noticed that the aggressivity of tested 
KB isolates ranged from HA (30% T. indica isolates) to LA (24% 
T. indica isolates) and MA (46% T. indica isolates) (Figure 1).

Genome-wide distribution patterns of 
microsatellite repeats

Nine distinct T. indica whole genome sequences were mined to 
determine the total lengths of all kinds of motifs per megabase pair 

(Mbp) of DNA sequence in order to evaluate the importance of 
motif length to microsatellite prevalence (Table  3). The 
PSWKBGD_1_3 genome was found to have the most microsatellites 
(7336), followed by the PSWKBGH_1 and PSWKBGH_2 genomes 
(6,426 and 6,328, respectively), DAOMC236408 (5022), RAKB_
UP_1 (4915), TiK_1 (4880), DAOMC236416 (4756), DAOMC236414 
(4437), and Tik (4224). DAOMC236414 (98.38%) had the highest 
proportion of perfect microsatellites, followed by DAOMC236416 
(98.04%), DAOMC236408 (98.01%), Tik (97.49%), PSWKBGH_1 
(97.42%), TiK_1 (97.34%), RAKB_UP_1 (97.21%), PSWKBGH_2 
(96.84%), and PSWKBGD_1_3 (95.24%). In addition, it was 
discovered that the PSWKBGH_1 (171.54) genome had the highest 
relative abundance of microsatellites when compared to the 
PSWKBGH_2 (170.03), DAOMC236408 (169.29), PSWKBGD_1_3 
(167.92), DAOMC236416 (164.35), Tik (158.17), DAOMC236414 
(153.19), TiK_1 (153.311), and RAKB_UP_1 (145). Similar to this, 
RD of SSR was seen to be at its highest in PSWKBGD_1_3 (3938.8), 
followed by PSWKBGH_2 (3457.92), PSWKBGH_1 (3397.81), 
DAOMC236408 (3275.61), DAOMC236416 (3251.37), Tik 
(3150.31), TiK_1 (2993.85), and RAKB_UP_1 (2885.01) and 
DAOMC236414 (2840.49). (Table  3). Table  4 contains detailed 
information on the percentage, relative abundance (RA), and relative 
density (RD) of SSRs in sequence sets from various T. indica isolates.

A total of 2344 (49.3% of the genome), 2406 (54.2% of the genome), 
2399 (47.8% of the genome), 2788 (41.6% of the genome), 3063 (41.8% 
of the genome), 2630 (43.4% of the genome), 2456 (50% of the 
genome), 2449 (50.2% of the genome), and 1894 (44.8% of the genome) 
tri-nucleotide motif types were identified in DAOMC236416, 
DAOMC236414, DAOMC236408, PSWKBGH_1, PSWKBGD_1_3_3, 
PSWKBGH_2, RAKB_UP_1, TiK_1 and Tik, respectively (Table 4). 
On the basis of microsatellite count distribution, tri-nucleotide repeat 
units followed by mono-, di-, tetra-, hexa-, and penta-nucleotide repeat 
motifs were predominant in DAOMC236416, DAOMC236408, 
PSWKBGD_1_3, PSWKBGH_2, and Tik genomes (Table 4; Figure 2). 
Contrarily, DAOMC236414, PSWKBGH_1, RAKB_UP_1, and TiK_1 
genomes showed the dominance of tri-nucleotide motifs, followed by 
mono-, di-, tetra-, hexa-, and penta-nucleotide motifs. A similar trend 
was observed in all the genomes when the SSR length distribution for 
each type of motif was explored in all the genomes (Figure 3). The most 
frequent motif in DAOMC236414, DAOMC236408, PSWKBGH_1, 
RAKB_UP_1, TiK_1, and Tik genomes was ACG, except in genome 
DAOMC236416, PSWKBGD_1_3 and PSWKBGH_2, where AGG 
was found to be the most frequent repeat. Overall, the repeats of AG, 
AGG, ACG, ACTC, AAAAG, AAGGG, AACGG, ATGTG, ATCAC, 
ATACTG, ACCTCG, ATAGTC, AATCCC, and AACCCT were 
abundant in all the genomes (Table  5). The C/G motif in all the 
genomes was the most abundant mono-nucleotide motif (Figure 4).

Development of genome-wide 
microsatellite markers and polymorphism 
evaluation

Among fifty microsatellite markers, only 36 SSR markers were 
able to generate amplicons when tested on the genomic DNA of 
T. indica. However, only ten loci showed polymorphism among all 50 
isolates and displayed well-amplified and easily detectable amplicons 
ranging from 110 to 580 bp (Table 2). Among amplified markers, ten 
markers (37.5%) were polymorphic (PIC >0.35%), and the remaining 
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26 markers showed monomorphic alleles. A total of 26 alleles were 
amplified by ten markers (Table  2). Maximum alleles (7) were 
amplified by the TiSSR27 marker. Both TiSSR17 and TiSSR27 found 
the most informative SSR markers based on their PIC values (>0.50) 
and heterozygosity values (>0.62) (Table 2).

Diversity and cluster analysis

The ten polymorphic primer pairs identified in the current study 
resulted in the production of twenty-six different alleles, which were 

further deployed to estimate the genetic variability and kinship among 
different isolates of T. indica. The results of analysis of molecular 
variance (AMOVA) identified 94% genetic variation within population 
and 6% among population (Table 6). Further, it has been noticed that 
similarity coefficients values varied from 0.51 to 1.0 in all the isolates 
of T. indica. The dendrogram made at similarity index of ≥60% 
divided T. indica population into four major clusters (Figure 5). The 
Cluster-I occupied 15 isolates of T. indica (KTi-1, KTi-2, KTi-3, KTi-4, 
KTi-19, KTi-30, KTi-21, KTi-29, KTi-31, KTi-32, KTi-46, KTi-47, 
KTi-48, KTi-49, and KTi-50), while cluster II, III and IV included 2 
(KTi-43 and KTi-44), 13 (KTi-5, KTi-37, KTi-6, KTi-7, KTi-8, KTi-9, 

FIGURE 1

Heat map showing aggressiveness of Tilletia indica isolates. HA: Highly aggressive (CI = 20%), MA: moderately aggressive (CI = 10–20%), LA (least or 
weakly aggressive = CI <10%).
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TABLE 4 Percentage, relative abundance, and relative density of SSRs in 
sequence sets of different isolates of Tilletia indica.

Isolate(s)
Motif 
type

Counts
AL 

(bp)

RA 
(loci/
Mb)

RD 
(bp/
Mb)

PSWKBGH_1 Mono 1,386 17.94 37 663.66

Di 947 18.58 25.28 469.67

Tri 2,788 18 74.43 1339.34

Tetra 654 21.16 17.46 369.46

Penta 164 24.82 4.38 108.65

Hexa 487 34.39 13 447.03

PSWKBGH_2 Mono 1,433 17.79 38.5 685.07

Di 973 18.32 26.14 478.98

Tri 2,630 18.09 70.67 1278.29

Tetra 608 23.96 16.34 391.44

Penta 166 26.11 4.46 116.48

Hexa 518 36.47 13.92 507.67

PSWKBGD_1_3 Mono 1917 35.94 43.88 1577.22

Di 1,101 17.37 25.2 437.79

Tri 3,063 17.51 70.11 1227.46

Tetra 641 20.94 14.67 307.27

Penta 193 24.43 4.42 107.93

Hexa 421 29.17 9.64 281.13

RAKB_UP_1 Mono 610 21.75 18.06 392.82

Di 867 18.02 25.67 462.58

Tri 2,456 17.5 72.72 1272.62

Tetra 480 20.04 14.21 284.86

Penta 141 25.89 4.18 108.08

Hexa 361 34.06 10.69 364.04

TiK_1 Mono 618 20.83 19.41 404.41

Di 859 18.03 26.99 486.57

Tri 2,449 17.47 76.94 1343.96

Tetra 474 19.84 14.89 295.43

Penta 138 26.99 4.34 117.02

Hexa 342 32.25 10.74 346.45

Tik Mono 942 18.15 35.27 640.38

Di 610 17.92 22.84 409.27

Tri 1894 17.88 70.92 1268.37

Tetra 346 20.21 12.96 261.81

Penta 114 24.43 4.27 104.28

Hexa 318 39.15 11.91 466.19

DAOMC236408 Mono 953 18.97 32.12 609.56

Di 805 18.5 27.14 501.93

Tri 2,399 17.58 80.87 1421.55

Tetra 465 20.83 15.67 326.44

Penta 106 27.59 3.57 98.6

Hexa 294 32.04 9.91 317.54
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KTi-33, KTi-34, KTi-35, KTi-36, KTi-10, KTi-18 and KTi-22) and 20 
isolates (KTi-11, KTi-20, KTi-12, KTi-13, KTi-15, KTi-28, KTi-17, 
KTi-38, TiSSR45, KTi-14, KTi-16, KTi-23, KTi-24, KTi-25, KTi-26, 
KTi-27, KTi-41, KTi-42, KTi-39 and KTi-40) of T. indica, respectively. 
Similar results have been found with STRUCTURE program, when 
performed to assess similarity among different T. indica isolates at 
genetic level. The results of STRUCTURE analysis indicated a strong 
signal with a sole and clear peak at K = 4 (Figure  6) and further 
confirmed the prevalence of four genetically diverse groups in the 
studied population of T. indica representing seven Indian regions 
(Jammu, Himachal Pradesh, Punjab, Haryana, Uttarakhand, Uttar 
Pradesh and Rajasthan).

Discussion

Karnal bunt is one of the prime quarantine fungal threats to global 
wheat production and is reported to cause significant grain quality 
and economical loss. The most effective approach to dealing with KB 

Isolate(s)
Motif 
type

Counts
AL 

(bp)

RA 
(loci/
Mb)

RD 
(bp/
Mb)

DAOMC236414 Mono 438 18.03 15.12 272.72

Di 790 17.56 27.28 478.95

Tri 2,406 17.36 83.07 1442.13

Tetra 437 19.66 15.09 296.65

Penta 91 23.52 3.14 73.89

Hexa 275 29.08 9.49 276.14

DAOMC 236416 Mono 800 22.25 27.65 615.02

Di 768 18.52 26.54 491.61

Tri 2,344 17.55 81 1421.24

Tetra 464 20.07 16.03 321.8

Penta 100 27.8 3.46 96.07

Hexa 280 31.59 9.68 305.63

TABLE 4 (Continued)

FIGURE 2

SSR count distribution for each type in Tilletia indica genomes.
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disease is to breed disease-resistant wheat varieties, which demand a 
better and deeper understanding of the T. indica fungus at the genetic 
level (Bishnoi et al., 2020). In India, the North Western Plain Zone is 
the prime hot spot for KB disease, but only limited efforts have been 
made to decipher T. indica diversity at the genomic level. In this 

connection, current research attempts to make a comparative analysis 
of nine T. indica genomes available in the public domain for the 
development of novel and neutral microsatellite markers to dissect the 
genetic diversity and structure of the field population of T. indica. 
Earlier researchers have used a series of molecular markers or typing 

FIGURE 3

SSR length distribution for each motif in Tilletia indica genomes.

TABLE 5 The longest SSR motif found in the transcript sequences of Tilletia indica isolates.

Isolate Nucleotide repeats (Motifs)

Di Tri Tetra Penta Hexa

PSWKBGH_1 (AG)687 (10.77%) (ACG)569 (8.85%) (ACTC)137 (2.13%) (AACGG)14 (0.22%) (AATCCC)49 (0.76%)

PSWKBGH_2 (AG)680 (10.75%) (AGG)536 (8.47%) (ACTC)139 (2.2%) (ATGTG)14 (0.22%) (ATAGTC)29 (0.46%)

PSWKBGD_1_3 (AG)789 (10.76%) (AGG)640 (8.72%) (ACTC)164 (2.24%) (AAGGG)15 (0.2%) (ATAGTC)39 (0.53%)

RAKB_UP_1 (AG)620 (12.61%) (ACG)715 (14.55%) (ACTC)109 (2.2%) (AAGGG)14 (0.28%) (ATACTG)28 (0.57%)

TiK_1 (AG)626 (12.83%) (ACG)706 (14.47%) (ACTC)110 (2.25%) (AAGGG)14 (0.29%) (ATACTG)28 (0.57%)

Tik (AG)425 (10.06%) (ACG)362 (8.57%) (ACTC)65 (1.54%) (ATCAC)18 (0.43%) (AACCCT)58 (1.37)

DAOMC236408 (AG)591 (11.77%) (ACG)721 (14.36%) (ACTC)123 (2.45%) (AACGG)12 (0.24%) (ATACTG)29 (0.58%)

DAOMC236414 (AG)572 (12.89%) (ACG)513 (11.56%) (ACTC)110 (2.48%) (AAGGG)9 (0.2%) (ACCTCG)18 (0.41%)

DAOMC236416 (AG)566 (11.9%) (AGG)488 (10.26%) (ACTC)134 (2.82%) (AAAAG)13 (0.27%) (ATACTG)21 (0.44%)
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methods to analyze the genetic variability of T. indica (Avinash et al., 
2000; Seneviratne et al., 2009; Aggarwal et al., 2010; Parveen et al., 
2015; Aasma et al., 2022). Unfortunately, these methods are dominant 

types and are unable to establish analogous reproducibility of markers 
across populations at the genetic level, thereby being of limited 
significance, especially for comparative genotyping studies (Agarwal 
et al., 2008; Rao et al., 2018). In recent years, researchers have shown 
interest in exploring the potential of microsatellite markers in 
unzipping the genetic variation among fungal pathogens because of 
their ubiquitous nature, high polymorphism, co-dominance 
inheritance, and high level of allelic variation within the genome 
(Kumar et al., 2012; Mahfooz et al., 2012; Singh et al., 2014; Kashyap 
et al., 2015; Rai et al., 2016). Till date, the genomes of nine isolates of 
T. indica (DAOMC236416, DAOMC236414, DAOMC236408, 
PSWKBGH_1, PSWKBGD_1_3, PSWKBGH_2, RAKB_UP_1, 
TiK_1, and Tik) have been decoded, and information about them is 
available in the public domain (see Footnote 1). This gave us an 
opportunity to explore these genomes for microsatellite dynamics and 
prevalence. It is worth mentioning here that microsatellite sequences 
retrieved through bioinformatics and computational modes have 
similar utility when compared with microsatellites derived from 
genomic libraries. Additionally, the negligible expenditure of in silico 
mining and the high profusion of microsatellites in diverse types of 
genome sequences put this approach at the forefront of the discovery 
of novel microsatellite markers for population genomic studies. 
Therefore, nine genomes of T. indica, viz., DAOMC236416, 
DAOMC236414, DAOMC236408, PSWKBGH_1, PSWKBGD_1_3, 
PSWKBGH_2, RAKB_UP_1, TiK_1, and Tik, were mined, and 
comparative analysis was done to know the distribution and dynamics 
pattern of microsatellite at whole genome level as well as to discover 
novel, neutral, and polymorphic microsatellite markers to get deep 
insight into the evolutionary relationship and dynamics of the T. indica 
population as well as for devising effective KB management strategies 
in wheat.

A wide spectrum of published research indicates that different 
taxa show distinct distribution patterns and dynamic microsatellite 
repeat motifs (Tautz et al., 1986; Toth et al., 2000; Wang et al., 2009). 
Likewise, in current research, the occurrence, abundance, and 
distribution of microsatellite motif repeats in nine genomes of 
T. indica of Canadian (e.g., DAOMC236416, DAOMC236414, and 
DAOMC236408) and Indian (PSWKBGH_1, PSWKBGD_1_3, 
PSWKBGH_2, RAKB_UP_1, TiK_1, and Tik) origin were mined. A 
series of research reports indicated a strong correlation between the 
size of the genome and microsatellite content (Karaoglu et al., 2005; 
Sahu et al., 2020). In contrast, no significant correlation was noticed 
between the total microsatellite content and the genome size in our 
study. Further, it was also observed that the RA of microsatellites did 
not uniformly exist in all nine genomes. Besides this, significant 
variation in the RA of each type of microsatellite motif was noticed in 
all the mined genomes. During comparative exploration of the 
T. indica genome, it was noticed that the RA and RD of microsatellites 
were at their maximum in the PSWKBGH_1 genome when compared 
with the other eight genomes. AG was a widely prevalent di-nucleotide 
motif repeat in all nine genomes of T. indica. Similarly, ACG/AGG was 
recorded as the most common tri-nucleotide motif in the genome. 
These observations were analogous to earlier reports where a high 
abundance of di-and tri-nucleotide motifs was noticed in the genomes 
of other organisms (Wang et al., 2009; Kumar et al., 2013; Sahu et al., 
2020). We felt that these differences in densities and abundance of 
microsatellite motifs in T. indica could be  due to the genomic 
organization of the isolates.

FIGURE 4

Distribution of most abundant motifs in Tilletia indica genomes.

TABLE 6 Analysis of molecular variance (AMOVA) of Tilletia indica 
population.

Source df SS MS EV % ΦPT

Among Populations 6 77.557 12.926 0.599 6 0.064

Within Populations 43 378.143 8.794 8.794 94

Total 49 455.700 9.393 100

df, degree of freedom; SS, sum of squared observations; MS, mean of squared observations; 
EV, estimated variance; ΦPT, proportion of the total genetic variance among isolates within 
an population (p < 0.002).
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FIGURE 5

Dendrogram generated by adopting UPGMA clustering method among 50 isolates of Tilletia indica using 10 polymorphic microsatellite markers. The 
scale in the figure is genetic similarity coefficient computed according to Jaccard’s. Numbers at the nodes represent cluster groups.

A series of published papers established the copious nature of 
tri-nucleotide repeats in contrast to other classes of motif in the 
coding regions of the genome (Kim et al., 2008; Mahfooz et al., 2012). 
Kashi and King (2006) mentioned that the dynamic mutations that 
happen in tri-nucleotide repeats influence diverse types of genetic 
functions. In the present research, efforts have been made to examine 
the microsatellite motifs presented in the T. indica genomes to get the 
real picture regarding the density of microsatellites in the different 
genomes of T. indica. The study confirmed the wide distribution of 
tri-nucleotide motifs in contrast to di-nucleotide motifs. Moreover, 
the trend of tri-nucleotide motif distribution showed conservancy 
across T. indica isolates. One feasible answer to these events could 
be selection against slippage mutations, which in turn might influence 
the stability and organization of the T. indica genome. It is worth 
mentioning here that the sequence composition of the motif type 
plays an important role in deciding the abundance of microsatellites 
in a genome. However, the sequence composition of the motif type did 
not illustrate conservancy across the species. The current research also 
established that (AG)n was the longest and most widely occurring 
microsatellite motif in the DAOMC236416 isolate, while in the cases 
of DAOMC236414, DAOMC236408, PSWKBGH_1, RAKB_UP_1, 
TiK_1, and Tik, (ACG)n was noticed as the most common 
microsatellite repeat unit. These findings also indicated that a 
sequence might harbor the most widely prevalent microsatellite motifs 
one or more times, but the total occurrence of the most frequent 
microsatellite motifs was different in T. indica isolates. Besides this, 
dissimilarity in the occurrence of polymorphic loci and the number 
of alleles per locus between genomic microsatellites is largely 
influenced by the origin of these sequences, owing to the fact that the 
coding region sequences are highly conserved in comparison to the 
non-coding region in a particular genome (Xie et al., 2018). Moreover, 

the size variation of alleles does not serve as a function of their 
repeating units. This indicates that insertions and deletions have a 
significant function in deciding the level of polymorphism in a 
genome. On parallel lines, the polymorphism pattern among the 
T. indica population composed of 50 different individuals has been 
studied. The study identified TiSSR27 and TiSSR17 as highly 
informative and neutral microsatellite markers for the genetic 
characterization of the T. indica population because of their high PIC 
values (0.50). The observed high level of polymorphism linked with 
microsatellites could be explained by replication slippage mechanisms 
responsible for creating SSR allelic diversity (Baird et al., 2010; Rai 
et al., 2016).

An ample of published literature indicates a significant amount of 
variation in the susceptibility of wheat cultivars to T. indica. This may 
be  due to the high level of genetic variation among isolates with 
different characteristics for virulence and aggression (Mishra et al., 
2001; Shakoor et al., 2015). It is important to mention here that the 
heterothallic nature of T. indica is the prime factor for generating 
continuous variation in the T. indica population (Fuentes-Davila and 
Duran, 1986; Thirumalaisamy et al., 2006). Hence, it becomes vital to 
distinguish T. indica isolates on the basis of aggressivity, which can 
be used for effective screening of germplasm against KB. Therefore, in 
the present investigation, efforts have been made to determine the 
aggressiveness of the 50  T. indica isolates on a set of three wheat 
cultivars, viz., WL711, PBW343, and WH542. The results reflected a 
significant level of variation in the aggressivity of T. indica isolates. The 
study identified 24% of isolates as HA, while 30% and 46% of isolates 
were LA and MA, respectively. However, no strong correlation between 
the aggressivity and geographical origin of T. indica isolates and their 
genetic diversity was established. This means that T. indica isolates 
contain huge variation in terms of aggressivity in different 
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wheat-growing sites in North India. Additionally, the occurrence of 
highly aggressive isolates of T. indica in Haryana, Rajasthan, Punjab, 
Uttar Pradesh, Uttarakhand, Jammu, and Himachal Pradesh also 
supported the movement of fungus from one region to another 
through seed or air. Similar results pertaining to the absence of region-
specific virulence variability were also reported by Aasma et al. (2022).

Genetic variability and virulence potential of T. indica isolates 
were reported by earlier workers (Datta et  al., 2000; Goates and 
Jackson, 2006; Parveen et al., 2013; Aasma et al., 2022). In the current 
study, DNA amplification with ten polymorphic microsatellite 
markers generated distinct amplicons that were therefore utilized as 
typing markers to characterize T. indica isolates derived from distinct 
geographical locations. These markers reveal the presence of a 
significant level of variation (94%) among the collected isolates at the 
genetic level. Although a flood of information pertaining to the 
assessment of the reaction of wheat germplasm to natural infection 
with KB is available (Kaur and Kaur, 2005; Riccioni et al., 2008; Aasma 

et  al., 2022), limited research efforts were made to determine the 
variability of the large pool of T. indica isolates in terms of 
aggressiveness. Therefore, in the current study, a research plan was 
executed with the aim of capturing the real situation regarding the 
aggressivity of T. indica isolate prevalence in different wheat growing 
sites in the northern part of India. The outcome of the study clearly 
indicates robust genetic diversity among T. indica populations 
collected from seven Indian localities (Rajasthan, Haryana, Punjab, 
Uttar Pradesh, Uttarakhand, Jammu and Himachal Pradesh), where 
isolates of all three virulence categories existed. The significant effect 
of isolates and cultivars noticed in the current study further indicated 
that the pathogenic variation in T. indica isolates could be the outcome 
of gene-to-gene interaction dependent on isolate-host compassion, as 
documented by previous researchers (Datta et al., 2000; Ullah et al., 
2012). However, an in-depth understanding of localized pathogenicity 
and genetic variability with a large pool of KB isolates is highly 
warranted with reported natural and novel polymorphic markers for 

FIGURE 6

(A) ∆K values detected by novel polymorphic microsatellites using STRUCTURE HARVESTER software showing a clear delineation of four gene pools 
(K = 4) in 50 isolates of Tilletia indica; (B) Bar plot showing genetic structure of 50 Tilletia indica as revealed by STRUCTURE v2.3.3. The vertical 
coordinate of each subgroup indicates the membership coefficients for each isolate, and the numbers on the horizontal coordinate represent the 
isolates as mentioned in Table 1. Single color in each bar reveals the genetic background. Isolates with a mixture of more than one color indicate 
admixtures.
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developing sustainable and integrated modules for disease 
management and effective wheat breeding programs in the near future.
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