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The contamination of ready to eat foods (RTE) products due to Listeria 
monocytogenes could compromise the products safety becoming a great risk 
for the consumers. The high presence of L. monocytogenes in RTE products 
has been described worldwide, but few data are available about these products 
from African countries. The aims of this study were to report the presence of L. 
monocytogenes in Zambian RTE products, providing genomic characterization 
and data on similarity with African circulating strains using whole genome 
sequencing (WGS). A total of 304 RTE products, produced by different Zambian 
manufacturers, were purchased at retail, from major supermarkets located in 
Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes 
was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. 
The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal 
complexes (CCs): CC1 (n  =  5), CC2 (n  =  4), CC9 (n  =  4), CC5 (n  =  2), CC121 (n  =  1), 
CC155 (n  =  1), and CC3 (n  =  1). According to the cgMLST results, several clusters 
were detected, in particular belonging to hyper-virulent clones CC1 and CC2. 
Regarding the virulence factors, a complete L. monocytogenes Pathogenicity 
Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. 
Several resistance genes and mobile genetic elements were detected, including 
Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and 
intact prophages. Despite being a first preliminary work with a limited number 
of samples and isolates, this study helped to increase existing knowledge on 
contaminated RTE products in Zambia, confirming the presence of hyper-virulent 
L. monocytogenes CCs, which could play an important role in human diseases, 
posing a public health concern for consumers.
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1. Introduction

The consumption of convenience foods, such as sliced and 
prepackaged ready to eat (RTE) products, has increased worldwide. 
The RTE meat and dairy products require no post-processing heating 
or other additional antimicrobial treatments before consumption, 
hence the contamination of pathogenic microorganisms, such as 
Listeria monocytogenes, could compromise the safety of the products 
becoming a great risk for the final consumers (Calvo-Arrieta 
et al., 2021).

The presence of L. monocytogenes in RTE products has been 
worldwide described and confirmed, including European Union 
(European Food Safety Authority, 2022) and South  Africa (SA) 
(Matle et al., 2019). The contamination of RTE products can occur 
along the entire food production chain as L. monocytogenes is widely 
distributed in primary production areas and in food production 
environments (FPE) of food producing plants (FPP), processing and 
packaging plants, storage facilities and retail shops (Gupta and 
Achyut, 2022). L. monocytogenes is ubiquitous and able to survive at 
low refrigeration temperatures, low pH and high salt concentrations, 
but also to develop biofilms, increasing the risks of food 
contamination (Lee et  al., 2019; Osek and Wieczorek, 2022). 
L. monocytogenes contamination is associated with poor food 
processing practices and cross-contaminations in FPP, involving 
mainly RTE, such as vegetables, fish, dairy and meat products 
(Dufailu et al., 2021).

Listeria monocytogenes is a foodborne pathogen that can 
cause listeriosis, a potentially severe foodborne disease in human 
and animals (Maury et  al., 2019). In healthy people, more 
frequently L. monocytogenes is a cause a febrile gastroenteritis, 
whereas in susceptible people, such as children, elderly, 
immunocompromised and pregnant women, it may lead to 
septicemia, meningitis, abortion and eventually death (Osek and 
Wieczorek, 2022). Even if rare, an occurrence of respiratory 
infection caused by L. monocytogens has been reported in Italy 
(Guidi et al., 2021a).

The European Food Safety Authority (European Food Safety 
Authority, 2022) reported 2,183 confirmed invasive human cases of 
L. monocytogenes in 2021. Moreover, the European case fatality rate is 
high (13.7%), similar to 2020 (European Food Safety Authority, 2022), 
confirming listeriosis as one of the most severe foodborne diseases. 
L. monocytogenes outbreaks reported were linked to different food 
matrices, such as ice cream (Chen et al., 2017b), cheese (Chen et al., 
2017a), RTE fish products (Schjørring et al., 2017) and RTE meat 
products (Althaus et al., 2017; Duranti et al., 2018; Gelbíčová et al., 
2018; Orsini et al., 2018).

Few data are available regarding the prevalence of L. monocytogenes 
in RTE food products from African countries (Garedew et al., 2015; 
Oyinloye, 2016; Matle et  al., 2019), however, one of the biggest 
listeriosis outbreak, with 1,060 cases, was reported in SA between 2017 
and 2018, due to polony, a RTE processed meat product (Smith et al., 
2019; Thomas et al., 2020).

The aims of this study were to report the presence of 
L. monocytogenes in Zambian RTE products, provide data on the 
genomic characterization of isolated strains and evaluate their 
similarity with strains circulating in other African countries using 
whole genome sequencing (WGS).

2. Materials and methods

2.1. Sample collection and Listeria 
monocytogenes detection

Between October 2019 and February 2020, a total of 304 RTE 
Zambian products were collected; all the products were randomly 
selected and purchased at retail, from the major supermarkets located 
in Lusaka, Zambia. The RTE products considered in this study are 
usually consumed in the cities which has more wealthy people who 
prefer easy and fast made foods, hence the choice of selection site. 
The RTE product categories included 130 dairy products (milk drink 
n = 94, cheese n = 18, ice cream n = 16, butter n = 2) and 174 meat 
products (polony n = 84, ham n = 43, sausage n = 21, biltong n = 15, 
and salami n = 11). All products were produced in Zambia by local 
manufacturers, in particular: 16 different meat (M) and 23 different 
dairy (D) manufacturers. The sample identification, product type, 
RTE category, data of sampling and Zambian producer manufacturer 
were reported in Supplementary Table S1.

From the supermarkets, the packaged samples were placed in a cool 
box with ice, kept at 8°C and transported to the Central Veterinary 
Research Institute (CVRI) laboratory on the same day. The RTE products 
were processed immediately on arrival at the laboratory and tested for 
L. monocytogenes detection, according to ISO (International 
Organization for Standardization) (2017). Briefly, 25 g of each sample 
was cultured in 225 mL of Half Fraser enrichment broth (Oxoid, 
Hampshire, England) for 24 h ± 2 h at 30°C ± 1°C. After the incubation, 
0.1 mL of the culture was poured into 10 mL of Fraser broth (Oxoid, 
Hampshire, England), incubated for 24 h ± 2 h at 37°C ± 1°C. A loopful 
of both culture suspensions were streaked on to two selective media 
plates: Agar Listeria according to Ottaviani and Agosti (ALOA) agar 
(Biolife, Milan, Italy) and Oxford agar (Oxoid, Hampshire, England) and 
both incubated at 37°C ± 1°C for 24–48 h. Suspect presumptive colonies 
of L. monocytogenes (small, convex bluish-green colonies with opaque 
white halo on ALOA plate and gray colonies with black zones and 
sunken center on Oxford plate) were selected in order to perform all 
confirmation tests reported in the ISO11290-1:2017 (i.e., hemolysis, 
sugar fermentation). All the L. monocytogenes isolates were stored in 
microbank tubes (Pro Lab Diagnostics, TX, USA) at −20°C and sent, 
with frozen transport, to the Italian National Reference Laboratory for 
L. monocytogenes (NRL-Lm) of Istituto Zooprofilattico Sperimentale 
dell’Abruzzo e del Molise (IZSAM) for further phenotypical and 
genomic characterization.

2.2. Antimicrobial susceptibility testing

All the L. monocytogenes isolates were tested for antimicrobial 
susceptibility (AST) by broth microdilution method with the Sensititre 
OptiRead Automated Fluorometric Plate Reading System (Thermo 
Scientific, Monza, Italy), in order to verify the susceptibility profile of 
L. monocytogenes strains. The minimum inhibitory concentration (MIC) 
was in vitro assessed using the Haemophilus spp. and Streptococcus 
pneumoniae Sensititre plate HPB1 (Thermo Scientific, Monza, Italy).

Listeria monocytogenes isolates, stored in microbank tubes (Pro Lab 
Diagnostics, TX, USA) in the NRL-Lm at −80°C, were cultured in Brain 
Heart Infusion (BHI) broth for 20–24 h at 37°C ± 1°C. A loop was 
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streaked on blood agar plates (Liofilchem, Roseto degli Abruzzi, 
Teramo, Italy) and incubated at 37°C ± 1°C for 24 h ± 1 h. At the end of 
the incubation, the suspensions and Sensititre plates HPB1 were 
prepared according to the Sensititre plate guide booklet.1 The Sensititre 
plates HPB1 were incubated at 37°C ± 1°C for 20–24 h, and immediately 
after, the MIC values were manually read using the Sensititre Vizion 
Digital MIC Viewing System (Thermo Scientific, Monza, Italy). The 
interpretation of MIC results was carried out in accordance with 
EUCAST guidelines [EUCAST (European Committee on Antimicrobial 
Susceptibility Testing), 2021]. If no specific EUCAST breakpoints were 
available, results were interpreted considering as reference Enterococcus 
spp. and Streptococcus pneumoniae, according to Fischer et al. (2020) 
(Supplementary Table S2). The MIC value of cefixime was inferred 
based on cefuroxime susceptibility considering as reference 
Streptococcus pneumoniae. All the extended dilution range of tested 
antimicrobials are summarized in Supplementary Table S3.

2.3. Whole genome sequencing and 
bioinformatics analysis

Listeria monocytogenes isolates, stored in microbank tubes (Pro Lab 
Diagnostics, Round Rock, TX, USA) in the NRL-Lm at −80°C, were 
firstly streaked on ALOA agar (Liofilchem, Roseto degli Abruzzi, 
Teramo, Italy), incubated at 37°C ± 1°C for 24–48 h. The DNA extraction 
was performed on each strain according to Portmann et al. (2018), with 
minor modifications, firstly adding lysozyme from chicken egg solution 
(20 mg/mL) (Sigma-Aldrich, Milan, Italy) and, then, using the QIAamp 
DNA Mini Kit (Qiagen Hilden, Germany), following the manufacturer’s 
protocol. The purity of the extracts was evaluated by Biospectrometer 
fluorescence (Eppendorf, Milan, Italy), measuring the absorbance (A), 
in particular A260/280 and A260/230 values.

Starting from 1 ng of input DNA, the Nextera XT DNA chemistry 
(Illumina, San Diego, CA) was used for library preparation, according 
to the manufacturer’s protocols. WGS was performed on the 
NextSeq  500 platform (Illumina, San Diego, CA, US) with the 
NextSeq 500/550 mid output reagent cartridge v2 (300 cycles, standard 
150-bp paired-end reads).

For the WGS data analysis, an in-house pipeline (Cito et al., 2018) 
was used which included steps for trimming (Trimmomatic v0.36) 
(Bolger et al., 2014) and quality control check of the reads (FastQC 
v0.11.5) (Wingett and Andrews, 2018). Genome de novo assembly of 
paired-end reads was performed using SPAdes v3.11.1 (Bankevich 
et al., 2012) with default parameters for the Illumina platform 2 × 150 
chemistry (−only-assembler –careful –k21, 33, 55, 77). Subsequently, 
the genome assembly quality check was performed with QUAST v.4.3 
(Gurevich et al., 2013). The genomes quality was checked according 
to the parameters recommended by Timme et al. (2020).

The multilocus sequence typing (MLST) and core genome 
multilocus sequence typing (cgMLST) analysis were performed 
according to Pasteur’s reference schemes.2 The threshold of ≤7 allelic 
distance (AD) was considered for cgMLST cluster definition (Moura 

1 https://assets.thermofisher.com/TFS-Assets/MBD/brochures/Sensititre-

Plate-Guide-Booklet-EN.pdf

2 https://bigsdb.pasteur.fr/

et al., 2016). The software GrapeTree (Zhou et al., 2018) was used to 
obtain the Minimum Spanning tree (MSTreeV2).

The L. monocytogenes genomes in this study were also characterized 
in silico using BIGSdb-Lm database tools (accessed on February 2022), 
querying for: “Virulence,” “Antibiotic resistance,” “Metal and disinfectant 
resistance” and “Stress Islands.” The identification of mobile genetic 
elements, such as prophages and plasmids, was performed using 
PHASTER (accessed on February 2022)3 and PlasmidFinder 2.1 
(accessed on February 2022)4 platforms, respectively.

In addition, a genomic comparison based on AD was performed 
between L. monocytogenes genomes and genomic data available at the 
National Center for Biotechnology Information (NCBI), related to 
previous studies on food, environmental and clinical samples from 
African countries.

The genome assemblies were deposited at DDBJ/ENA/GenBank 
under the BioProject PRJNA965923.

3. Results

3.1. Listeria monocytogenes detection

Out of the 304 RTE food tested, L. monocytogenes was detected in 
18 (10.3%) of the 174 RTE meat products samples and none from 
dairy products. Data in detail were reported in the Table 1.

The presence of L. monocytogenes in RTE meat products was 
observed in polony samples (n = 8), followed by ham (n = 4), sausage 
(n = 3), biltong (n = 2), and salami (n = 1). Among all the brands 
considered, more than one positive sample were detected in products 
of M1 (n = 5), M8 (n = 3), M2 (n = 3), and M7 (n = 2). For each positive 
sample, one L. monocytogenes colony was picked for the 
characterization, for a total of 18 isolates.

3.2. Antimicrobial susceptibility testing

The phenotypical AST results are reported in Figure  1 and 
Supplementary Table S4. All the 18 L. monocytogenes isolates showed 
a resistant phenotypic profile to cephalosporins (cefaclor, cefepime, 
cefixime, ceftriaxone, and cefuroxime) confirming their natural 
resistance to this molecule. In the case of penicillin, except one (2021.
TE.16), all isolates were susceptible to ampicillin. Two strains were 
resistant to tetracycline (2021.TE.14 and 2021.TE.16), and finally one 
strain (2021.TE.11) was resistant to trimethoprim/sulfamethoxazole 
(miscellaneous agents).

For chloramphenicol, one isolate was susceptible; all the other 
strains showed a MIC value greater than the maximum value of 
concentration of this compound in the plate and makes results not 
interpretable. In the case of quinolones, for sparfloxacin, eight strains 
were susceptible, while all the other strains showed a MIC value 
greater than the maximum value of concentration of this compound 
in the plate making results not interpretable; whereas for levofloxacin, 
all the strains were susceptible. Finally, all strains were susceptible to 

3 https://phaster.ca/

4 https://cge.food.dtu.dk/services/PlasmidFinder/
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ampicillin/sulbactam and amoxicillin/clavulanic acid, carbapenems 
(imipenem and meropenem) and macrolides (clarithromycin 
and erythromycin).

Additionally, the identification of antimicrobial resistance genes 
stated that in all the L. monocytogenes isolates tested intrinsic core 
genes were observed, in particular: fosX, mprF, norB, sul, conferring 
resistance to fosfomycin, quinolones and cationic peptides and 
sulfonamides, respectively.

3.3. WGS and bioinformatic analysis

The results of MLST, cgMLST, virulence, stress resistances and 
mobile genetic elements profiles were reported in Figure 1. The MLST 
analysis grouped the 18 L. monocytogenes isolates in 7 different Clonal 
Complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), 
CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). Data in details are 
reported in Table 1.

TABLE 1 Identification of 18 samples positive for L. monocytogenes and related ready to eat category, local producer manufacturer, BioSample 
accession number and clonal complex results of the related L. monocytogenes isolates.

Sample 
identification

Strain 
identification

BioSample 
accession

Ready to eat 
category

Local manufacturer
Clonal 

complex

27 2021.TE.2 SAMN34509205 ham M1 CC1

28 2021.TE.3 SAMN34509206 ham M1 CC1

31 2021.TE.4 SAMN34509207 salami M1 CC1

36 2021.TE.5 SAMN34509208 polony M2 CC2

39 2021.TE.6 SAMN34509209 sausage M2 CC2

66 2021.TE.7 SAMN34509210 polony M3 CC155

80 2021.TE.8 SAMN34509211 sausage M4 CC9

84 2021.TE.9 SAMN34509212 polony M2 CC2

106 2021.TE.10 SAMN34509213 polony M5 CC2

108 2021.TE.11 SAMN34509214 ham M1 CC1

115 2021.TE.12 SAMN34509215 polony M6 CC5

118 2021.TE.13 SAMN34509216 polony M1 CC5

135 2021.TE.14 SAMN34509217 biltong M7 CC1

150 2021.TE.15 SAMN34509218 sausage M8 CC9

154 2021.TE.16 SAMN34509219 polony M8 CC9

162 2021.TE.17 SAMN34509220 biltong M7 CC3

164 2021.TE.18 SAMN34509221 ham M9 CC121

169 2021.TE.19 SAMN34509222 polony M8 CC9

FIGURE 1

Core genome multilocus sequence typing (cgMLST) phylogenetic tree grouping of virulence, resistance, phenotypic antimicrobial resistance and 
mobile genetic elements across the 18 L. monocytogenes isolates. Virulence (red square), resistance (blue square), phenotypic antimicrobial resistance 
(green square), and mobile genetic elements (purple square) are shown in the heatmap. Colored square: presence of the gene or phenotypic 
resistance; light red: presence of premature stop codon and truncated inlA. The visualization of the genes profiles and genes presence/absence 
according to their cgMLST was visualized using the Interactive Tree of Life (iTOL) (https://itol.embl.de/).
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According to the cgMLST results, several clusters were detected. 
For CC1, 4 of the 5 isolates (2021.TE.2; 2021.TE.3; 2021.TE.4; 2021.
TE.11), from ham and salami of M1, showed only 1 AD from each 
other. One CC1 strain (2021.TE.14) from biltong was a singleton, 
showing 39 AD from CC1 cluster. Regarding the CC2, three strains 
(2021.TE.5, 2021.TE.6 and 2021.TE.9) isolated in different products 
from M2, showed ≤7 AD each other. One polony strain (2021.TE.10) 
from M5, showed 67 AD from CC2 cluster. For the CC9 strains, 7 AD 
was highlighted between two strains (2021.TE.16, 2021.TE.19) 
isolated from polonies of M7. The other CC9 strains (2021.TE.8 and 
2021.TE.15), both isolated from sausages showed >7 AD from CC9 
cluster. Two L. monocytogenes strains (2021.TE.12 and 2021.TE.13) 
were CC5 showing 3 AD from polonies of M1 and M6. Three strains 
(one CC121, one CC155 and one CC3) were singleton from 3 
different M.

Regarding the virulence factors, all the CCs detected had a 
complete L. monocytogenes Pathogenicity Island 1 (LIPI-1), while a 
complete LIPI-3 was present both in the CC1 and CC3 isolates. All the 
CCs carried vip, virR, and virS genes and a full-length inlA for 
Internalin A and inlB for Internalin B. However, only in CC9 and 
CC121 isolates, a premature stop codon (PMSC) mutation was 
detected in the inlA.

The resistance to stresses, the Stress Survival Islet 1 (SSI-1) was 
carried by all the CC9, CC5, CC3 and CC155 isolates. Only the CC121 
clone, indeed, highlighted the presence of SSI-2. The bcrABC cassette 
was present in 4 CC1 isolates, and in all the CC9 and CC5 
L. monocytogenes isolates. Only the CC5 and CC155 revealed the 
presence of cadA gene. The Tn6188_qac transposon for Benzalkonium 
Chloride (BC) tolerance was observed in CC121, in one CC1 and CC2 
L. monocytogenes, together with the Tn6188_tetR. The CC121 isolate 
carried out other transposons (Tn6188_tnpA, Tn6188_tnpB, 
Tn6188_tnpC).

Regarding mobile genetic elements, plasmids were identified in 9 
isolates; the most frequent was plasmid Plm33 (n = 5), detected in all 
the CC9 and in CC3 isolates, followed by plasmid N1-011A (n = 2) in 
CC5 isolates. Plasmids pLM5578 and pLGUG1 were observed only in 
CC121 and in one CC2 isolates, respectively. Eight different intact 
prophages regions were found across 17 of the 18 L. monocytogenes 
isolates of this study. The prevalent one was the NC_028871, followed 
by NC_04990, NC_021539, NC_003216, NC_009813, NC_024387, 
NC_009815 and NC_028929, reported here as NCBI 
Reference Sequence.

The comparison between L. monocytogenes detected in Zambia 
and those selected from NCBI, available from SA, showed the presence 
of several relatedness’s. In regards to CC1 isolates (Figure 2), 3 AD was 
observed between one CC1 isolate from biltong (2021.TE.14) and one 
isolated in 2016 from a retail (processed meat-beef) in Gauteng (SA) 
(SAMN18679582). Similarly, 26 AD was observed between our strain 
(2021.TE.3) from ham sample and one L. monocytogenes isolated from 
a butchery (processed meat-beef) in Limpopo (SA) in 2016 
(SAMN18679598).

Regarding the CC2 (Figure 3A), 17 AD was observed between our 
isolate (2021.TE.10) and one isolated from a retailer in SA, in 2018 
(SAMN25275984). For the CC9 (Figure 3B), one isolate (2021.TE.16) 
from polony showed 29 AD from an isolate detected in 2014, in North 
West (SA) from retail (raw poultry) (SAMN18679544). Moreover, the 
same isolate from this study, showed 42 AD from SAMN18679541, 
isolated in 2015 from Coldstore (Raw-Beef) in Eastern Cape (SA). 

Another CC9 isolate from this study (2021.TE.19) isolated from 
polony, showed 36 AD from an isolate SAMN25275560 detected in 
2018 in a retailer located in SA. Lastly, for CC5 (Figure 3C), <30 AD 
was observed between our isolates (2021.TE.12 and 2021. TE.13), both 
from polony samples, and a clinical isolate from SA (SAMN08693280).

4. Discussion

To date, very few data are available on L. monocytogenes in RTE 
foods from Zambia and in Zambian products. Our findings 
highlighted the presence of L. monocytogenes mainly in ham and 
polony; the latter was the same type of product involved in the SA 
outbreak (Smith et al., 2019). Previous studies conducted in Zambia 
reported the prevalence of L. monocytogenes in 74% of poultry dressed 
carcasses (Mpundu et  al., 2022a) and 26.3% in cattle carcasses 
(Mpundu et al., 2022b).

Data are available from African countries, reporting the presence 
of L. monocytogenes in different matrices, such as foods, animal and 
environmental samples, in Nigeria, SA, Egypt, Ethiopia, and Botswana 
(Dufailu et al., 2021). In particular data related to L. monocytogenes in 
East Africa, Ethiopia, reported a prevalence of 6.25% in RTE food of 
animal origin (Garedew et  al., 2015), lower than our findings. In 
Nigeria, a prevalence of 7% was detected in raw meat samples from 
Rivers State (Odu and Okonko, 2017), while 91.8% in chicken flocks 
and meat in Oyo (Ishola et al., 2016). In Lafia (Nigeria), the 64.4% of 
isolates from beef and chevon were confirmed to be L. monocytogenes 
(Chuku et al., 2020). Additionally, in locally made soft cheeses the 
12.4% of isolates were L. monocytogenes (Oyinloye, 2016). In a study, 
Matle et al. (2019), conducted in meat samples from SA over several 
years, reported L. monocytogenes in 13.5% of RTE foods collected, 
higher than the one obtained in our study. The presence of 
L. monocytogenes in the RTE meat placed on markets could be mainly 
due to inadequate hygiene management systems (Matle et al., 2019), 
which is a problem in many African countries.

It emerged in this study that several FPP considered presented 
more than one RTE meat category contaminated by L. monocytogenes. 
The subsequent placing on the market of these contaminated products 
and their availability for the consumers, poses a high risk especially 
for vulnerable people. The risk associated with RTE products depends 
mainly on the effectiveness of control measures applied by food 
business operators (FBOs), including good hygiene and good 
manufacturing practices, both at processing and retail (European 
Food Safety Authority, 2022). In smaller retail store and local 
manufacturers, inadequate equipment for the preparation of RTE 
foods may also increase the contamination risk of the final products. 
In addition, inadequate procedures applied to clean and sanitize FPE 
(i.e., cutting boards) may increase the cross-contamination of other 
food products and the persistence of L. monocytogenes. Moreover, the 
presence of L. monocytogenes is reported in animals (Heredia and 
García, 2018), then the contamination of processed foods could 
be also related to inadequate management of animals, agriculture and 
farming practices, not only to the post-processing phases.

In literature is well known that listeriosis cases are predominantly 
associated with RTE foods, including RTE meat products (European 
Food Safety Authority, 2022). As reported, in the USA, the main 
listeriosis cases were caused by meat products sliced at retail (Forauer 
et al., 2021). Food products sliced in retail shops presented a higher 
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bacterial contamination than products prepared in FPP (Forauer et al., 
2021), hence RTE food preparation at retail shops could increase the 
risk of cross-contamination of products from different FBOs (Kurpas 
et al., 2018).

The WGS approach provided crucial information regarding the 
CCs distribution and the genomic characteristics of L. monocytogenes 
isolated from Zambian RTE meat foods, especially related to CC1 and 
CC2 clones, the main CCs detected in the RTE products tested. CC1 
and CC2 are both well known to be  hyper-virulent clones, often 
associated with clinical infections (Maury et al., 2016), their presence 
in RTE foods is a crucial concern for consumer safety. In literature, 
CC1 clone was often isolated in the pork-meat production sector and 
it is frequently associated with dairy sector (Félix et al., 2018). The 
presence of hyper-virulent clones in foods has been reported 
worldwide, including African countries, suggesting the 
L. monocytogenes adaptation to food products (Matle et al., 2020; 
Mafuna et al., 2021). The clustering conducted in this study with other 
public available African L. monocytogenes genomes, showed that one 
CC1 isolate from biltong sample, seems to be closely related to CC1 
strain previously detected in 2016 from a SA processed meat.

According to our results, both CC1 and CC2, carried a full-length 
internalins, inlA and inlB, which are considered one of the most 

influent factors for L. monocytogenes invasiveness (Su et al., 2019). 
Increased hyper-virulence and bacterial colonization has been 
reported in isolates with a full-length inlA and a complete LIPI-1 and 
LIPI-3 (Maury et al., 2016; Yin et al., 2019), suggesting that some 
isolates have increased virulence potential (Gray et  al., 2021). In 
addition to a complete LIPI-1, CC1 isolates also harbored a complete 
LIPI-3, encoding the production of Listeriolysin S, a hemolytic and 
cytotoxic factor also observed to be released in acid stress (Tavares 
et al., 2020).

Previous studies reported that CC9 and CC121 were often 
associated with meat products, including RTE, and FPP worldwide, 
also in African countries (Matle et al., 2020; Mafuna et al., 2021). As 
known, L. monocytogenes is able to resist under stress conditions, 
supporting its spread in many types of foods (Kurpas et al., 2018). In 
particular, CC9 and CC121 are well known to be better adapted to 
meat processing environments (Maury et al., 2019; Centorotola et al., 
2021; Guidi et al., 2021b). Specific factors are reported to be crucial 
for L. monocytogenes resistance to the environmental stress. In 
particular, the presence of SSI-1 ensures resistances to low pH, high 
osmolarity, bile and nisin, while SSI-2 confers resistances to alkaline 
and oxidative stresses (Maury et al., 2019). According to our results, 
SSI-1 was observed in L. monocytogenes strains belonging to different 

FIGURE 2

Minimum spanning tree (MST) based on the cgMLST profiles of L. monocytogenes CC1. In red were reported the strains from this study, in light yellow 
were reported the public available genomic data (external) African strains from NCBI. The MST was visualized using GrapeTree (https://github.com/
achtman-lab/GrapeTree) and graphically elaborated by Adobe Illustrator to highlight the genomic relatedness (red square).
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clones, whereas the SSI-2 genes were mainly found in CC121 isolates 
(Harter et al., 2017). The presence of these genes increases the survival, 
resistance and persistence capacity of L. monocytogenes in the FPP, 
increasing the risk for consumers. In addition, the presence of 
Tn6188_qac transposon confers tolerance to BC disinfectant, mainly 
used for sanitation in food processing plants. In this study, in fact, 
CC9 was one of the main clones observed in the RTE meat products 
tested, and this finding indicates a need for improvement in the FPP 
sanitation. However, a PMSC mutation was detected in the inlA gene, 
confirming CC9 and CC121 clones as hypo-virulent (Maury et al., 
2019; Guidi et al., 2021b). Moreover, L. monocytogenes strains showing 
PMSC in inlA were reported in literature, isolated both from clinical 
case (Magagna et al., 2023) and animal (Sévellec et al., 2020). Our 
results showed the CC5 as one of the main clones in RTE meat 
products, as reported also in China (Wang et al., 2015). In the study 
of Maury et al. (2016), CC5 was not classified as a hyper-virulent 
clone, but further studies are needed. This clone caused several 
outbreak cases, such as the cantaloupe case in the USA in 2011 
(Lomonaco et al., 2013) and in a previous study by Zhang et al. (2019), 
the CC5 was reported as the second common clone in clinical 
L. monocytogenes strains in Beijing (China).

Regarding the minor CCs detected in this study, CC155 strains 
were mostly found in farm and environmental samples, but also this 
clone was detected worldwide both in food samples and in clinical 
cases (Matle et  al., 2020). L. monocytogenes CC3 was reported as 
prevalent in a study conducted on cooked food tested in China and 

also in clinical samples (Wang et al., 2018). Similarly to previous data 
(Chen et al., 2019), and like CC1, the CC3 isolate reported in this 
study harbored a complete LIPI-3 that could be responsible for the 
increasing of virulence (Vilchis-Rangel et al., 2019). CC3 strains were 
also reported in poultry RTE foods during a previous outbreak in SA 
(Matle et al., 2020).

The comparison between L. monocytogenes detected in Zambian 
RTE and those selected from NCBI, available from SA, showed the 
presence of several relatedness’s, in particular for hyper-virulent CCs 
such as CC1 and CC2. This findings was crucial, highlighting how is 
important to continue to detect and characterize African 
L. monocytogenes strains in order to improve knowledge on strains 
circulation, surveillance and the monitoring of any possible clusters 
or new outbreak. About antimicrobial resistance L. monocytogenes 
strains of this study showed to be  widely susceptible to clinically 
relevant classes of antibiotics (penicillin, carbapenems and 
quinolones) similar to previous reports (Wiśniewski et al., 2022). Our 
results also confirmed the intrinsic resistance to broad-spectrum 
cephalosporin antibiotics, commonly used in therapy of bacterial 
infections (Krawczyk-Balska and Markiewicz, 2016). WGS 
identification of antimicrobial resistance genes revealed that in all the 
L. monocytogenes tested, intrinsic core genes were observed, as 
expected, according to what is found in literature (Kurpas et al., 2020). 
Two strains showed to be  phenotypically resistant to tetracycline, 
despite the absence of tet genes. This could be driven by adaptive 
mechanism such as the antimicrobial resistance determinants 

FIGURE 3

Minimum spanning tree (MST) based on the cgMLST profiles of L. monocytogenes CC2 (A), CC9 (B), and CC5 (C). In red were reported the strains from 
this study, in light yellow were reported the public available genomic data (external) African strains from NCBI. The MST was visualized using GrapeTree 
(https://github.com/achtman-lab/GrapeTree) and graphically elaborated by Adobe Illustrator to highlight the genomic relatedness (red square).
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exchange with other bacteria through horizontal gene transfer or 
plasmid mobilization (Wiśniewski et  al., 2022). Just one strains 
showed a resistant phenotype against trimethoprim-sulfamethoxazole 
concordant with the presence of sul gene. However, all the strains 
resulted susceptible to the antimicrobials used as first choice for the 
therapy of human listeriosis (Baquero et  al., 2020). Listeria spp. 
isolated from different parts of Africa are generally susceptible to 
ciprofloxacin, but resistant to penicillin (Dufailu et al., 2021). Previous 
studies reported the increase in resistance of L. monocytogenes strains 
to antibiotics of different classes (Godreuil et al., 2003; Swetha et al., 
2021). Keet and Rip (2021) described the presence of isolates 
susceptible to all antibiotics tested in RTE food, at the same time some 
isolates were resistant to erythromycin and tetracycline and some 
strains from polony were multi-drug resistant.

According to literature, the presence of genetic mobile elements, 
such as plasmids and prophages, increases the L. monocytogenes 
resistance. Interestingly, several studies indicated that some plasmids 
might confer increasing tolerance to stresses, heavy metals, quaternary 
ammonium compounds, salt, oxidative, heat, and cold stress (Mafuna 
et al., 2021; Schmitz-Esser et al., 2021). According to previous studies, 
among the hyper-virulent clones, few strains carried plasmids; on the 
contrary, the hypo-virulent clones normally show a higher number of 
plasmids (Schmitz-Esser et al., 2021). With the additional presence of 
disinfectant resistances, such as the bcrABC cassette and the Tn6188_
qac for BC tolerance, various prophages and plasmids involved in 
stress response, the hyper-virulent clones could resist several stresses 
and probably persist in the environment for years. Data from literature 
highlighted the distribution of the hyper-virulent clones and their 
ability to contaminate, during the years and for long time, food 
products, food processing plants in Africa, increasing risk for human 
(Mafuna et al., 2021).

5. Conclusion

Although there has been listeriosis cases reported worldwide, 
L. monocytogenes data from Africa remains limited. Despite being a 
first preliminary work with a limitation in the sampling plan and a 
limited number of samples and isolates, this study reported our 
findings providing justification for a more complete surveys in future 
work, and helping to increase existing knowledge on contaminated 
RTE products circulating in Africa countries. Furthermore, this study 
highlighted interesting results about L. monocytogenes in Zambian 
RTE meat foods, confirming the presence of hyper-virulent CCs, 
which could play an important role in human diseases, posing a public 
health concern for consumers. Moreover, the presence of stress 
resistance factors could help these hyper-virulent clones to adapt, 
survive and persist over the years, as described by relatedness found 
in this study with other L. monocytogenes isolated in SA, during the 
years, from different matrices.

This preliminary study was conducted in order to test local 
Zambian foods available in  local supermarkets, but also to allow 
generalizable findings. Further studies should be conducted on RTE 
products from Zambia and other African country, in order to deeply 
investigate the worldwide diffusion and the genomic characteristics of 
L. monocytogenes strains with particular attention on hyper-virulent 
clones aiming to improve worldwide surveillance and food safety.

In the future it will become crucial to improve the sampling plan, 
test more RTE foods and food environmental samples, but also to 
collect and characterize by WGS more L. monocytogenes isolates, 
especially from each positive sample, improving data and knowledge 
on L. monocytogenes in food products from Africa.

Due to the global increasing request, trade and consumption of 
foreign foods, it would be necessary to improve hygiene conditions 
and standardize procedures for hygiene and sanitation in food 
processing plants in Africa countries. Moreover, it could be useful to 
apply a better practices related to animal, agriculture and farming 
management in order to reduce L. monocytogenes in preharvest 
animals and consequentially in RTE meat products. According to One 
Health approach, it will be  important compare available 
L. monocytogenes WGS data with clinical strains, in order to identify 
any clusters, including any potential connections to listeriosis cases 
and outbreaks.
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