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Introduction: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for 
understanding cellular heterogeneity and identifying cell types in virus-related 
research. However, direct identification of SARS-CoV-2-infected cells at the 
single-cell level remains challenging, hindering the understanding of viral 
pathogenesis and the development of effective treatments.

Methods: In this study, we propose a deep learning framework, the single-cell 
virus detection network (scVDN), to predict the infection status of single cells. 
The scVDN is trained on scRNA-seq data from multiple nasal swab samples 
obtained from several contributors with varying cell types. To objectively evaluate 
scVDN’s performance, we establish a model evaluation framework suitable for 
real experimental data.

Results and Discussion: Our results demonstrate that scVDN outperforms four 
state-of-the-art machine learning models in identifying SARS-CoV-2-infected 
cells, even with extremely imbalanced labels in real data. Specifically, scVDN 
achieves a perfect AUC score of 1 in four cell types. Our findings have important 
implications for advancing virus research and improving public health by enabling 
the identification of virus-infected cells at the single-cell level, which is critical for 
diagnosing and treating viral infections. The scVDN framework can be applied to 
other single-cell virus-related studies, and we make all source code and datasets 
publicly available on GitHub at https://github.com/studentiz/scvdn.
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1. Introduction

Single-cell RNA sequencing (scRNA-seq) has enabled the analysis of gene expression at the 
level of individual cells, opening up new avenues for understanding cellular heterogeneity and 
identifying rare cell types (Hu et al., 2022; Heumos et al., 2023). However, the analysis of 
scRNA-seq data is complicated by the presence of confounding factors such as batch effects 
(Zhang et al., 2022), cell cycle effects (Chang et al., 2015), and technical noise (Chai, 2022). In 
addition, the detection of viral infection in single cells is a challenging problem that has not been 
fully addressed (Luo et al., 2020). Among the numerous viral infections, SARS-CoV-2 is one of 
the biggest crises facing mankind at present (Tian et al., 2022).
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SARS-CoV-2 is a highly infectious virus that has caused a global 
pandemic, with millions of confirmed cases and hundreds of 
thousands of deaths (Hu et  al., 2021; Li et  al., 2022). The virus 
primarily targets the respiratory system (Tuttolomondo et al., 2022), 
causing severe acute respiratory syndrome, potentially leading to 
respiratory failure and death (Li et al., 2021; Tabibzadeh et al., 2021). 
However, the virus can also infect other organs and tissues, including 
the heart (González-Calle et al., 2022), liver (Luo et al., 2022), and 
kidneys (Kadam et al., 2021). The cellular response to SARS-CoV-2 
infection is complex and varies depending on the cell type and the 
severity of infection (Lamers and Haagmans, 2022), with studies 
revealing changes in gene expression and cell type composition as well 
as the activation of immune responses (Primorac et al., 2022; Hu et al., 
2023a). However, the detection of infected cells has remained 
challenging, and existing methods are limited by low sensitivity and 
specificity (Harikrishnan et al., 2022).

To address this problem, we  have developed a computational 
model called Single cell virus detection network (scVDN) to predict 
which cells are susceptible to virus infection. Our model takes 
scRNA-seq data as input and outputs a probability score for each cell, 
indicating the likelihood of viral infection. By identifying infected 
cells, our model can help to better understand the cellular response to 
viral infection.

To objectively evaluate the ability of the scVDN model, 
we compared its performance with four different machine learning 
models using the same training and testing datasets. Our results 
demonstrate that the scVDN model outperforms the other models in 
all tested cell types, with higher accuracy and lower misclassification 
rates. Our study reveals that the scVDN model has superior ability to 
accurately identify SARS-CoV-2-infected cell types compared to the 
other four models, indicating that scVDN shows higher precision and 
reliability in analyzing scRNA-seq data. The scVDN model utilizes 
deep learning methods to extract more discriminative features from 
gene expression data, which enables more accurate identification of 
infected cell types. Our research findings suggest that scVDN is more 
suitable for analyzing complex biomedical data compared to 
traditional machine learning models.

2. Materials and methods

2.1. Dataset

Single cell data for this study were obtained from the Jose 
Ordovas-Montanes team study (Ziegler et al., 2021). They collected 
viable cells using standard nasopharyngeal swabs and performed 
scRNA-seq, while host and viral RNA were analyzed. Specifically, 
nasal epithelial samples from 58 contributors were collected for a total 
of 32,588 cells, with 32,871 genes measured simultaneously per cell. 
We directly modeled the cellular data after preprocessing using Jose 
Ordovas-Montanes et  al. including preprocessed gene expression, 
highly variable genes, annotated cell subtypes, annotated cell status 
(infected with SARS-CoV-2 or not), etc. They classified these samples 
into “COVID19_WHO_1–5,” “COVID19_WHO_6–8,” “Control_
WHO_0” and “Control_WHO_8” based on WHO cohort scores. 
Among them, “COVID19_WHO_1–5” and “COVID19_WHO_6–8” 
contained cells infected by SARS-CoV-2, and we only applied these 
cell data for modeling. Specifically, “COVID19_WHO_1–5” was used 

as the training dataset (5,164 cells) and “COVID19_WHO_6–8” as the 
test dataset (12,909 cells) to evaluate the model performance. All 
datasets can be accessed at scVDN’s Github repository.

2.2. Siamese network

scVDN is a Siamese Network (Koch et al., 2015), which is a deep 
neural network structure for comparing similarities between two 
inputs. Siamese Network consists of two identical sub-networks, each 
with the same weights and structure, which share the same parameters. 
These two sub-networks pass the input data into their respective layers 
and generate two vector representations. These vector representations 
can be  the features extracted at different layers or the outputs 
generated in the whole network.

Next, these two vector representations can be compared through 
the comparison layer, usually by computing one of the distance 
measures such as Euclidean distance (Chicco, 2021; Sun et al., 2022), 
cosine similarity (Berlemont et  al., 2018; Hu et  al., 2023b) or 
Manhattan distance (Imtiaz et al., 2020) between them to calculate the 
similarity or distance between them. This can be used for many tasks, 
such as face recognition, speech recognition, text similarity and 
recommender systems.

The structure of a twin network usually consists of the 
following components:

2.2.1. Input layer
Two identical input networks, each receiving one input sample. 

For this study, the input layer requires the input of 3,508 highly 
variable genes per cell, which are derived from the study of Jose 
Ordovas-Montanes et al.

2.2.2. Shared layers
Two identical subnetworks, each consisting of multiple layers that 

have the same structure and weights. These layers are used to extract 
features of the input data and generate a representation of the input 
vector (Woodbridge et al., 2018). These layers can be convolutional 
layers, pooling layers, fully connected layers or recurrent neural 
networks, etc. (Chung et al., 2017). In this study, the shared layer is a 
five-layer neural network structure. The first layer of the shared layer 
is a Dropout layer, which is used to cope with the sparsity challenge of 
scRNA-Seq (Jin et al., 2020). The second layer is a 784-dimensional 
neural network layer that extracts features from single-cell data. The 
third layer is a Layer Normalization, which has been shown to 
be effective in preventing model overfitting and further enhancing the 
generalization ability of the model (Xu et al., 2019). The fourth layer 
is a 256-dimensional neural network layer, which is used to extract 
features from single-cell data. The fifth layer is a 32-dimensional 
neural network layer. It is worth noting that the activation function of 
the fifth layer is “relu” (Li and Yuan, 2017; Wang et al., 2023), which 
makes the output of the shared layer always positive, which is crucial.

2.2.3. Comparison layer
This layer is used to compare the similarity or distance of two 

vectors. The comparison layer can be any kind of function that is 
suitable for comparing two vectors. We choose cosine similarity as the 
comparison function. Since the output of the shared layer is always 
positive, this makes the value domain of the cosine function to 
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be [0,1]. Where the output 0 of the comparison layer means, the two 
feature vectors are completely orthogonal (unrelated) and the output 
1 means the two feature vectors overlap. This is a very critical 
optimization trick. Assuming that the output of the shared layer is not 
constrained, the cosine function has a value domain of [−1,1], where 
−1 means that the two feature vectors are unrelated and 1 means that 
the two feature vectors overlap. This can result in the failure of the 
model to converge.

2.2.4. Output layer
The output layer takes the results of the comparison layer as input 

and outputs the final prediction of the network. For example, in a face 
recognition task, the output layer could be a binary classifier that 
predicts whether two input images are from the same person. In 
single-cell virus studies, the output layer outputs whether the features 
representing the two cell states (the state of being infected with SARS-
CoV-2) are the same.

During training, the two input networks of the twin network 
receive the inputs simultaneously, and then extract features and 
generate vector representations through the shared layer. These vector 
representations are sent to the comparison layer for comparison, and 
then the output layer takes the comparison results as input for training.

During testing, the two input networks of the twin network 
receive two input samples and then the output layer outputs a 
prediction of whether they are similar or not. This network structure 
is commonly used for many tasks, such as face recognition, speech 
recognition, text similarity, and recommender systems.

2.3. Model dataset format

The data requirements for scVDN are consistent with those of 
Siamese Network, which is typically used for binary classification 
problems where two input samples need to be compared for similarity 
and to predict whether they belong to the same class. When training 
and testing the Siamese Network, the labels are set slightly differently.

When training the Siamese Network, the label is usually set to 0 
or 1, indicating whether the two input samples belong to the same 
class. To achieve this label setting, pairs of training samples are used, 
and each training sample contains two input samples and their labels. 
Specifically, the two virus-infected cell pairs are labeled as 1. The two 
non-virus-infected cell pairs are also labeled as 1. The two cells are 
labeled as 0 when their virus-infection status is different.

Labeling is usually not necessary when testing the Siamese 
Network. Instead, the similarity score of the model output is used for 
classification. If the similarity score is greater than a certain threshold, 
the two input samples are determined to belong to the same class, 
otherwise they are determined not to belong to the same class. The 
choice of the threshold can be determined by tuning the performance 
of the model. In this study, the threshold value was set to 0.5.

It is important to note that the selection of sample pairs has a 
significant impact on the performance of the model when training 
and testing Siamese Network. Representative sample pairs need to 
be  selected, and the number of positive and negative examples 
needs to be balanced to avoid bias in the model. Considering these 
factors, we choose ciliated cells as the modeling dataset. Specifically, 
we used the ciliated cells from the “COVID19_WHO_1–5” sample 
as training, with a total of 1,614 ciliated cells. Of these, 1,172 cells 

were labeled as negative (not infected by the virus), 100 cells were 
labeled as positive (infected by the virus), and 100 cells were labeled 
as ambiguous (unable to determine whether they were infected by 
the virus). We applied only positive and negative data for modeling. 
To balance the dataset, we sampled 2000 pairs of cell data from the 
positive dataset without duplication, and the labels of these pairs 
were recorded as 1. Similarly, we sampled 2000 pairs of cell data 
from the negative dataset without duplication, and the labels of 
these pairs were also labeled as 1. Finally, we sampled 4,000 pairs of 
cell data from the negative and positive datasets without 
duplication, and they were labeled as 0. Together, these data formed 
the training set for scVDN, at which point the ratio of labeled 1 to 
0 was 1:1.

2.4. Model prediction stage

The application of scVDN to predict whether a cell is infected 
with a virus requires two inputs. One input is a single-cell dataset with 
known virus infection status, which is referred to as the reference 
dataset. The other input is, the single-cell dataset with unknown virus 
infection status, which is referred to as the query dataset. In this study, 
the virally infected single-cell data is the focus, so we use the virally 
infected single-cell data as the reference dataset. For each single-cell 
data to be predicted to be virally infected, we need to compare it with 
the whole reference dataset to determine whether it is virally infected 
or not. This comparison process is done by scVDN.

The output of scVDN is a vector that represents the similarity 
between two inputs with values in the range of 0 to 1. In this 
application, we  consider it as a binary classification problem. By 
choosing a threshold value, say 0.5, we can convert the values in the 
output vector to 0 or 1. Specifically, an output greater than 0.5 is 
marked as 1, indicating that the cellular data to be queried is infected 
by the virus, while an output less than 0.5 is marked as 0, indicating 
that the cellular data to be queried is not infected by the virus.

To further improve the performance of the model, we used an 
integration strategy, namely the average scoring strategy. Specifically, 
for each query data, we compare it with each data in the reference 
dataset and average all the similarity scores as the predicted score for 
that query data. This prediction score can be  used to determine 
whether the query data is virus-infected or not. With this integration 
strategy, we can reduce the overfitting of the model and improve the 
generalization ability and robustness of the model.

It should be noted that when applying scVDN for single-cell virus 
infection detection, it is necessary to ensure data quality, proper data 
preprocessing, selection of the appropriate Siamese Network, and a 
suitable model training strategy.

2.5. Evaluation indicators

Performance metrics, known as evaluation indicators, are used to 
measure the effectiveness and suitability of a model. In binary 
classification problems, commonly used evaluation indicators include 
accuracy (ACC), precision (PRE), recall (REC), F1 score (F1), receiver 
operating characteristic (ROC) curve and area under the curve 
(AUC). In the following section, we will introduce these evaluation 
indicators one by one.
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ACC refers to the proportion of correctly classified samples to the 
total number of samples (Fair, 1986). The definition of ACC is shown 
in Eq. 1.

 
ACC TP TN

TP FP TN FN
=

+
+ + +  

(1)

In Eq.  1, TP represents the number of correct positive case 
predictions, FP is the number of incorrect negative case predictions, 
TN is the number of correct negative case predictions, and FN 
represents the data of incorrect positive case predictions.

ACC is usually used to evaluate the overall performance of a 
model, but it may be biased in imbalanced datasets. In this problem, 
the number of positive and negative virus cells is extremely 
imbalanced, with only a small portion of cells being classified as 
positive. Therefore, we do not consider accuracy as a reliable reference 
metric for this problem.

When dealing with imbalanced datasets, the number of positive 
and negative samples can be  significantly different. If traditional 
accuracy metric is used to evaluate classifier performance, it may 
be biased towards the majority class. For example, in a dataset where 
the positive samples account for only 1% of the total samples and the 
negative samples account for 99%, if the classifier predicts all samples 
as negative, the accuracy will be  99%, but the classifier has not 
identified any positive samples. In this case, the accuracy cannot 
reflect the performance of the classifier, as the classifier has failed to 
recognize the target class, i.e., the positive samples. Balanced Accuracy 
(Balanced ACC) is a more appropriate evaluation metric for 
imbalanced datasets, as it takes into account the proportion of positive 
and negative samples and provides a more balanced assessment of 
classifier performance. Specifically, Balanced ACC calculates the 
average of the true positive rate (TPR) and true negative rate (TNR), 
which better reflects the performance of classifiers on imbalanced 
datasets. Therefore, compared to accuracy, Balanced ACC is more 
suitable for evaluating classifier performance on imbalanced datasets, 
as it can more accurately reflect the performance of classifiers and 
avoid evaluation bias caused by imbalanced samples.

PRE is the proportion of true positive samples to all samples 
predicted as positive by the model (Buckland and Gey, 1994). PRE is 
usually used to evaluate the prediction accuracy of a model, especially 
when the number of positive samples is small. The definition of PRE 
is shown in Eq. 2.

 
PRE TP

TP FP
=

+  
(2)

REC is the proportion of true positive samples to all actual 
positive samples (Allen and Casbergue, 1997). REC is usually used to 
evaluate the prediction ability of a model, especially when the number 
of positive samples is large. The definition of PRE is shown in Eq. 3.

 
REC TP

TP FN
=

+  
(3)

F1 is the harmonic mean of precision and recall, which can 
comprehensively consider the prediction accuracy and prediction 
ability of a model (Chicco and Jurman, 2020). The definition of PRE 
is shown in Eq. 4.

 
F PRE REC

PRE REC
1 2= ∗

∗
+  

(4)

F1 takes into account both PRE and REC. The value of F1 
ranges from 0 to 1, with a higher score indicating better 
model performance.

ROC curve is a curve plotted with recall as the y-axis and 
1-precision as the x-axis, which can be  used to measure the 
classification ability of a model (Hajian-Tilaki, 2013). AUC is the area 
under the ROC curve, which is usually used to evaluate the 
performance of a model (Bradley, 1997). The value of AUC ranges 
from 0 to 1, with a higher score indicating better classification ability 
of the model.

2.6. State-of-the-art models

We compare our scVDN model to four machine learning models 
with fundamentally different principles: k-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), Naive Bayes (NB), and Random 
Forests (RF). All the machine learning models used in this study are 
obtained from the sklearn Python package (Feurer et al., 2022), which 
is a powerful scientific computing package that includes many high-
performance machine learning models. The parameters of KNN, 
SVM, NB, and RF were set to their default values.

Our scVDN model is designed specifically for analyzing single-
cell virus data, and it uses deep neural networks to learn high-
dimensional features for virus classification. By comparison, KNN is 
a non-parametric classification model that classifies a sample based 
on the majority class of its k-nearest neighbors (Sun and Huang, 
2010). SVM is a supervised learning model that separates different 
classes by finding the optimal hyperplane in a high-dimensional 
feature space (Hearst et al., 1998). NB is a probabilistic classification 
model that assumes the independence of features and calculates the 
probability of a sample belonging to a certain class based on its feature 
values (Jiang et al., 2008). RF is an ensemble learning model that 
combines multiple decision trees to improve the classification 
accuracy and stability (Genuer et al., 2010).

Overall, the choice of these models represents a diverse range of 
machine learning approaches. By comparing the scVDN model with 
these models, we demonstrate the effectiveness and superiority of our 
proposed approach for single-cell virus data analysis.

2.7. Open source and tutorials

We sought for authenticity and reliability. To ensure transparency, 
we have made all source code and data related to this research publicly 
available on our Github repository. Researchers can access not only 
the code used to generate the figures in this paper but also a series of 
tutorials we  have prepared to aid in reproducing our work. 
We conducted this study entirely on a Google colab server (Carneiro 
et al., 2018), utilizing an NVIDIA Tesla V100 GPU to train our scVDN 
model. Additionally, we  tested the performance of scVDN on a 
non-GPU server with only 50GB of memory. All models used in this 
study have been made available as pre-trained binaries on our Github 
repository, enabling users to call these models directly on a Google 
colab server. Overall, we  hope our work will assist biomedical 
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researchers in conducting more comprehensive single-cell 
virus studies.

3. Results

3.1. The workflow of scVDN model

The scVDN model is a Siamese neural network that uses a pair of 
identical sub-networks to extract feature representations from pairs of 
input data points. The scVDN model consists of two stages: the 
learning stage (Figure 1A) and the prediction stage (Figure 1B).

In the learning phase, the scVDN model is trained on a labeled 
dataset, where each data pair is assigned a binary label (0 or 1) based 
on the same or different infection status between the two cells in the 
pair. The labels are designed to reflect the expected output of the 
scVDN model, which is to output a small distance between similar 
pairs (both infected or both uninfected) and a large distance between 
dissimilar pairs (one infected and one uninfected). For example, a data 
pair consisting of two cells infected with the virus would have a label 
of 1, while a pair of uninfected cells would also have a label of 1. A pair 
consisting of an infected and an uninfected cell would have a label of 
0. The scVDN model utilizes a Siamese neural network architecture 
to extract feature representations from pairs of input data points, 
which we refer to as data pairs. The feature representations are then 
compared using cosine similarity to measure the similarity between 
the two input data points. The scVDN model learns the distance 
metrics between infected and uninfected cells by minimizing a 
contrastive loss function that encourages the distances between 
similar pairs to be small and the distances between dissimilar pairs to 
be  large. The learned distance metrics capture the molecular 
differences between infected and uninfected cells, providing insights 
into the underlying mechanisms of viral pathogenesis and 
host response.

During the prediction stage, the scVDN model utilizes the learned 
distance metrics to identify SARS-CoV-2-infected cells within 

single-cell RNA sequencing data. For each unknown cell, also referred 
to as the query data, the scVDN model computes its pairwise distance 
to all infected cells in the reference dataset, also known as the reference 
data. This reference dataset comprises cells that are known to 
be  infected with SARS-CoV-2 and serves as a positive control for 
identifying infected cells in the query data. The pairwise distances are 
calculated using cosine similarity between the feature representations 
of the query data and the reference data. Subsequently, the scVDN 
model assigns a similarity score to the query data based on the 
pairwise distances to the infected cells in the reference dataset, 
representing the likelihood that the query data contains SARS-CoV-
2-infected cells. To calculate the final prediction score for the query 
data, the scVDN model computes the average of the similarity scores 
obtained for the query data with respect to all infected cells in the 
reference dataset. As the reference data solely comprises infected cells, 
the scVDN model can accurately identify SARS-CoV-2-infected cells 
in the query data. If the final prediction score exceeds a predefined 
threshold, typically set at 0.5, the query data is classified as infected 
with SARS-CoV-2. Conversely, if the final prediction score falls below 
the threshold, the query data is predicted to be uninfected.

In summary, the scVDN model is a siamese neural network that 
uses cosine similarity to measure the distance between embedded 
feature representations of input data points.

3.2. Performance evaluation framework for 
models

The task of virus detection at the single-cell level can be considered 
as a special binary classification problem. However, this is a highly 
challenging problem due to the extreme complexity and imbalance of 
real-world single-cell data. To evaluate the scVDN model’s ability to 
process real-world single-cell data, we  constructed an objective 
evaluation system using a large cohort of SARS-CoV-2-positive nasal 
swab samples. We used cells labeled “COVID-19_WHO_1–5” as the 
training dataset and cells labeled “COVID-19_WHO_6–8” as the test 

FIGURE 1

The workflow of scVDN model. (A) The learning stage is used to learn the differences between cell states. (B) The prediction stage is based on the 
reference dataset to determine the state of cells.
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dataset (Figure 2A). Notably, there were only 5,146 cells in the training 
dataset, while the test dataset contained 12,909 cells, making it a 
highly challenging modeling task.

The reason for using a test dataset with a larger sample size than 
the training dataset is to evaluate the generalization capability of the 
scVDN model. In other words, we wanted to assess how well the 
model can identify SARS-CoV-2-infected cells in new, unseen data 
that was not used during the training process. By testing the model on 
a larger and more diverse set of samples, we  were able to better 
evaluate its performance and robustness. Moreover, using a test 
dataset with a larger sample size also helps to reduce the risk of 
overfitting, which occurs when a model is too complex and fits the 
training data too well, resulting in poor performance on new, unseen 
data. By testing the model on a larger dataset, we can better assess its 
ability to generalize to new data and avoid overfitting.

In the “COVID-19_WHO_1–5” cell subset, we observed that only 
150 cells were labeled as infected with SARS-CoV-2, which is less than 
1% of the total number of cells in the subset. This extreme class 
imbalance poses a challenge for traditional machine learning models 
to build a binary classification model. Further analysis revealed that 
100 of the infected cells were ciliated cells. Therefore, we decided to 
use only ciliated cells as the training data for the scVDN model 
(Figure 2B). Among the ciliated cells, 100 were infected with SARS-
CoV-2 (positive), 1,172 were uninfected (negative), and 342 cells had 
an ambiguous status. We removed the cells with ambiguous status and 

used only the cells labeled as positive or negative as training samples. 
By focusing on ciliated cells and using only the cells labeled as positive 
or negative, we were able to reduce the class imbalance and improve 
the model’s performance. This approach also allowed us to better train 
the model on the primary targets of SARS-CoV-2 infection and reduce 
the risk of false positives or false negatives on other cell types.

To provide a more objective evaluation of the scVDN model’s 
ability, we compared it with four different machine learning models 
with different underlying principles. These models were KNN, SVM, 
NB, and RF. All models were trained using the same training dataset 
(Figure 2B). To ensure that any performance differences between the 
scVDN model and the other models were solely due to differences in 
modeling principles, we restricted the reference data for the scVDN 
model to the training dataset only.

3.3. The performance of models

To accurately evaluate the performance of each model, all models 
were predicting each cell subtype within the “COVID-19_WHO_6–8” 
dataset. This dataset is comprised of 18 different cell subtypes, of 
which 11 contains both infected and uninfected cells. Only the 
predictions for these 11 cell subtypes were evaluated (Figure 3). The 
remaining 7 cell subtypes do not contain any infected cells and thus 
cannot be  comprehensively evaluated using various performance 

FIGURE 2

The evaluation framework for models designed for imbalanced real-world data. (A) Visualization of real-world single-cell data samples. (B) All models 
are trained using the same training dataset.
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metrics such as ACC and AUC. Therefore, the predictions for these 7 
cell subtypes were not included in the evaluation.

We find that the scVDN model achieves the highest AUC scores 
in predicting almost all cell subtypes, including the entire 
“COVID-19_WHO_6–8” dataset without distinguishing between cell 
types (Figure 4). Remarkably, scVDN is only trained on ciliated cells, 
yet it accurately predicts the infection status of other cell types, 
demonstrating its strong generalization ability. The superior 
performance of scVDN in predicting infection in different subtypes 
of cells can be attributed to several factors. Firstly, ciliated cells may 
share certain features or signaling pathways with other cell subtypes 
that are relevant to viral infection, allowing scVDN to generalize its 
knowledge to other cell subtypes. Secondly, scVDN may have learned 
to capture common fundamental features or patterns of infected cells 
that are applicable to different cell subtypes. Lastly, scVDN may have 
effectively filtered out noise or irrelevant features in the training data, 
enabling it to focus on the critical features required for viral detection 
in different cell subtypes.

However, an important issue arises in that all models perform 
poorly in predicting the infection status of Mitotic Basal Cells, with AUC 
values hovering around 0.5. This indicates that the models’ performance 
in predicting the infection status of these cells is no better than random 
chance. This issue can be attributed to several factors. Firstly, Mitotic 
Basal Cells may possess unique features or signaling pathways that were 
not captured in the training data, making it challenging for the models 
to generalize their knowledge to these cells. Secondly, the training data 
may be insufficient or imbalanced in representing Mitotic Basal Cells, 
leading to poor performance in predicting their infection status. Lastly, 
technical issues may have arisen during data collection or labeling, 
resulting in incorrect or ambiguous labeling of Mitotic Basal Cells, 
which could have affected the models’ performance.

We conducted an in-depth analysis of the performance of all 
models in the COVID-19_WHO_6–8 dataset with respect to other 
evaluation metrics. We found that all models have very high ACC 
(Table 1). In binary classification models, accuracy is one of the most 

commonly used evaluation metrics, as it reflects the proportion of 
correctly predicted samples in the entire dataset. However, in cases 
of imbalanced sample labels, accuracy can be  misleading. For 
instance, in this study, the number of positive samples is small, while 
the number of negative samples is large, and a model may predict all 
samples as negative to obtain high accuracy. In such cases, accuracy 
does not reflect the actual performance of the model.

Moreover, we also noticed that the FP of SVM and RF models is 
0 (Figure 5). This is not desirable in biomedical research on diseases. 
In many biomedical studies, we prefer models that tend to produce 
low levels of false positive results, as it helps researchers identify 
potential anomalies. For instance, in cancer diagnosis, if the 
diagnostic result cannot guarantee 100% accuracy (currently no 
model can achieve this), we  would rather believe the positive 
diagnosis result than easily believe the negative diagnosis result. In 
virus infection studies, we pay more attention to the positive results 
of the model’s outputs, as it helps us detect viruses in the patient’s 
body and take corresponding treatment measures. In this case, the 
false positive rate of the model is more important. In addition, 
we found that all models were unable to accurately predict the virus 
infection status of Mitotic Basal Cells, which may indicate the 
presence of labeling errors in this part of the dataset. To ensure the 
quality of the dataset, stricter labeling and verification are needed in 
cases of inaccurate labeling. If labeling errors exist, they may affect 
the performance and practical value of the model. In such cases, 
we  need to evaluate the model’s output results more carefully, 
especially the false positive rate. Considering all these factors, 
we believe that the scVDN model has stronger practical value than 
other models in virus infection studies.

4. Discussion and conclusion

In this study, we proposed a novel deep learning framework 
called scVDN, for predicting the infection status of single cells. 

FIGURE 3

The ratio of infected and uninfected cells in each cell subtype of the “COVID-19_WHO_1–5” cell set is calculated for evaluating the models’ 
performance. Cell subtypes marked as “not included” do not participate in the model performance evaluation.
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Unlike classical binary classification models, scVDN does not 
directly predict whether a single cell is infected with a virus. 
Instead, it first learns a measure of the cell’s state and then 
predicts the infection status of unknown cells based on the 
reference of known infected and uninfected cells. To evaluate the 
predictive performance of scVDN on real-world data, we trained 
and tested the model on a single-cell sequencing dataset from a 
nasal swab cohort. However, the number of cells infected with the 
SARS-CoV-2 in the real dataset is much smaller than the number 
of uninfected cells, resulting in extreme data imbalance. To 
address this, we only used ciliated cells as the modeling data and 
predicted the infection status of cells in another nasal swab 
cohort. We also compared scVDN with state-of-the-art machine 

learning models and found that scVDN outperformed them in all 
test scenarios.

Our results demonstrate that scVDN is a promising framework for 
predicting the infection status of single cells. By learning a measure of 
the cell’s state, scVDN can effectively address the issue of data imbalance 
and improve the accuracy of prediction. The ciliated cells used in our 
study are known to be a primary target for respiratory viruses, including 
the SARS-CoV-2, which makes them a suitable choice for modeling 
data. Our findings suggest that scVDN can be  extended to other 
datasets and cell types for predicting infection status.

scVDN is a type of Siamese Network that has been developed for 
the binary classification task of identifying whether a cell in single-cell 
data is infected with the SARS-CoV-2 virus, which is the virus 
responsible for causing the COVID-19 disease. Compared to traditional 
machine learning models, scVDN has several advantages. Firstly, 
scVDN is a neural network model that can automatically extract 
features from the input data, which is useful when the data is complex 
and high-dimensional. Secondly, scVDN is specifically designed to 
handle imbalanced and small datasets, which is often the case in virus 
infection detection. Thirdly, scVDN can learn from limited labeled 
data, making it suitable for cases where labeled data may be scarce or 
expensive to obtain. Finally, scVDN can capture complex relationships 
between inputs, which is useful in virus infection detection, where the 
relationship between infected and healthy cells may be complex and 
difficult to define explicitly. Overall, scVDN can be a powerful tool for 

FIGURE 4

The ROC curves and AUC values of the prediction results for each cell subtype in the “COVID-19_WHO_6–8” dataset for all models.

TABLE 1 Evaluation metrics for all models on the “COVID-19_WHO_6–8” 
dataset.

Model ACC
Balanced_

ACC
PRE REC F1 AUC

scVDN 0.991 0.924 0.778 0.855 0.815 0.964

KNN 0.967 0.787 0.376 0.599 0.462 0.788

SVM 0.991 0.805 1.000 0.611 0.758 0.805

NB 0.838 0.850 0.115 0.863 0.202 0.850

RF 0.997 0.933 1.000 0.866 0.928 0.933
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binary classification tasks in single-cell data analysis, especially when 
the dataset is complex, imbalanced, and limited in size, and when the 
goal is to identify whether a cell is infected with the SARS-CoV-2 virus.

One potential application of scVDN is the diagnosis of viral 
infections. With the COVID-19 pandemic still ongoing, there is a 
pressing need for accurate and efficient diagnostic tools. Our study 
shows that scVDN can accurately predict the infection status of single 
cells, which could be useful for identifying infected individuals and 
tracking the spread of the virus.

Another potential application of scVDN is drug discovery. By 
predicting the infection status of single cells, scVDN can be used to 
identify potential drug targets and test the efficacy of candidate drugs. 
This could lead to the development of more effective treatments for 
viral infections.

Our study also has limitations that should be considered when 
interpreting the results. The dataset used in our study came from 
nasal swab cohort and may not be representative of other populations 
or disease states. Additionally, there is currently no way to guarantee 
that the known infected cells in the dataset are completely reliable, 
which can lead to false positives and potential risks. As such, future 
biomedical research should pay more attention to the label 
distribution of datasets and researchers should be more cautious in 
interpreting and applying the model’s predictions, especially in 
situations where the labels are not completely reliable. To address 
these limitations, future studies could use larger and more diverse 
datasets to validate the findings of this study. New technologies or 
methods could also be  developed to improve the accuracy and 
reliability of single-cell sequencing data. We believe that these efforts 
will provide more accurate, reliable, and practical tools and methods 
for biomedical research and promote further development and 
progress in the field.

In addition to its potential for COVID-19 detection, scVDN has 
broad applicability for detecting other respiratory diseases, such as 
influenza and respiratory syncytial virus. This novel approach to 
predicting infection status has the potential to transform the field of 

biomedical research, providing researchers with a more accurate and 
efficient tool for studying infectious diseases. Our findings represent 
a significant advancement in the development of diagnostic tools with 
broad applications, ultimately improving health outcomes for 
patients worldwide.
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