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Human papillomavirus (HPV) is a sexually transmitted virus. Cervical cancer is one 
of the highest incidences of cancer, almost all patients are accompanied by HPV 
infection. In addition, the occurrence of a variety of cancers is also associated 
with HPV infection. HPV vaccination has gained widespread popularity in recent 
years with the increase in public health awareness. In this context, HPV testing not 
only needs to be sensitive and specific but also needs to trace the source of HPV 
infection. Through machine learning and deep learning, information from medical 
examinations can be  used more effectively. In this review, we  discuss recent 
advances in HPV testing in combination with machine learning and deep learning.
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1. Introduction

In this section, the role of forensic biology is discussed in judicial practice and the laws and 
regulations related to HPV.

1.1. Fundamentals of forensic microbiology

1.1.1. Application scenarios of forensic microbiology
Forensic microbiology is a new field of forensic science. The main task of forensic 

microbiology is to study the potential of identifying individuals or associating microbial 
characteristics within microorganisms with objects and the environment. Microbial forensics 
consists of four main steps: collection and preservation of samples, extraction, analysis, and 
interpretation of results. Forensic microbiology identifies individuals through the highly 
personalized microbiome’s microbial characteristics (Schmedes et al., 2017). The identification 
of this trait can link a particular individual to criminal activity. As early as 1992, an HIV 
infection was reported among a dentist and six of their patients who had sought dental 
treatment. Three independent comparative genetic analyses of the dentist and locally infected 
patients – genetic distance measurement, phylogenetic tree analysis, and amino acid signature 
pattern analysis – identified the close association of the virus between the dentist and the six 
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dental patients (Ou et al., 1992). With the development of technology, 
forensic biology has been applied in more fields.

Microbes play a vital role in human life, so microorganism 
detection is of great significance in forensic microbiology (Ma et al., 
2023). Through the analysis and identification of the human 
microbiome, people can be connected to the objects they touch and 
can even identify the order of contact with them to a certain extent 
(Hampton-Marcell et  al., 2020). By comparing gradient gel 
electrophoresis, forensics can obtain 16S rDNA profiles of bacteria 
from the contaminated soil on the sole of a shoe and trace the 
movements of the shoe’s owner (Sanachai et al., 2016). In addition to 
human DNA, the microbiome of the most common scratch and bite 
marks in sexual assault cases can also reflect the individual’s smoking 
status, dental hygiene, oral health, and other factors (Belstrøm 
et al., 2014).

1.1.2. Current methods of detection
Depending on the target, samples usually include blood, saliva, 

secretions, skin detritus, etc., to obtain microorganisms, toxins or 
DNA, RNA, proteins, etc., for analysis. There are three main methods 
to identify microbial DNA. 16S rRNA gene sequencing. All bacteria 
contain ribosomes composed of a 50S and a 30S subunit. The smaller 
30S subunit is composed of 21S protein and 16S ribosomal 
RNA. Given its crucial functional role, the gene encoding the 16S 
rRNA subunit is highly conserved, and PCR primers were designed to 
amplify this gene in all bacteria. Instead of boosting a single gene, 
shotgun metagenomic gene sequencing is performed on the sample’s 
entire mixture of DNA extracts. Whole-genome sequencing allows 
microorganisms to be  isolated and sequenced individually 
(Deurenberg et al., 2017). In addition, the culture of microorganisms 
is also one of the methods often used in practice (Deurenberg et al., 
2017). However, for some microorganisms that are difficult to culture 
or have a long culture cycle, such as Human Papillomavirus (HPV) or 
tuberculosis bacilli, this method can only be used as a theoretical gold 
standard or not be used at all. Some immunological methods are also 
used for microbiological diagnosis, which is used to determine the 
resulting immune response. However, due to the human body’s lag in 
antibody production, this examination can only be  used for 
retrospective diagnosis. The enzyme-linked immunosorbent assay is 
the most common method for detecting and quantifying antibody 
immune responses (Weis et al., 2017).

1.2. Forensic microbiology related to 
female protection

1.2.1. Legal issues in sexually transmitted diseases

1.2.1.1. Common sexually transmitted diseases in the 
protection of women

In daily work, common STDS include syphilis, gonorrhea, HPV, 
and HIV. Unlike other joint diseases, there are many types of HPV, 
and different types of HPV can lead to different kinds of conditions 
(Brianti et al., 2017). HPV, due to its pathogenic nature, can cause not 
only verruca vulgaris and condyloma acuminatum but also 
differentiates between skin type and mucosal type based on the 
primary site of infection. HPV is divided into high-risk and low-risk 
types on its potential for long-term tumor development. The HPV 

infection process is hidden, spread widely, and may lead to long-term 
cancer risk. Consequently, HPV infection is a significant risk to 
women’s health. In this case, emphasizing the importance of testing 
for HPV infection and identifying its sources is a must to protect 
women’s rights effectively, particularly in cases involving divorce.

1.2.1.2. HPV cases in China
In the past decade, HPV-related cases have shown an increasing 

trend in China. In early cases, HPV infection was seen as a kind of 
‘physiological defect’. Those cases did not focus on HPV transmission 
but instead on the concealment of the infection status by one party as 
part of the case. For example, in the second trial of a divorce dispute 
in 2014, the court recognized HPV infection and the resulting cervical 
lesions as a disadvantages for women, holding the man responsible for 
addressing this condition. In this case, the man did not claim the 
potential risk of infection. As shown in Figure 1, the number of cases 
associated with human papillomavirus has steadily increased over 
time. However, the complexity of HPV in civil cases is reflected in the 
increase in cases and the diversification of the types of cases. 
HPV-related cases began to involve patent and doctor-patient 
disputes, which confirmed that HPV started to be widely recognized 
by the public, and the market for HPV prevention, detection, and 
treatment was increasing. In addition, HPV cases also began to appear 
in insurance contract disputes.

On the one hand, the insured hid the HPV infection and tried to 
defraud the insurance company. On the other hand, when making 
compensation, the insurance company regarded HPV infection as 
cervical cancer without any basis and thus refused to pay. Excluding 
the types of cases mentioned above, the most common types of cases 
are still emotional disputes and divorce. Unlike a decade ago, HPV 
infection is not simply seen as a defect but as a danger. HPV infection 
and the possibility of infection from one partner to another violate the 
rights of infected persons. Recently, it can be seen that HPV infection 
is no longer just a part of the evidence in divorce cases. In an emotional 
dispute case heard in 2020, the parties centered on violating the right 
to life, health, and body caused by HPV infection.

At present, the litigation against HPV is mainly about the right to 
life, the right to body, and the right to health. However, different laws 
apply depending on the identity and motivation of the offender. For 
example, if one of the two parties is a sex worker and, by Article 360 
of the Criminal Law of the People’s Republic of China, knowingly 
engages in prostitution or solicits prostitutes while suffering from 
syphilis, gonorrhea, and other serious venereal diseases, he  shall 
be sentenced to fixed-term imprisonment of not more than 5 years, 
criminal detention or public surveillance and shall also be fined. If the 
two parties do not have the above-mentioned identity and are only 
sexual partners, then this behavior can constitute intentional injury. 
However, Article 19 of the interpretation of the Supreme People’s 
Court on several issues concerning the application of law in the trial 
of personal injury compensation cases requires corresponding liability 
for compensation.

From a global perspective, there is a consensus that HPV 
infection is harmful (Li et al., 2015). There are economic, urban, 
and rural, age and gender differences in people’s understanding of 
the extent of HPV harm (Song et al., 2023). Relatively speaking, 
urban residents, high-income earners, young people, and women 
are the most concerned groups about HPV (Lin Y. et al., 2021). 
Judging from the findings, the main controversy over the past 
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5 years has been over the effectiveness of the vaccine, rather than 
the dangers of HPV itself (Wang et  al., 2020). Even in some 
countries and regions, people’s acceptance of the HPV vaccine has 
fluctuated greatly because of the media tended to report on HPV 
(Leader et al., 2022). In a lawsuit filed in 2022, the court found that 
concealing high-risk subtypes of HPV was putting partners at risk. 
This is certainly evidence of a change in people’s 
perceptions of HPV.

1.2.1.3. Laws on the protection of the sexual transmission 
of women

In legislation, China has established sound rules to protect 
women’s rights. The Law of the People’s Republic of China on the 
Protection of the Rights and Interests of Women stipulates that 
women’s life and health rights are inviolable. Article 21 stipulates that 
women’s rights to life, body, and health are inviolable. Ill-treatment, 
abandonment, mutilation, trading, and other acts that infringe upon 
women’s rights and interests in life and health shall be prohibited. 
Article 30 The state establishes a sound health service system for 
women, ensures women’s access to basic medical and health services 
and carries out prevention, screening, diagnosis, and treatment of 
common and frequently-occurring diseases in women, to improve 
women’s health. Although the law itself emphasizes the prohibition of 
violence against women, in judicial practice in recent years, cases of 
intentionally transmitted diseases causing harm to women’s health, 
which can be traced, are also considered violations of women’s rights 
to life, health, and body. Furthermore, in 2017, the CEDAW 
Committee, a United Nations body that monitors the Convention on 
the Elimination of All Forms of Discrimination against Women, stated 
that Binding international legal norms on State responsibility are in 
place (against Women). The CEDAW jurisprudence and the Istanbul 
Convention both identify the healthcare sector as an essential social 
actor and emphasize access to healthcare, enough resource service, 
and the importance of trained professionals (Meyersfeld, 2012). No 
doubt sexually transmitted diseases differ from subjective and 
intentional acts of violence, but tracing the pathogenic microorganisms 
is necessary because they are still quite harmful.

At present, no dispute in practice causing an infected person to 
develop HPV is a violation of their right to health. However, because 
the identification of injuries is mostly directed at violent injuries, there 
are virtually no regulations for infectious diseases, and it is generally 
believed that infectious diseases that can be cured can be identified as 
minor injuries. However, HPV may cause an increased risk of other 
diseases, such as tumors, after infection. This potential risk is difficult 
to assess.

1.2.2. Current standard HPV testing methods and 
drawbacks

At present, there are four main HPV testing methods. The DNA 
detection method is considered to be  the gold standard for the 
detection of HPV infection. Its principle is through the blood, body 
fluids, cells, and other sources of sampling, the DNA information in 
the cells of the examined person for detection; this method can 
be  more explicit identification of virus typing, and is the most 
commonly used method in the hospital. Serological testing detects 
whether the tested person has IgG and IgM antibodies; this test 
method can know whether the patient has a previous infection; 
however, due to the lag of antibodies, this test method can not confirm 
the current infection status of the tested person. The HPV staining 
method uses the patient’s urine as the sampling material and is more 
commonly used for screening and self-examining the subject. 
Compared with DNA testing, the specificity of HPV staining is 
satisfactory, but its sensitivity is low (Padhy et  al., 2020). The 
Acetowhite test is commonly used to detect condyloma acuminatum. 
The examiner chooses 3–5% glacial acetic acid to smear on the 
abnormal lesion of the patient and observe whether the paraphyte has 
changed in color over time. If the lesion turns white, it is positive. 
Otherwise, it is negative. This method is only suitable for patients with 
condyloma acuminatum or suspected of having condyloma 
acuminatum; this method is not applicable for other parts or patients 
who have not yet had apparent symptoms.

The needs for forensic and medical testing for HPV do not align. 
In medicine, the detection of HPV is mainly to determine the status 
of HPV infection, explore the correlation between diseases such as 

FIGURE 1

Number of HPV-related cases in China from 2013 to 2022.
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gynecological tumors and HPV infection, and access the prognosis 
of HPV-related conditions diseases. In forensic medicine, in addition 
to the aforementioned aspects, HPV detection places greater 
emphasis on determining the specific type of HPV infection, tracing 
the source of infection, and establishing the timing of infection, as it 
involves delineating responsibility and identifying injuries. In forensic 
science, the methods used are the same as in the clinic. There is no 
doubt that forensic science should serve the judicial practice. In the 
current judicial practice, the traceability of HPV infection is mainly 
based on the infection time of both sides. A 2023 lawsuit did not 
compare the plaintiff ’s HPV subtype with the defendant’s biological 
sample but directly argued that the defendant was not currently 
infected with the infection, so it could not be considered relevant 
to infection.

1.3. Papers on artificial intelligence related 
to HPV

1.3.1. Related research trends
As shown in Figure 2, the papers on artificial intelligence about 

HPV have risen in the last decade. With the large-scale application of 
artificial intelligence in medicine in recent years, there has been 
explosive growth in related research in only 3 years. In addition, it can 
be seen that the research on HPV testing is only a tiny part of the total 
literature. More research has focused on HPV-associated tumors than 
the HPV test itself.

1.3.2. Classification map of detected objects
As shown in Figure  3, the articles on the use of artificial 

intelligence are summarized to detect HPV and classified the studies 
according to the different objects tested. It’s found that the use of 
medical imaging data to predict HPV status in subjects is the most 
common study method. There are many studies on HPV detection 
using DNA, and it often involves the detection of HPV-specific typing. 
Pathological images of tumor patients are the most accessible data in 

forensic medicine and clinical practice. Yet this area is not getting 
enough attention.

1.4. Paper searching and screening

To collect papers related to our research, we  first conducted 
searches using “HPV,” “deep learning,” “machine learning,” and 
“artificial intelligence” as keywords. Considering the obsolescence and 
upgrading of technology, we limited the article’s publication time to 
nearly 10 years. We ended up with 233 articles. After carefully reading 
the abstract and body of the article, we first excluded articles that were 
not relevant to the topic. Next, we excluded cancer detection articles 
that were HPV-related or other articles that were HPV-related but 
only used HPV as a parameter. Finally, we removed some duplicates 
of experimental methods, combined them with continuous articles, 
and selected the literature containing key technologies. Finally, 31 
articles on artificial intelligence in HPV detection were chosen as 
references. The paper screening process is shown in Figure 4.

1.5. Motivation of this review

The review aims to describe the detection of HPV infection at 
different stages and levels, using other sampling methods and the 
improvement and enhancement of these methods by artificial 
intelligence. At the current state of the art, it is not easy to use artificial 
intelligence to develop new testing methods. Artificial intelligence has 
developed unique interpretation methods for predicting and 
explaining the drug resistance of viruses. Artificial intelligence has 
also made great progress in the segmentation of microbial images 
(Zhang et al., 2021). In conclusion, it is more important for clinicians 
and forensics to obtain additional diagnostic information from the 
existing information acquisition channels. Therefore, this review aims 
to assess the status of HPV infection in patients at different stages of 
infection to assess the damage caused by HPV infection in patients.

FIGURE 2

The literature on artificial intelligence for HPV in the last 11 years.
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Existing reviews are often problematic in two ways. First, reviews 
of artificial intelligence in HPV tend to focus on tumors, especially 
cervical cancer. A 2020 review of 68 articles focused on the detection 
of HPV as a risk factor for cervical cancer and testing methods tailored 
to different needs. However, this review did not detail the application 
of artificial intelligence in HPV detection (Zhang S. et al., 2020). A 
paper published in 2021 examines HPV-related diseases, their 
prevalence, prevention, and emerging treatments, while providing 
detailed insights into various detection methods, with a particular 
focus on the intricacies of DNA detection methods. However, the role 
of AI in HPV DNA testing was not detailed in the literature (Soheili 
et al., 2021). A review published in 2020 described the history, current 
status, and prospects of cervical cancer screening. The paper mentions 
the link between HPV and cervical cancer and that artificial intelligence 
is increasingly cited in this field. However, this review did not elaborate 

on artificial intelligence application methods and mechanisms (Bedell 
et al., 2020). A review published in 2021 presented existing problems 
with colposcopy and possible directions for improvement in the 
context of mass HPV vaccination. The introduction of artificial 
intelligence into colposcopy was offered only as a prospect rather than 
as an illustration of what has already been achieved in this field (Lukic 
et al., 2021). On the other hand, these reviews do not care about the 
time window. For the protection of women, how recognizing the 
occurrence of injury is only part of the protection of women’s rights. 
Tracing the source of infection, the correlation between infection and 
current health damage, and the increased risk of infection and future 
health damage are important components of HPV infection in 
protecting women’s rights and interests.

The main focus of this article is twofold. Firstly, it delves into a 
range of detection methods, combined with artificial intelligence, to 
assess the stages of health damages caused by HPV infection. Secondly, 
it examines how to mitigate the infection and evaluates the potential 
risks associated with health damages and disease.

1.6. Structure of the article

The first part of the article mainly states the basis of forensic 
microbiology and the role of forensic microbiology in protecting 
women’s rights and interests. The second part of the article focuses on 
the application of artificial intelligence in HPV testing based on 
different sources of medical information. The third part of the paper 
mainly discusses the potential application of AI in HPV testing and 
the application of AI in other sexually transmitted diseases involving 
women’s rights protection.

2. Application of artificial intelligence 
in HPV detection

In this section, HPV testing methods are discussed using the three 
most common types of data.

FIGURE 3

The percentage of each substance being tested.

FIGURE 4

The selection process of papers in the review.
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2.1. Detection based on DNA

Human papillomavirus (HPV) is a small unenveloped double-
stranded DNA virus with a genome size of 8 KB. Over 200 HPV 
genotypes have been discovered so far, owing to the virus’s high 
mutational propensity. As mentioned above, these genotypes are 
classified into either mucosal or cutaneous types based on the site of 
infection (Zhang J. et al., 2020). Specifically, high-risk HPV is generally 
linked to an increased risk of developing tumors (Clifford et al., 2017). 
As shown in Figure 5, the early region of HPV co-expresses seven 
early proteins. E1, E2, E4, and E5, which enable the HPV virus to 
replicate. The E6 protein significantly changes the cell cycle of host 
cells, enabling the integration of viral DNA into host DNA, ultimately 
leading to the development of cancer (Hoppe-Seyler et al., 2018). 
Because of the high specificity of DNA sequence, recognition of DNA 
to detect HPV is undoubtedly the most accurate method.

A 2015 study used a chaos game to represent the genome of HPV 
and classified the types of HPV (Tanchotsrinon et al., 2015). Firstly, 
considering the genetic diversity, only 6, 11, 16, 18, 31, 33, 35, 45, 52, 
53, 58, and 66 HPV were included in the study. The experimental 
data were obtained from GenBank and NCBI. This experiment 
proposed two techniques to extract features from a chaotic game 
representation of the HPV genome. The GCR is divided into several 
subregions to display local information about the region of interest. 
If two dots are in the same quadrant, they correspond to sequences 

with the same last single nucleotide; If they are in the same sub 
quadrant, the sequences have the same last dinucleotide; and so on. 
This can prove the structure of the sequence that produced the point. 
ChaosCentroid exploits this biological significance by calculating the 
centroid of the distribution points of each subregion. Different 
distribution biases of single, second, third, or higher-order 
nucleotides along the DNA/RNA sequence can produce different 
patterns in GCR. ChaosFrequency uses this feature as a diagnostic 
model for different HPV genotypes. Finally, the study used four 
prediction systems to classify the obtained features. K-nearest 
neighbor, Radial basis function network, Fuzzy k-nearest neighbor, 
and Multi-layer Perceptron neural network can achieve accuracy: 1.0, 
sensitivity1.0, and specificity: 1.0  in the discrimination of 12 
HPV subtypes.

A 2019 study detected the presence of HPV16/18 infection 
through DNA testing of cells obtained from cervical brush sampling 
and deep learning of the acquired images (Pathania et al., 2019). As 
shown in Figure 6, Cervical cells were collected via a cervical brush, 
and their DNA was extracted using disposable syringe filters. After 
DNA amplification, DNA samples were mixed with 6 μM polystyrene 
(PS) and 5 μM silica beads, each coated with DNA probes 
complementary to the 3′ and 5′ ends of the target HPV DNA. In the 
presence of target DNA, the two types of beads were ligated through 
the target DNA and formed a detectable PS-silica bead dimer. The 
diffraction patterns of PS, silica, and PS-silica bead dimers are 
captured by our miniature micro holographic device and rapidly 
analyzed by trained deep learning algorithms. Trained on 13,000 
images (128 × 128 pixels), the algorithm showed 99% accuracy for PS 
beads, 98% accuracy for silica beads, and 82% accuracy for dimers.

In a 2020 study, candidate sequences were obtained from the 
papillomavirus Knowledge database (Lomsadze et al., 2020). After 
whole genome sequencing, the researchers proposed an algorithm to 
categorize HPV. The experimental data included sequences of 286 
HPV genomes, 183 types recognized by the International Committee 
on Classification of Viruses, and 103 candidate types. Afterward, the 
researchers sequenced the HPV genome using the Enriched Whole 
Genome sequencing method and mapped the sequencing results to 
the HPV genome. After reading and processing the data from each 
sample, four features were selected for modeling: (1) Total Number of 
aligned read Pairs mapped to a given HPV genome. (2) Average depth 
of alignment of the read pairs to the given HPV genome. (3) Average 
coverage of the given HPV genome by aligned Read pairs. (4) Rate of 
distinct read Pairs. Finally, the researchers used a support vector 
machine to classify HPV. Finally, the sensitivity and specificity of HPV 
were 80.7 and 98.5%, respectively.

In a 2022 study, HPV16 from subjects with and without high-
grade squamous epithelial lesions was sequenced, and 13 significant 
features were finally obtained (Ai et al., 2022). The investigators found 
that the D32E and H85Y variants significantly increased their ability 
to degrade p53 compared with the E6 wild-type and that the H85Y 
variant was slightly more efficient at degrading p53 than the D32E 
variant. Four machine learning methods were then used to construct 
prediction models: logistic regression (LR), random forest (RF), 
support vector machine (SVM), and K-nearest neighbor (KNN). The 
AUC was used to evaluate the model’s performance, and the final 
model was determined. Based on 13 significant mutation features, the 
logistic regression (LR) model showed the best predictive performance 
in the training cohort (AUC = 0.944, 95%CI: 0.913–0.976) and also 

FIGURE 5

Pathological section of cervical cancer in HPV-positive patients.

FIGURE 6

Picture of cervical brush sampling.
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achieved high discriminative power in the independent validation 
cohort (AUC = 0.802, 95%CI: 0.913 – 0.976, 0.601 1.000).

In a 2022 study, researchers used the genome of HPV16 to train 
models for up to HPV16 Lineage (Asensio-Puig et al., 2022). The 
investigators’ training data were obtained from two different genomes, 
one from a known dataset (Smith et al., 2011) and the other from the 
papillomavirus genome database. At the same time, validation data 
were obtained from two sets of samples, one from 1,028 HPV16 
samples in the investigator’s laboratory and the other from 3,898 
samples downloaded from NCBI. The genomic data obtained were 
screened, and the known positions of two or more alleles with a 
minimum variation frequency (MVF) of 0.05 and a detection rate 
higher than 95% were referred to as SNP candidates. Different 
machine learning algorithms were used to screen the data, including 
random forest (RF), support vector machine (SVM), K-nearest 
neighbor (KNN), and classification and regression tree (CART). 
Accuracy, Kappa constant, and test confusion matrix have been used 
to compare models and select the best model for pedigree assessment. 
The results showed that the best model for assessing HPV16 pedigrees 
was the Random Forest (RF) algorithm, with an accuracy of 0.99 
(CI:95%).

A study in 2022 identified the HPV-dominated cervical cancer 
sub-types by analyzing the expression profiles of 50 genes with the 
most significant variation in HPV-positive cervical cancer (Zhu et al., 
2022). The dataset for this study was obtained from the TCGA-CESC 
dataset. After obtaining the 50 genotypes with the most significant 
variant expression, the researchers used the random forest algorithm 
to predict tumor subtypes, utilizing a set of 500 trees. This study used 
AUC, specificity, and sensitivity to evaluate the modeling effect. In the 
end, two distinct subtypes were identified, termed HPV + G1 and 
HPV + G2. The disease-free survival rate (DFS) of HPV + G1 was 
significantly higher than that of HPV + G2. HPV + G1 showed 
significantly higher enrichment levels of various immune 
characteristics than HPV + G2, Including CD8+ T cells, B cells, M1 
macrophages, cytolytic activity, IFN response, CD4+ regulatory T 
cells, proinflammatory cytokines, T-cell exhaustion, MDSCs, PD-L1 
expression, and anti-inflammatory cytokines. After verifying the 
differences between the two types, the investigators used two datasets 
as test sets, in which the predictive sensitivity, specificity, and AUC of 
GSE29570 were 100, 80.0, and 90.0%, respectively. The predictive 
sensitivity, specificity, and AUC of GSE39001 were 92.0, 100, and 
96.0%, respectively.

A 2023 study developed a novel multidrop PCR method that 
allows direct detection of high-risk HPV sequences in a single cell 
(Huang et al., 2023). The method includes one-step preparation of 
droplets, direct amplification of target sequences in single cells, and 
automatic droplet identification using machine learning. In the end, 
the accuracy of the method was 0.97.

2.2. Detection based on cell

The characteristics of benign and malignant lesions caused by 
HPV can vary significant depending on the type. In general, HPV 
types that pose a high risk for cancer are not associated with the 
development of benign lesions. There are four main types of benign 
oral lesions caused by HPV: verruca Vulgaris (common warts), 
squamous papilloma, condyloma acuminatum, and multifocal 

epithelial hyperplasia (Orrù et  al., 2019). The above four benign 
lesions are associated with specific HPV types. In malignant tumors, 
studies have shown that malignant tumors caused by HPV infection 
have significantly different manifestations in Immunohistochemistry 
(Orrù et al., 2019). This again demonstrated that HPV infection has a 
unique mechanism for the occurrence and development of tumors. In 
clinical practice, HPV test and cervical fluid based cytology test 
usually use the same sampling (Liu et  al., 2022b). Using artificial 
intelligence, it is already common practice for researchers to use 
pathological images of tumors (Chen et al., 2022). In addition, due to 
the distinct mechanisms of action that various types of HPV exert on 
cells, some studies have also demonstrated the feasibility of utilizing 
cell-level detection to determine the specific HPV strain causing 
the infection.

A 2020 study used histopathological images of patients to predict 
HPV status (Lu et al., 2022). In this study, feature-driven local cell 
cluster mapping (FLocK) was proposed, which is a novel method to 
construct local cell maps by considering both spatial proximity and 
the properties of mononuclear (e.g., shape, size, texture). As shown in 
Figure 7, the model was trained using HE-stained 40X magnification 
images from 50 Vanderbilt University Medical Center patients, who 
suffered from oral cancer. The researchers then used 35 Kaiser 
Permanente Medical System patients who also had oral cancer. In the 
final model, WRST was selected as the feature selection method, and 
LDA was chosen to generate the model. The AUC of the model was 
0.80, the accuracy was 0.76, the specificity was 0.82, and the sensitivity 
was 0.71.

In a 2021 study, HE-stained pathological images of oral squamous 
cell carcinoma were used to conduct deep learning to predict whether 
HPV was associated with the tumor (Klein et al., 2021). Data for this 
study were obtained from Giessen (n = 163) and Cologne (n = 110). 
The researchers developed a deep learning-based algorithm that could 
detect areas of live tumor cells and classify images. The researchers 
trained the U-Net architecture for image segmentation to identify 
tumor regions within OPSCC tumors. The researchers’ method allows 
for the consistent and controlled declaration of image information. 
After extracting relevant tumor plaques from OPSCC, the DenseNet 
architecture classifies images to determine the HPV status and 

FIGURE 7

A sample of the pathological section of OPSCC.
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generate an HPV prediction score. Ultimately, the investigator’s model 
could predict the prognosis of oral squamous cell carcinoma.

In a 2021 study, 57 antiviral HPV protein interactions were 
successfully predicted from the 864 antiviral HPV protein associations 
(Lin H. H. et al., 2021). The investigators used data from DrugBank, 
Drugs@FDA, PubChem, Uniprot, and Therapeutic Targets, which 
collected data databases on antiviral drugs and their associated 
Targets. At the same time, drug-target interaction pairs of US Food 
and Drug Administration (FDA)-approved antivirals were included 
as validation datasets for machine learning. In this experiment, the 
interaction pairs of antiviral drugs and proteins are defined as positive 
instances, while the negative samples represent the non-interaction 
pairs of antiviral drugs and proteins. After adjustment by the 
investigator, the ratio of positive and negative cases in the final 
training set is 1:1. In the definitive study, a KNN-built model was 
formed with a precision of 0.85, an AUC of 0.76, and an accuracy 
of 0.76.

A 2021 study proposed an intelligent image analysis framework 
to determine HPV status in digitized samples of oropharyngeal 
carcinoma tissue microarrays (TMA; Fouad et al., 2021). This study 
used deep central attention learning techniques to segment epithelial 
regions and evaluated their IHC-positive areas. The researchers 
extracted relevant morphometric measurements from these regions 
and used a supervised learning model to identify HPV status. The final 
test results were 91% accurate compared with the gold standard 
of pathology.

2.3. Detection based on medical image

Computer image analysis is a branch of computer vision and 
image processing. The purpose of computer image analysis is to 
process the original image and extract the information the researcher 
needs (Green et al., 1994). With the outbreak of COVID-19, image 
detection for the virus has gradually attracted researchers’ attention 
(Lukic et al., 2021). However, from the current research results, the 
research in this field is quite limited, and many studies focus on CT 
detection and typing of COVID-19. As shown in Figure 8, The most 
common source of data for machine learning is radiological images. 
Many studies have explored the relationship between tumor images 
and HPV infection, due to the strong correlation between HPV and 
the occurrence of gynecological tumors (Liu et al., 2022a). In the field 
of HPV detection, the most commonly obtained images are CT 
images because enhanced CT is the most widely used screening 
protocol for oral cancer. In addition, with the popularization of 
imaging equipment and the reduction of examination costs, MRI and 
PET/CT have been widely used in HPV-related cancers. Therefore, 
some researches on computer image analysis have been carried out. 
In addition, colposcopy is a commonly used screening method for 
cervical cancer, so deep learning of images is a joint research direction 
in HPV-related cervical cancer. As shown in Figure 9, the acetowhite 
test plays a crucial role in clinical human papillomavirus (HPV) latent 
infections or acuteness wet wart, genital warts, and clinical 
manifestation of the experimental method. It’s an easily performed 
procedure; however, it still requires the expertise of clinical 
professionals. Therefore, the widespread adoption of image 
recognition technology can effectively support this screening method 
and promote its implementation.

A 2018 study used cervical contrast-enhanced CT to predict HPV 
status in patients (Ranjbar et al., 2018). The researchers studied 107 
patients, 92 of whom were HPV-positive. Modeling after extracting 
texture information resulted in a final accuracy of 0.757. Notably, the 
study compared the results of this model with the diagnoses of two 
radiologists, and the accuracy of this model was much greater than 
that of either radiologist (44.9% vs. 55.1%, respectively). This means 
that using machine learning in medical imaging to diagnose specific 
diseases is possible.

A 2020 study used MRI images of untreated oral squamous cell 
carcinoma to predict HPV status in oropharyngeal cancer (Suh et al., 
2020). The study included 60 patients with oral squamous cell 
carcinoma, 80% of whom were HPV-positive and 20% HPV-negative. 
Four MR sequences were used, including T1WI, T2WI, CE-T1WI, 
and ADC maps from DWI. After extracting texture parameters 
according to the gray level co-occurrence matrix, researchers used 
machine learning to model. Ultimately, the logistic regression model 
achieved the best results, with an AUC of 0.77, a sensitivity of 0.71, 
and a specificity of 0.72.

A 2020 study investigated whether distributed learning impacted 
the performance of trained models using CT to predict HPV status in 
patients with head and neck cancer (Bogowicz et  al., 2020). 
Pretreatment CT images were collected from 1,174 HNC patients 
from six different data sources. After data screening, 834 patients from 
5 cohorts were selected for the final training set. 981 features were 
extracted from the patients’ enhanced CT scans. After evaluating the 
final model, the investigators concluded that there was no significant 
difference in ROC between the centralized and distributed models.

In a 2020 study, researchers compared 3D-ROI with 2D-ROI 
when using CT texture features to predict HPV status in oropharyngeal 
squamous carcinoma (Ren et  al., 2020). Researchers enrolled 47 
patients with oropharyngeal cancer, 15 of whom were HPV-positive, 
and 32 were HPV-negative. A senior radiologist delineated both 
3D-ROI and 2D-ROI. Finally, 1,032 features were obtained on the 
enhanced NMR using both ROIs. Researchers use K-NN, logistic 
regression, and random forest to model texture features. In the final 
model, the 2D-ROI using SMOTE and logistic regression had better 
predictive performance, with an AUC of 0.953. In addition, the 
prediction performance of 2D-ROI is generally better than that 
of 3D-ROI.

Another 2020 study used enhanced MRI images to predict HPV 
status in oropharyngeal cancer patients (Bos et  al., 2021). The 
researchers used enhanced MRI images of 153 patients with primary 
oropharyngeal squamous cell carcinoma. A senior physician manually 
delineated the 3D-ROI. Finally, the researchers collated three sets of 
training data: clinical data alone, radiomics data, and a combination 
of the two. After the evaluation of the model, 14 imaging parameters 
and six clinical parameters were selected and modeled by logistic 
regression. The AUC was 0.923 [0.868–0.983] on the training set and 
0.871 [0.866–0.876] on the test set.

A 2020 study used FDG-PET images to predict HPV status in 
patients with oropharyngeal squamous cell carcinoma (Fujima et al., 
2020). 2,160 FDG-PET/CT images were obtained after processing 
from 120 patients with oropharyngeal cancer. The convolutional 
neural network was used to classify images, and the sensitivity, 
specificity, positive predictive value, negative predictive value, and 
diagnostic accuracy of the final model were 0.83, 0.83, 0.88, 0.77, and 
0.83, respectively. It is important to note that, similar to the 
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experiments in which CT was used as the data source, the researchers 
also used radiologists as the control group. Similar to the experiments 
using CT as the data source, first of all, the recognition effect of the 
neural network is better than the recognition effect of radiologists, and 
second, the judgment accuracy of radiologists is different.

A 2020 study used mobile phones to identify images from 
Acetowhite tests and test subjects for HPV status (Hu et al., 2020). The 
final AUC of this algorithm is 0.95.

In a 2020 trial, investigators used radiomics features from 
PET/CT to predict HPV status in oropharyngeal cancer patients 
(Haider et al., 2020). The investigators used multicentre PET/CT 
as the data source, and the ROIs were delineated in 3D by the 
radiologist. The ROIs comprised two distinct types: one 
encompassing the primary tumor (435), another encompassing 
metastatic cervical lymph nodes (741). Additionally, a third type 
of ROI, which had not been independently modeled by 
investigators using PET and CT, was simultaneously modeled. In 

the end, the researchers concluded that there was no difference in 
effectiveness between PET and CT models but that combining 
them had significant advantages. In the external validation, using 
PET as the data source, combined with the primary tumor and 
cervical lymph node metastasis modeling, has obvious advantages, 
with an AUC of 0.73.

A 2021 study investigated whether different CT machines affected 
the use of radiomics to predict HPV (Reiazi et  al., 2021). The 
researchers used data from the Princess Margaret Cancer Centre 
University Health Network. Of the 1,294 patients, 824 (641 Toshiba 
and 183 GE) had positive HPV status, and 470 (385 Toshiba and 85 
GE) were negative. Oncologists manually draw the ROIs. According 
to the determined ROI, a total of 1874 features were extracted to train 
the model. The training set consists of both Toshiba, GE, and hybrid 
images from both sources; the final results show that the model built 
by Toshiba CT has the highest prediction accuracy. This suggests that 
radiological features are not reflected equally by the instruments.

FIGURE 8

Samples of patients with HPV. (A) Head MRI of patients with oral squamous cell carcinoma, (B) CT of patients with oral squamous cell carcinoma, 
(C) PET of patients with cervical cancer.

FIGURE 9

A picture of acetowhite test.
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A 2021 study used deep learning to identify images of acetowhite 
test to determine HPV infection (Pal et  al., 2021). A total of 632 
patients were enrolled in the training set. 102,324 patients were 
enrolled in each of the two test sets. The researchers used resnet-50, 
NasNetMobile, and Mobile-Net as the main framework to build the 
network. First, remove the softmax classification layer from each 
network. The L2 normalization layer is then used after the last feature 
layer of the network. Finally, the selected DML algorithm is used to 
train the network, and then, the extracted deep features are used to 
train the K-nearest neighbor (KNN) classifier. The final model showed 
an AUC of 0.835(73.9–90.7%) for HPV status recognition in patients 
of full age.

In a 2021 study, investigators used transfer learning to predict 
HPV status in patients with oropharyngeal cancer using CT data 
(Lang et  al., 2021). Data were collected from OPC-Radiomics, 
HNSCC, Head–NecK-PET-CT, and Head–Neck-Radiomics-HN1. 
The first two were used as training sets, and the last two were used as 
testing sets. The training set consisted of 675 patients, of whom 513 
were HPV-positive. The test set included 170 patients, 94 of whom 
were HPV-positive. The researchers’ pre-trained network was initially 
used to process sports videos, and all three input dimensions were 
processed similarly. The convolution layer is followed by the maximum 
pooling layer and three densely connected layers, and a softmax 
activation layer. To compare the untrained 3D neural network with 
the same network structure as above and the neural network based on 
VGG16 architecture was selected to recognize 2D images. In the end, 
the pre-trained network achieved the best results in HPV status 
recognition. The AUC was 0.81, the sensitivity was 0.75, and the 
specificity was 0.72.

In a 2021 study, investigators used enhanced MRI data before 
oropharyngeal cancer treatment to predict HPV status in patients 
(Sohn et al., 2021). The ROIs were semi-automatically delineated on 
T1WI, and the T2TI images were then registered with T1WI images, 
using two sequences to extract radiomics parameters. 170 radiomics 
features were extracted, and six radiomics parameters were selected 
for the final modeling after the screening. On the training set, the 
model achieved good results (AUC, 0.982 [95%CI, 0.942–1.000]). On 
the training set, the effect of the model was also acceptable (AUC, 
0.744 [95% CI, 0.496–0.991]).

Another 2022 study similarly used MRI images of patients with 
untreated oropharyngeal squamous cell carcinoma to predict HPV 
status (Park et al., 2022). The trial used medical records and imaging 
data from 155 patients at Gangnam Severance Hospital, Yonsei 
University College of Medicine. The researchers used logistic 
regression and LightGBM to model the features, and the AUC of the 
former for HPV prediction was 0.792 and 0.8333, respectively. 
Furthermore, the researchers employed machine learning techniques 
to forecast patient recurrence, and the implementation of LightGBM 
yielded outstanding predictive performance, exhibiting an impressive 
AUC value of 0.8571. Regarding patient prognosis prediction, logistic 
regression demonstrated a commendable efficacy, achieving an AUC 
of 0.8175.

In a 2022 study, investigators focused on the efficiency of ROI 
delineation in radiomics for HPV prediction using oropharyngeal 
cancer MRI (Bos et al., 2022). In tumor-related radiomics, accurately 
obtaining a region of interest (ROI) that covers tumors poses the 
initial challenge for researchers seeking comprehensive tumor image 
information. In recent studies, using 3D delineated ROIs is a common 

choice. Six ROI delineation strategies were used in this study. The two 
parameters are delineators with three different seniorities and 2D-ROI 
versus 3D-ROI for maximum cross-section. Finally, the researchers 
concluded that for patients with oropharyngeal cancer, employing 
magnetic resonance imaging (MRI) to predict HPV, the utilization of 
a single largest cross-section 2D ROI outline proved to be a more 
effective solution (AUC/Sensitivity/Specificity: 0.84/0.84/0.75).

In a 2022 study, researchers used deep learning to predict HPV 
status in advanced oropharyngeal cancer (Saint-Esteven et al., 2022). 
Four datasets were established (Internal: n = 151, HNC1: n = 451; 
HNC2: n = 80; HNC3: n = 110), the first two datasets are used for 
training, and the last two datasets are used for validation. The CT data 
were reassembled into 2.5D images at 72 × 72 × 3 from 2D sections 
containing the largest tumor areas along the axial, sagittal, and coronal 
planes. The neural network adopted by the researchers consists of the 
first five modules of Xception and a classification network. In the final 
model, AUC was 0.84 [0.76–0.89] on the training set, and on the two 
test sets, AUC and accuracy were 0.83/0.75 and 0.88/0.79, respectively. 
The neural network architecture used in this study is shown in 
Figure 10.

A 2022 study included 41 patients with primary cervical cancer 
(İnce et  al., 2023). The researchers first annotated enhanced 
T1-weighted images (CE-T1) and T2-weighted images (T2WI) of 
cervical cancer patients, and then extracted image-omics features 
from regions of interest. In this study, two machine learning methods, 
SVM and LR, and three data selection schemes (CE-T1 alone, T2WI 
alone, and fused images) were combined to adopt six strategies for 
modeling. Finally, the support vector machine method was adopted, 
and T2WI and fused images had similar effects, with an 
accuracy of 95%.

In a 2023 study, researchers developed a Markov model for 
100,000 30-year-old women to simulate the natural history of cervical 
cancer development (Shen et al., 2023). The incremental cost–benefit 
ratio (ICER) of 18 screening strategies (a combination of three 
screening methods and six screening frequencies) was assessed from 
a healthcare provider perspective. Performing AI-assisted LBC 
screening every 5 years may be more cost-effective than reading LBC 
manually. The use of AI-assisted LBC may be comparable in cost-
effectiveness to HPV DNA screening, but the relative pricing of HPV 
DNA testing is crucial in this outcome.

A 2023 study included a total of 145 patients who were 
pathologically diagnosed with oral squamous cell carcinoma (Woo 
et al., 2023). Of these, 126 patients came from the same center and 19 
patients came from two other hospitals as an external validation set. 
The study included PET/CT images of patients to label tumor areas. 
In this study, three groups of models were developed: a model using 
PET-derived parameters, a model using only clinical characteristics, 
and a model using both characteristics. Finally, the third strategy has 
the best performance, with an AUC of 0.77 (0.59 – 0.94) in the internal 
verification set and 0.78 (0.46 – 1.00) in the external verification set, 
with an accuracy of 83.3% and a precision of 80.0%.

A 2023 study, involving 59 patients, used pre-treatment CT 
images to predict HPV status, which was determined by p16 
immunohistochemistry (Leijenaar et al., 2023). In this study, semi-
automatic segmentation was performed on the patient’s CT to 
determine the region of interest, and then texture features were 
extracted to conduct modeling by logistic regression. The final AUC 
was 0.68 [95% CI (0.32 – 1.00)] and the F1 score was 0.78. Notably, 
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the radiomics signature of the study came from a study involving oral 
cancer, which demonstrated consistency in the radiographic effects 
of HPV on lesions. The study suspects that one of the reasons for the 
deterioration in model performance is that the 
immunohistochemistry of p16 is inaccurate in determining the status 
of HPV infection.

A 2023 study of 141 patients with primary oral squamous cell 
carcinoma from two centers used MRI images of the patients to label 
their primary lesions and lymph nodes on T2WI and CE-T1WI, 
respectively (Li et al., 2023). The study performed semi-automatic 
segmentation of patient CT to identify areas of interest and then 
extract texture features. The study compared the effects of modeling 
using different sequences, and finally determined the following six 
features as model parameters:1 CE-T1WI PT wavelet feature (LHH 
first-order kurtosis), 1 T2WI PT LoG feature (GLSZM size zone 
nonuniformity normalized; δ = 10), 3 T2WI PT wavelet features (LHL 
GLSZM size zone nonuniformity normalized, LHH GLCM Id, and 
LHH GLSZM small area emphasis), and 1 T2WI LN wavelet feature 
(LLH GLDM dependence entropy). In the end, the model was 80 
percent accurate. In this study, the PT-LN fusion image omics model 
improves the classification performance of PT or LN features to 
predict the p16 state alone, and the image omics model based on 
multi-sequence imaging is superior to the single sequence imaging 
model in predicting the p16 state.

2.4. Summary

Table 1 provides an overview of the application of AI in HPV 
testing, encompassing crucial aspects. It includes information such as 
publication year, research team, input data, methodology, and results. 
Notably, researchers displayed a preference for utilizing medical 
imaging data, with a tendency to rely on oropharyngeal cancer data. 
However, comparatively limited attention has been directed towards 
cervical cancer. Furthermore, the detection of HPV in penile, bladder, 
and prostate cancers has received minimal focus, possibly attributable 

to the absence of specific tests designed for these particular types 
of cancer.

3. Discussion

3.1. Existing methods

With the progress of technology, the existing HPV detection 
technology has been up to 400. We categorized the aforementioned 
detection methods, with HPV detection primarily conducted from 
three perspectives. The first aspect is the method based on nucleic acid 
detection. PCR technology is one of the cores of this method; 
researchers can use fluorescent probes or DNA probes to detect HPV; 
in addition, because HPV E6/E7 is a key oncogene leading to cancer, 
so E6/E7 mRNA detection is also one of the methods of HPV 
detection. The second aspect is the detection of serology in cells. 
ELISA can be  used to detect virus-like Particles. In addition, a 
neutralization test can also be used to detect the capsid of the virus. 
The last aspect has also been examined at the histological level, with 
colposcopy, Acetowhite tests, and radiological examinations such as 
CT, MRI, and PET/CT. Naturally, the effectiveness of the same test 
method can vary significantly depending on the sample and the test 
target, thus accounting for the diversity observed in HPV testing.

3.2. Potential methods in HPV testing

As mentioned above, there are various HPV detection methods, 
and different tests have different dependencies on the professional 
level of the operator. At the same time, this dependence is also 
reflected in different aspects. For example, using fluorescent probes 
to detect HPV requires professional expertise in the operation 
process, which is still a challenge for artificial intelligence 
intervention at this stage. However, in some detection methods, the 
dependence on personnel is limited to interpreting results, which 

FIGURE 10

Structure of CNN to predict HPV status in advanced oropharyngeal cancer.

https://doi.org/10.3389/fmicb.2023.1232295
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yao and Zhang 10.3389/fmicb.2023.1232295

Frontiers in Microbiology 12 frontiersin.org

TABLE 1 Summary of papers on artificial intelligence detection of HPV.

Year Research team Input data Main method Result evaluation

2023 Yizheng Huang et al. DNA LeNet-5 accuracy:0.97

2023 Mingwang Shen et al. – machine learing -

2023 Changsoo Woo et al. PET/CT of 126 patients with OPSCC ExtraTrees
AUC/accuracy/precision/recall/F1:0.77 

/0.833/0.800/1.000/0.890

2023 Ralph T. H. Leijenaar et al. CT of 59 anal cancer patients Logistic Regression AUC/F1:0.68/0.78

2023 Qiao Li et al. MR of 141 patients with OPSCC Support Vector Machine
AUC/accuracy/precision/F1:0.91 

/0.800/0.920/0.830

2022 Okan İnce et al. MR of 41 patients with cervical cancer Support Vector Machine accuracy:0.95

2022 Xiaojun Zhu et al. Expression profiles of the 50 genes random forest sensitivity/specificity/AUC: 0.92/1.0/0.96

2022 Young Min Park et al.
Imaging data of 155 patients who were 

diagnosed with OPSCC
LightGBM AUC: 0.8571

2022
Agustina La Greca Saint-

Esteven et al.

An internal dataset and three public collections 

were employed (internal: n = 151, HNC1: 

n = 451; HNC2: n = 80; HNC3: n = 110)

Xception
AUC/accuracy/F1-score values: 

0.88/0.79/0.68

2022 Paula Bos et al.

153 OPSCC patients, HPV status was 

determined using p16/p53 

immunohistochemistry.

Logistic Regression AUC/Sensitivity/Specificity: 0.84/0.75/0.84

2022 Laura Asensio-Puig et al. 645 HPV16 genomes random forest accuracy: 0.995

2022 Wenchao Ai et al.
199 DNA samples from HPV16-positive 

cervical specimens
Logistic Regression AUC: 0.944(95% CI, 0.913–0.976)

2021 Beomseok Sohn et al.
62 Consecutive patients with oropharyngeal 

SCC
LASSO AUC: 0.982(95% CI, 0.942–1.000)

2021 Reza Reiazi et al.
Oropharyngeal squamous cell carcinomaon on 

computed tomography (CT)
random forest CT will affect the effect of the model

2021 Anabik Pal et al.
9,406 Women ages 18–94 years in Guanacaste, 

Costa Rica
CNN AUC: 0.835(95% CI, 73.9–90.7%)

2021 Cheng Lu et al. H&E stained tissue images
feature-driven local cell 

cluster graph
AUC: 0.84

2021 Hui-Heng Lin et al. 182 Pairs of antiviral-target interaction dataset K-Nearest Neighbor accuracy: 0.85

2021 Daniel M Lang et al. 850 Individual oropharyngeal cancer patients 3D CNN AUC: 0.81

2021 Sebastian Klein et al. 273 Patients from two different sites U-Net, DenseNet AUC: 0.8

2021 Shereen Fouad et al.
2009 TMA images of oropharyngeal carcinoma 

tissues

deep central attention residual 

networks
accuracy: 0.91

2021 Paula Bos et al.
T1-Weighted postcontrast images of the 

primary tumor of 153 patients.
Logistic regression AUC: 0.871

2020 Chong Hyun Suh et al.
60 Patients with newly diagnosed 

histopathologically proved OPSCC
logistic regression AUC: 0.77

2020 Jiliang Ren et al.

Data about 47 patients with pathological 

OPSCC (15 HPV positive and 32 HPV 

negative)

random forest AUC: 0.953

2020 Liming Hu et al.
A low-end smartphone (i.e., Samsung J8)’s 

image quality
CNN AUC: 0.95

2020 Stefan P. Haider et al. 435 Primary tumors FDG-PET image XGBoost AUC: 0.83

2020 Noriyuki Fujima et al.

One hundred and twenty patients with OPSCC 

who underwent pretreatment FDG-PET/CT ; 

2,160 FDG-PET images

Inception v2
sensitivity/specificity/accuracy: 

0.83/0.83/0.83

2020 Marta Bogowicz et al.
Pretreatment CT images were collected from 

1,174 HNC patients
logistic regression

no difference between the centralized and 

distributed models

(Continued)
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makes artificial intelligence often achieve better results in these 
detection methods. In one study, the risk types of HPV were 
assessed by textural analysis of nuclei sectioned from HE-stained 
pathological sections of patients with squamous cell carcinoma 
(Konstantinou et al., 2020). In addition, considerable progress has 
been made in using imaging data to assess HPV status in subjects, 
but the current research is mainly focused on cancer patients. Using 
imaging data to determine HPV infection status in screening 
non-tumor patients needs further study. In any case, this means that 
in medical images, artificial intelligence can effectively dig out 
information that is difficult to recognize manually and detect the 
status of HPV infection. In fact, the cervical fluid based cytology 
test is a widely used screening procedure whose samples have also 
been tested for HPV. Studies have shown that AI methods can 
be used to classify cervical cells, so the use of cytological data for 
HPV diagnosis has great potential (Rahaman et al., 2021).

3.3. Application of these tests in other 
areas of sexual transmission

3.3.1. Syphilis
Syphilis is an infection caused by Treponema pallidum, a 

subspecies of Treponema pallidum (order Treponema), that can 
be  transmitted sexually or vertically. The early manifestations of 
syphilis can be varied and often painless, leading to misdiagnosis or 
confusion with other conditions. Serology is the most commonly used 
method to diagnose syphilis in suspected patients and in screening 
asymptomatic patients, but it does not distinguish between different 
subtypes of syphilis. Hematological tests for syphilis can be categorized 
into two types: non-spirochetes tests (NTTs) and spirochetes tests 
(TTs). Non-spirochological tests function similarly to other serological 
tests, primarily detecting IgM and IgG. However, this method carries 
a probability of missed diagnoses and relies heavily on the individual 
judgment of the doctor (Creegan et al., 2007). The spirochetes test is 
mainly for antibodies to treponema pallidum protein, which is highly 
specific. However, patients with a history of infection will carry 
antibodies for a long time, so it is impossible to determine the current 
infection status. However, PCR, immunohistochemistry, fluorescent 
antibody staining, and other methods have two similar problems: 
poor sensitivity and intense subjectivity. Deep learning or artificial 
intelligence detection for syphilis has not attracted a wide range of 
attention. The current research mainly aims to predict the possibility 
of a future infection by analyzing the medical records of sexually high-
risk groups (Bao et al., 2021).

3.3.2. Gonorrhea
Gonorrhea is an infection caused by Neisseria gonorrhoeae, and 

selective media has been an essential means of diagnosis for 
gonorrhea. With the development of technology, PCR has provided 
a more sensitive and accurate diagnostic method for gonorrhea. 
Unlike HPV, the harm of gonorrhea is not in the concealment of its 
infection, the difficulty of detection, or the cancer risk that long-
term infection may cause to patients but in the rapid growth of its 
drug resistance. Deep learning studies on gonorrhea have also 
demonstrated this feature, focusing on the recurrence of gonorrhea 
and drug resistance in Neisseria gonorrhoeae. The treatment of 
gonorrhea has gone through several “antibiotic eras,” with dramatic 
changes in treatment protocols to combat its resistance (Hook III 
and Kirkcaldy, 2018). Some reports call it a superbug and predict it 
will become incurable (Costa-Lourenço et al., 2017). A 2021 study 
used patients’ routine electronic health record (EHR) data to 
predict which patients were at risk of developing STI in the next 1 
to 2 years (Elder et al., 2021). Another machine learning study in 
2020 looked at screening novel growth inhibitors for Neisseria 
gonorrhoeae (Pereira et al., 2020). A 2019 study showed that it was 
feasible to use deep learning networks to identify resistance genetic 
factors in Neisseria gonorrhoeae from genome-wide sequence data 
(Shi et al., 2019).

3.3.3. HIV/aids
Due to cultural differences and privacy protection considerations, 

self-testing has become the primary method for HIV infection testing 
(O’Byrne, 2021). Therefore, rapid HIV testing has gained significant 
importance, with the colloidal gold method being widely utilized (Ma 
et  al., 2016). The diagnosis of HIV infection is confirmed by 
immunoblotting, which is specific to antibody detection. In addition, 
nucleic acid testing is regarded as the gold standard for confirming 
HIV infection, as it directly detects the virus through PCR 
amplification. This method effectively shortens the virus’ window 
period since the emergence of antigenic antibodies lags behind viral 
replication. Given its harmfulness and widespread transmission, HIV 
infection has garnered significant attention and is often accompanied 
by severe social discrimination. Deep learning in HIV-related contexts 
encompasses detection, transmission, treatment, and public opinion. 
Specifically, deep learning techniques applied to rapid field testing can 
accurately differentiate negative and positive test results with high 
sensitivity and specificity, offering a valuable diagnostic foundation in 
low- and middle-income countries (Turbé et al., 2021). A study has 
shown that HIV drug resistance can be obtained by deep learning its 
sequence data. This recognition model based on a convolutional 

Year Research team Input data Main method Result evaluation

2020 Alexandre Lomsadze et al.
Genomic fragments from 191 human 

papillomaviruses (HPV) types
Support Vector Machine sensitivity/specificity:0.807/0.985

2019 Divya Pathania et al.
28 Patients referred to Massachusetts General 

Hospital with abnormal pap smear results
CNN accuracy: 0.99

2018 Sara Ranjbar et al.
Computed tomography (CT)-based texture 

analysis.
machine learning accuracy: 0.757

2015
Watcharaporn 

Tanchotsrinon et al.
HPV genome machine learning accuracy/sensitivity/specificity:1.0/1.0/1.0

TABLE 1 (Continued)
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neural network highly depends on viral resistance mutations and can 
effectively predict viral response to antiretroviral therapy (Steiner 
et al., 2020). In contrast, a deep learning imaging study on brain MRI 
in HIV-infected patients described and predicted the infected brain’s 
accelerated aging and functional impairment from various aspects 
(Turbé et al., 2021).

3.3.4. Chlamydia trachomatis
Sexually transmitted diseases caused by Chlamydia trachomatis 

remain a significant public health burden in many countries worldwide. 
The symptoms of chlamydia infection show substantial differences 
between men and women. In men, only 14% of chlamydial infections 
may present with symptoms (Tsevat et al., 2017). In women, urogenital 
chlamydia initially infects the cervix, causing cervical inflammatory 
symptoms, and then spreads to the upper genital tract and causes pelvic 
inflammatory disease (PID). Untreated urogenital tract infections can 
lead to other serious complications, such as chronic pain, ectopic 
pregnancy, and infertility. Thus, chlamydial infections are a prominent 
area of focus for women who lack protection. The gold standard for 
C. trachomatis infection is nucleic acid amplification assay (Adamson 
et al., 2020); however, culture is the only option for some specific sites 
of infection. Some studies have used imaging to detect patient 
infection, but this also means that asymptomatic infection and early 
infection cannot be screened (den Heijer et al., 2019).

4. Conclusion

After decades of research, the detection of HPV has undergone 
significant changes. Currently, there are more than 400 detection 
methods that can be used to detect the infection status of different 
diseases from various information channels. On the one hand, the 
intervention of artificial intelligence technology can effectively replace 
the dependence of some detection methods on professionals. On the 
other hand, artificial intelligence can more effectively mine the 
obtained information and improve the sensitivity and specificity of 
detection methods. In addition, artificial intelligence has broken 
through the limitation of a linear relationship in the description of 
HPV characteristics in detecting DNA and can more accurately 
describe the biological characteristics expressed by its gene sequence. 
Due to the in-depth research on HPV typing and prognosis, the 
correlation between HPV and cervical cancer and oral cancer has 
been proved, and the sensitivity to HPV infection has gradually 
increased. However, in judicial practice, we can see that the current 
contradiction lies not only in the serious homogeneity of forensic 

testing methods and medical methods but also in the treatment-
oriented medical examination methods, which do not care about 
traceability, so they cannot meet the requirements of clarifying rights 
and responsibilities in litigation cases. At the same time, in the field of 
HPV testing, there is a lack of both sensitivity and specificity, which is 
convenient for daily quick operation, resulting in the difficult time of 
infection, which also leads to the difficulty of inferring the sequence 
of infection in judicial practice, and it is difficult to identify causality. 
In the current social environment, people have realized that passive 
infection of HPV violates the right to health and the right to life of 
individuals. Therefore, the number of legal cases of HPV infection is 
on the rise year by year. Presently, the identification of HPV infection 
is often based on the time of diagnosis and other logical judgments, 
but they lack microbiological traceability. There is no doubt that this 
is a new direction of artificial intelligence in this field.
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