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Methanogenic archaea stand out as multipurpose biocatalysts for different 
applications in wide-ranging industrial sectors due to their crucial role in the 
methane (CH4) cycle and ubiquity in natural environments. The increasing demand 
for raw materials required by the manufacturing sector (i.e., metals-, concrete-, 
chemicals-, plastic- and lubricants-based industries) represents a milestone for 
the global economy and one of the main sources of CO2 emissions. Recovery of 
critical raw materials (CRMs) from byproducts generated along their supply chain, 
rather than massive mining operations for mineral extraction and metal smelting, 
represents a sustainable choice. Demand for lithium (Li), included among CRMs 
in 2023, grew by 17.1% in the last decades, mostly due to its application in 
rechargeable lithium-ion batteries. In addition to mineral deposits, the natural 
resources of Li comprise water, ranging from low Li concentrations (seawater 
and freshwater) to higher ones (salt lakes and artificial brines). Brines from 
water desalination can be high in Li content which can be recovered. However, 
biological brine treatment is not a popular methodology. The methanogenic 
community has already demonstrated its ability to recover several CRMs which 
are not essential to their metabolism. Here, we attempt to interconnect the well-
established biomethanation process with Li recovery from brines, by analyzing the 
methanogenic species which may be suitable to grow in brine-like environments 
and the corresponding mechanism of recovery. Moreover, key factors which 
should be considered to establish the techno-economic feasibility of this process 
are here discussed.
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1. Introduction

The wide diversity and distribution of methanogens, unicellular obligate anaerobes from 
the Archaea domain, make them suitable for multiple biotechnological applications beyond 
high-energy fuel production, i.e., methane CH4 (Pfeifer et al., 2021; Bellini et al., 2022; Carr 
and Buan, 2022; Contreras et al., 2022; Lyu et al., 2022). Biomining and biohydrometallurgy 
exploit microorganisms for metal extraction and recovery from different resources such as 
mineral rocks, mine waste, electric and electronic waste (e-waste), new- and old-scrap metals 
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generated during the device manufacturing and at end-of-life, 
respectively (Kaksonen et  al., 2020; Magoda and Mekuto, 2022; 
Abdel Azim et al., 2023). Methanogens, in the form of consortia, 
have already demonstrated the ability to recover platinum group 
metals (PGMs) such as platinum (Pt) and palladium (Pd) 
(Pat-Espadas et al., 2016; Simon-Pascual et al., 2018). As a single 
culture, the hydrogenotrophic methanogen Methanobacterium 
bryatii BKYH was found to be able of chelating copper (Cu2+) from 
Cu-rich mineral deposits (Kim et  al., 1995), while 
Methanothermobacter thermoautotrophicus could recover vanadium 
(V4+), chromium (Cr3+) and cobalt (Co2+) via bioreduction, an 
immobilization process which changes the oxidation state of 
dissolved metals by donating electrons (Zhang et al., 2014; Singh 
et al., 2015a,b). In this context, biobased processes are of considerable 
interest, being economically convenient and environmentally 
sustainable compared to the common techniques (Baniasadi et al., 
2019). Indeed, material production typically relies on energy-
consuming practices like mineral mining, processing, and refining 
(Intergovernmental Panel on Climate Change (IPCC), 2023). The 
ever-growing need for raw materials in the manufacturing industry 
is driving the exploration and development of alternative sources 
and technologies. However, the replacement of fossil-based 
technologies by renewable energy sources (RES) and the drive for 
electrification implies the exploitation of more raw materials (Zhang 
et  al., 2023). Among raw materials, several are listed as critical 
(CRMs) due to their increasing demand but limited availability 
(Mosley, 2022; U.S. Geological Survey, 2022). Lithium (Li+), the 
demand of which is projected to grow by 32% within 2030 (Andreas 
et al., 2022), has been recently included among CRMs and in the 
strategic raw material (SRMs) list (European Commission, 2023). Li 
is intensively employed in single-discharge- and rechargeable-
batteries construction (74%), (U.S. Geological Survey, 2022), used in 
electronic devices, electric (EVs) and hybrid vehicles, and smart grid 
factories. The demand for LIBs led the global Li production to grow 
from 82,500 tons in 2020 to almost 100,000 tons in 2021 along with 
a significant price increase of Li (as Li2CO3). However, beyond 
batteries, there are other well-settled applications of lithium such as 
ceramics and glass manufacturing, aluminum alloys for aerospace 
applications, as fuel in nuclear reactors (U.S. Geological Survey, 
2022). Overall, the extraction procedure represents the main 
shortcoming in the Li supply chain in terms of energy and time 
demands, in addition to the use of strong reagents which makes this 
methodology poorly sustainable (Gruber et al., 2011; Meng et al., 
2021). Total lithium resources globally account for 89 million tons 
(U.S. Geological Survey, 2022). Lithium only exists as salts or 
minerals (i.e., lithium carbonate, lithium chloride, spodumene, 
lepidolite, and petalite) due to its high reactivity. Hence, it can 
be found in hard rock ores and sedimentary rocks or water resources, 
including seawater and brines (Flexer et al., 2018; Baudino et al., 
2022; Khalil et  al., 2022; Barbosa et  al., 2023). Natural brines, 
classified as geothermal, oilfield, and continental, are typically 
characterized by high salinity values with a mineral salt 
concentration range of 2.9–5.6  M (Flexer et  al., 2018). Besides 
chloride Cl−, anions in brine include carbonates CO3

2−, sulfates 
SO2

2− and borates BO3
3− (Talens Peiró et al., 2013). The cationic 

fraction is mostly represented by sodium Na+, potassium K+, 
magnesium Mg2+, and calcium Ca2+ in addition to less abundant 
elements like Li+ (Flexer et al., 2018), rubidium (Rb+) and gallium 
(Ga3+) (del Villar et al., 2023). Li content in many brines is several 

hundred mgL-1 and few brines contain more than 1 gL−1 of Li 
(Kamienski et al., 2004). Dry lakes and salt aquifers (i.e., continental 
brines) hold the highest concentration of Li+, ranging between 20 
and 1,500 mgL−1 (Barbosa et al., 2023). The concentration of Li in 
marine basins such as the Atlantic Ocean and the Dead Sea is 220 
μgL−1 and 21 mgL−1

, respectively (Barbosa et al., 2023). The Lithium 
Triangle in the Andean region among Chile, Bolivia, and Argentina 
accounts for up to 80% of the global lithium brine resources: among 
valuable commercial brines the Atacama salar in Chile has the 
highest lithium content besides bohrium and potassium (An et al., 
2012; Ogawa et al., 2014). The current production capacity in the 
above-mentioned area is detained by two societies corresponding to 
48,000 Li2CO3/6,000 LiCl and 27,000 Li2CO3/4500 LiCl tons per year, 
respectively (Flexer et al., 2018). Concentrated brines (NaCl >0.8 
M), intended as the by-product of the water desalination process to 
produce clean water, also present massive concentrations of valuable 
minerals (five times the input seawater) in comparison to other brine 
sources (Khalil et al., 2022; Prasad, 2023). The number of elements 
in rejected brines varies based on the origin of the processed water: 
Li concentration in the Mediterranean Sea is higher than in the 
Atlantic Ocean but still lower than in underground brackish sources, 
i.e., formation waters or deep saline aquifers (del Villar et al., 2023). 
Hence, depending on the treated rejected water, the corresponding 
economic potential varies with the elemental composition (del Villar 
et al., 2023). The current brine production is 141.5 million m3 day−1 
worldwide, 70.3 % of which is concentrated in the Middle East 
(Saudi Arabia, United Arab Emirates, and Kuwait) and North Africa 
regions. The brine is disposed directly into the ocean taking 
advantage of the proximity of the desalination plants to the coast, 
despite the related environmental risks and the volume of generated 
brine exceeding the volume of produced desalinated water by up to 
50% (Jones et al., 2019). Although the cost estimation of Li extraction 
from rocks is nearly twice that of Li from brines, mineral mining is 
still the prevalent technology due to the limited offer of brines 
(Flexer et al., 2018; Meng et al., 2021). Among the existing studies 
on the recovery of Li as well as of other critical metals from 
secondary sources, bacteria (Işıldar et al., 2019; Naseri et al., 2019; 
Moazzam et al., 2021) and fungi (Amiri et al., 2012; Horeh et al., 
2016; Bahaloo-Horeh and Mousavi, 2017) are the most represented 
microorganisms, while almost no data are available on the 
application of methanogens. Brines valorization is quite unpopular 
among the studies involving biological processes, though biosorption 
technologies are already widely applied for the treatment of other 
industrial wastewaters contaminated by heavy metals. Fungi, Algae 
and Bacteria have been broadly exploited as biosorbents (Dayana 
et  al., 2013; Kanamarlapudi et  al., 2018; Elgarahy et  al., 2021; 
Kurniawan et  al., 2023; Paper et  al., 2023; Tripathi et  al., 2023) 
compared to the Archaea whose utilization is less common 
(Calderón et al., 2013; Vítězová et al., 2020). Among the few studies 
reporting biobased treatment of brines, that of Mainka et  al. 
investigated the use of halophilic bacteria for the degradation of 
organic compounds in waste brines with the goal to obtain a high-
quality brine to be used as raw material (Mainka et al., 2022). The 
work by McAdam and Judd (2008) on the application of biological 
removal of anionic pollutants from concentrated waste brine on 
ion-exchange membranes for clean water generation should also 
be  mentioned. In this panorama, the authors aim to open a 
discussion on the application of ad hoc methanogenic consortia for 
Li-brines treatment as a complementary or alternative strategy to 
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other methodologies for industrial brine valorization. Possible 
mechanisms of Li recovery carried out by methanogens and the 
possibility to pair them with biomethanation is herein examined.

2. Physiology of methanogens living in 
briny water

Microbial diversity is very high in hypersaline environments, 
with the salinity gradient being an important factor for microbial 
community composition and species diversity (McGenity and 
Sorokin, 2019). Redox potential and stable anaerobic conditions are 
key enablers for methanogenesis occurrence. Moreover, 
methanogens and sulfate-reducing bacteria (SRB; Barton and 
Fauque, 2022) are historically in competition for common electron 
donors such as H2, formate, and acetate, in the sulfate-methane 
transition zone (SMTZ), hence methanogenesis also depends on 
sulfate concentration. SRB becomes predominant when the level of 
sulfate is sufficiently high to be the final electron acceptor of the 
above-mentioned substrates. Conversely, methanogenesis is an 
important process in marine and hypersaline environments, like in 
deeper sediments poor in sulfates (Wilms et al., 2007) in highly 
hydrogen-productive areas (Hoehler et  al., 2001; Buckley et  al., 
2008). Apart from Halobacteria class, methanogenic archaea living 
at concentration of NaCl >0.2 M have been identified as halophiles 
(Supplementary Table S1). Most of them belong to the 
Methanosarcinaceae family including Methanosarcina, 
Methanohalophilus, Methanohalobium, and Methanosalsum genera.

Additionally, Methanolobus oregonensis, an alkaliphilic, 
methylotrophic methanogen, is classified as halotolerant rather than 
halophilic (Liu et al., 1990) due to its optimal growth with salinity 
<0.2 M (Didari et al., 2020). Methylotrophic methanogens cannot grow 
on hydrogen (H2) and carbon dioxide (CO2) or acetate, rather they use 
non-competitive molecules such as methanol, methylated amines and 
methylated sulfide as electron acceptors and formate or H2 as electron 
donors (Sorokin et al., 2018) to produce methane and gain energy 
(Oren, 1999). Methanosalis sp. SBSPR1A, a closely related taxon in the 
Methanolobus and Methanomethylovorans genera, is a methylotrophic 
methanogen tolerating up to 3.6  M of salinity and performing 
methanogenesis only from dimethylamine and trimethylamine (Bueno 
de Mesquita et  al., 2021). Methylated amines, particularly 
trimethylamines, originate from glycine betaine fermentation (Welsh, 
2000). Quaternary amines like glycine betaine and choline can 
be  directly used as substrates in methanogenesis by some marine 
strains (i.e., genus Methanococcoides) without the need for syntrophic 
metabolism. However, only partial degradation of glycine betaine to 
dimethylglycine (DMG) has been reported in hypersaline 
environments (Watkins et al., 2014). A possible explanation is that 
these molecules also act as compatible solutes, i.e., substances fitting 
with microbial metabolism that accumulates in the cytoplasm to 
balance external osmotic pressure (McGenity and Sorokin, 2019). Two 
main strategies to achieve microbial osmoregulation and survival in 
hypersaline environments have been recognized: the salt-in and the 
salt-out mechanism. The former is typically used by Haloarchaea and 
involves the rise of salt concentrations in the cytoplasm, usually with 
potassium chloride (KCl; Bueno de Mesquita et al., 2021). The latter, 
typically used by bacteria, involves the production of compatible 
solutes thus avoiding salt secretion in the cytoplasm, as described in 
Halobacteriales. Other methyl-reducing methanogens have been 

identified as Methanonatronarchaeum thermophilum and Candidatus 
Methanohalarchaeum thermophilum, formerly related to the 
Halobacteria from neutral salt lakes and highly alkaline soda lakes 
(Sorokin et  al., 2017, 2018). In saline environments, a hybrid 
methanogenic pathway, which uses C1-methylated compounds as 
electron acceptors and H2 as an electron donor (i.e., methyl-reduction 
route) can be predominant (Borrel et al., 2014). This is the case of the 
Methanomassiliicoccus genus typically found in insect/animal digestive 
tracts and performing a methyl-dependent hydrogenotrophic 
methanogenesis (Cozannet et al., 2021); this was detected in a smooth 
hypersaline microbial mat from Shark Bay (Wong et al., 2017; García-
Maldonado et  al., 2018). Although methanogenesis in hypersaline 
environments is typically ascribed to methylotrophic methanogens, 
recent studies have reported evidence of putative hydrogenotrophic 
methanogens presence (i.e., methanogens reducing CO2 to CH4 using 
H2 or formate) in hypersaline microbial mats and endoevaporite 
(García-Maldonado et al., 2015, 2018; Wong et al., 2017). Methanogens 
from Methanobacteriales, Methanococcales, Methanopyrales orders 
were identified in samples from these environments. Among 
hydrogenotrophic methanogens, Methanocalculus genera are 
representative of halophiles living in highly alkaline environments. 
Methanocalculus halotolerans was instead isolated from a hypersaline 
oil reservoir, with the ability to grow at up to 2 M of salinity (Ollivier 
et al., 1998). Representatives of the genus Methanothermobacter was 
enriched in the formation waters of a gas field, showing tolerance to 
salinity up to 1.5 M (Gray et al., 2009). Besides Methanosarcina, other 
abundant methanogenic communities found in anaerobic treatment 
plants of diary wastewaters characterized by elevated salt 
concentrations (Vítězová et  al., 2020) correspond to the 
hydrogenotrophic Methanocorpusculum, Methanobrevibacter, 
Methanobacterium and Methanoculleus genera (Zeb et al., 2019).

3. S-layer and EPS mediated metal 
cation removal via biosorption 
mechanism

Taxa belonging to the archaeal kingdom are characterized by a 
heterogenic organization and composition of the cell membrane, 
although they all have in common the lack of peptidoglycan (König 
et al., 2014) and a lipid belayer consisting of C5-isoprenoid units linked 
to glycerol via ether bonds (Klingl, 2014). Almost all archaea own a 
protein surface layer known as the S-layer with different lattice 
structures. Among halophilic archaea, methanogens share the same 
S-layer configuration (i.e., hexagonal lattice type). Besides allowing 
access to nutrients, the S-layer has a cell-protective and stabilizing role 
in environments with extreme salinity, temperature, and pH (Rodrigues-
Oliveira et al., 2017). Studies conducted on a modelled S-layer structure 
belonging to Methanosarcina acetivorans, demonstrated the role of the 
S-layer as a charge and size barrier preventing the access of specific 
molecules (Arbing et al., 2012). Selectivity for specific-target metals is a 
desirable quality in metal-rich waste separation and recovery 
technologies (Echavarri-Bravo et al., 2022). Among the methanogens, 
the hyperthermophilic strain Methanocaldococcus jannaschii has been 
reported to selectively adsorb dissolved Fe3+, Ca2+, Zn2+, Cu2+, and Pb2+ 
metal cations (Orange et al., 2011) due to the presence of negatively 
charged functional groups on the cell membrane.

In a metal-rich environment, extracellular polymeric substance 
(EPS) production is part of a stress-response mechanism to support 
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the cell in reducing the metal ions availability, by chelation and 
sequestration as an ion exchange matrix. The EPS matrix behaves like 
a gel-like grid that keeps microbial cells together, supporting biofilms' 
adhesion on surfaces and protecting the cells from extreme 
environments (van Wolferen et al., 2018; Li et al., 2022; Wang et al., 
2022). Carboxyl, hydroxyl, sulfate, phosphoryl, and amino groups of 
protein in EPS are responsible for metals biosorption (Torres, 2020). 
For instance, dark deposits of Pb2+ ions found around 
Methanocaldococcus jannaschii cells suggested a mechanism of particle 
fixation by the EPS (Orange et al., 2011). The study by Kurniawan and 
Yamamoto gave us fundamental information about the biosorption 
power of a natural biofilm matrix isolated from a Japanese lake: Li+ 
biosorption is a physicochemical process mainly driven by the 
electrostatic interaction between ion species and the negatively 
charged sites of the proteins in the biofilm (Kurniawan and Yamamoto, 
2015). Moreover, the adsorption of Li+ corresponded to the parallel 
desorption of other cations (i.e., Na+, Mg2+, Ca2+ and K+) via an ion 
exchange mechanism. The biosorption process observed in this study 
was fast (1 min) and more performing (85 μmol g−1 of dry biofilm) 
than strong and weak cation exchange resins (18 and 33 μmol g−1, 
respectively). Concerning the use of active biomass, both bacteria and 
fungi showed a superior uptake capacity in the magnitude of tens and 
hundreds mg g−1 of dissolved metals (Srinath et al., 2002; Iram et al., 
2015). As an example of industrial application, Artola and colleagues 
designed and operated a biosorption pilot plant for Cu2+ removal from 
municipal water treatment plant using anaerobic sludge as biosorbent 
(Artola et al., 2001). The highest uptake capacity was 75 mg of metal 
g−1 of total solids in the sludge. Pagliaccia and coworkers investigated 
the efficiency of EPS in native biomass from annamox granular sludge 
as biosorbent of heavy metals in synthetic wastewaters (Pagliaccia 
et al., 2022). A recent study on a methanogenic consortium revealed 
the relationship of EPS with the release of soluble biogenic products 
and with metal solubility in the presence of elevated cobalt (Co2+) and 
nickel (Ni2+) concentrations, as in waste streams of metallurgical and 
LIBs industry (Hasani Zadeh et al., 2022). Hydroxyl and carboxyl 
terminals of proteins in EPS are the main ones responsible for the 
metal-cations biosorption mechanism (Fomina and Gadd, 2014; 
Kurniawan and Yamamoto, 2015; Liu et al., 2015) because cationic 
species are predominant among metals in aqueous solutions. This 
means that pH around 7-8 is the most suitable range for ensuring a 
negative charge on the protein terminals that bind dissolved metals 
(Torres, 2020). The concentration of dispersed metals is dependent on 
EPS protein content whose variation is caused by metal-induced 
stress, e.g., concentrations of essential or non-essential metals that 
exceed the cells requirement. For instance, the activity of a 
methanogenic consortium in an anaerobic granular sludge was 
compromised by both Ni and Co as reported by Hasani Zadeh and 
colleagues. Moreover, the presence of a Ni-protein complex proved the 
selective metal-binding based on the ligand affinity in metalloproteins 
(Hasani Zadeh et al., 2022).

EPS can also host biotransformation process as it is for 
Methanococcus maripaludis OS7 producing an extracellular Ni-Fe 
hydrogenase that oxidizes iron of carbon steel oil and gas pipelines. 
The hydrogenase has the function of producing hydrogen and 
triggering the microbially influenced corrosion phenomenon 
(Lahme et al., 2021). Although archaeal EPS do not have a relevant 
role at the industrial level yet, its importance is progressively 
growing. EPS production in archaea (i.e., Halobacterium 
mediterranei) is currently estimated to be  at TRL 2, based on 

(Pfeifer et al., 2021). There are different strategies to improve the 
microbial recovery mechanisms with the purpose of transferring 
this technology to the industrial scale such as surface-culture 
immobilization (fixation, entrapment, and chemicals cross-linking) 
and optimal conditions for process implementation (e.g., 
temperature, pH, initial dissolved metals, biosorbent concentration, 
i.e., biomass or EPS concentrations, biosorbent/metal contact time; 
Fomina and Gadd, 2014). As a successful example is worth to 
mention the study by Manasi and colleagues using a halophilic 
bacterium Halomonas BVR 1  in combination with reduced 
graphene oxide to remove Cd, Zn and Pb from real effluent from 
electronic manufacturing sector: metals removal efficiency achieved 
98% (Manasi et al., 2018).

In addition to the biosorption mechanism, which is not necessarily 
dependent on living microorganisms, metals recovery can also occur 
via bioaccumulation or else through metals uptake via passive or 
active transport trough the cell membrane, and biotransformation and 
bioprecipitation, which instead involve active cells (Gavrilescu, 2022; 
Liapun and Motola, 2023).

4. Conclusion and implications for 
future research

Brine disposal is an emerging environmental and economic issue 
not only for the drinking water supply chain, considering that 41% of 
the global population still does not have access to it, but also for the 
primary sector (e.g., agroforestry, zootechnic and mining) and 
secondary sector (e.g., metallurgy) where water is an essential resource. 
Therefore, desalination is expected to expand rapidly, and so brine 
production is associated with it. The ecological effect of direct brine 
discharging in surface water bodies is currently under discussion due 
to the related-potential physiochemical alteration and the associated 
threat to marine ecosystem and life. Hence, valorization of rejected 
brines rather than direct disposal represents the core of the future 
water-resources management. Extraction and recovery strategies of 
valuable metals from secondary sources must be  expanded and 
implemented. Among the valuable metals lithium is particularly 
attractive because its demand is expected to increase enormously by 
2030. Emerging technologies relying on biological approaches are very 
promising in terms of low cost and sustainability but require further 
investigation to enable their application on a large scale. Based on what 
is currently known, we  suggest that natural-adapted consortia of 
methanogens could be exploited as a flexible platform for the selective 
recovery of Li and other critical metals from brines in a CO2-upcycling 
process (Figure 1). Thus, primary and/or secondary sectors emitting 
CO2 as a waste effluent represent a valuable source of carbon that 
supports the growth and productivity of methanogens. From an 
industrial point of view, examples of pilot and demonstration scale 
biomethanation plants are available in the literature with the technology 
being widely investigated (TRL >5). Even though biomethanation 
technologies appear mature and deployable, integration of Li recovery 
from brines would require the evaluation of some additional factors 
concerning resources and process operating conditions.

In particular, future research should investigate the ability of 
methanogenic consortia to adapt and grow on brines as substrates 
while carrying out methanogenesis. It is indeed important to test the 
resistance to salinity stress and elements which are not essential to 
their metabolism (e.g., Li, Sr, F). In order to maintain stable 
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biomethane generation provided levels of salinity and thus Li should 
be kept under the threshold of inhibition, thus dilution of brine might 
be required along with culture preadaptation steps. Moreover, the 
optimal conditions to favor selectivity toward specific metals should 
be explored with the view of scaling-up the bio-recovery process. 
When using mixed microbial communities defining the organisms 
actively contributing to metal recovery and their affinity towards the 
removal of different brine components should be  considered to 
eventually develop a functional synthetic consortium. In this regard, 
the location of origin and the type of water resource should 
be considered as important factors affecting the bioprocess and its 
profitability due to the different elemental composition. Considerable 
attention should be paid also to the recovery mechanism (biosorption, 
bioaccumulation, and biotransformation) carried out by the involved 
methanogenic species (Figure  1) in order to define the best 
implementation strategies for microbial recovery optimization (e.g., 
cell-immobilization). This aspect is also crucial to evaluate and deploy 
technically and economically feasible downstream procedures for Li 
desorption from cells and possibly the regeneration of the biosorbent, 
i.e., active methanogens, which is required by the biomethanation 
process. Given the lack of knowledge on the biological recovery of 

CRMs from rejected brine even at the laboratory scale, a techno-
economic assessment of the research and development target must 
be still explored in order to reveal the potential benefit of this process. 
However, the use of renewable sources, the CO2 mitigation and 
utilization, and eventually, the heat and water generated along with the 
production of CH4 and reused within the process itself, should be an 
added value contributing to the process feasibility.
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