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Sanwei sandalwood decoction 
improves function of the gut 
microbiota in heart failure
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Objective: To investigate the effects of Sanwei sandalwood decoction on 
improving function of the intestinal flora in doxorubicin-induced heart failure in 
rats.

Materials and methods: Thirty Sprague–Dawley rats were screened and randomly 
assigned into a blank group, a model group, and a Sanwei sandalwood decoction 
group (treatment group). The rat model of heart failure was prepared and 
established in the latter two groups. After successful model establishment, the 
treatment group received Sanwei sandalwood decoction by continuous gavage at 
2  g/kg, once daily for 4  weeks. The other groups were given an equivalent volume 
of saline. After the final dose, fecal samples were collected from each group and 
analyzed by macrogenomics and nontargeted metabolomics to characterize the 
intestinal flora and associated metabolites.

Results: The composition of gut microbiota was significantly different 
between the three groups. There were 778,808 common genes between 
the blank and model groups, while 49,315 genes were lost and 521,008 were 
gained in the model group relative to the blank group. At the phylum level, 
all groups of rat fecal samples were dominated by Firmicutes, Bacteroidota, 
Actinobacteria, and Proteobacteria. At the genus level, the microbial community 
composition in all experimental groups of rat fecal samples was dominated by 
Lactobacillus, Bifidobacterium, Limosilactobacillus, Allobaculum, Prevotella, and 
Ligilactobacillus spp. Interestingly, cluster analysis was performed on the top 30 
KEGG ontology (KO) terms displaying significant differences in relative abundance 
in the rat fecal microbiome among experimental groups. The relative frequency 
of posttranslational modification, coenzyme transport and metabolism, cell wall, 
membrane, and envelope biogenesis in the eggNOG and CAZy databases. In the 
nontargeted metabolomics, the group principal component analysis revealed that 
the groups were well distinguished from one another. The different metabolites 
were screened with VIP >1, and the KEGG different metabolite classification 
and enrichment analysis revealed that there includes 15 metabolites pathway, 
including loxoprofen, conifery-l-acetate, trichilin A, and others. The arachidonic 
acid pathway also accounted for a significant portion of the KEGG pathway 
classification analysis.

Conclusion: Sanwei sandalwood decoction positively affects the intestinal 
microbial environment of rats with heart failure, improving the gut dysbiosis that 
is caused by the condition. This treatment intervention inhibits the growth of 
pathogenic bacteria and promotes the growth of beneficial species.
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1. Introduction

Heart failure is a complex clinical syndrome that represents an 
advanced stage of development of many cardiovascular diseases 
(Severino et al., 2020). Many morbidities can ultimately lead to heart 
failure, including cardiomyopathy, valvular heart disease, diabetes, 
and obesity (Liang et al., 2020; Xu et al., 2020). It affects an estimated 
63 million people worldwide, and about 50% of patients die within 
5 years of initial diagnosis, identifying heart failure as a global health 
burden that surpasses most types of cancer as a leading cause of death 
(Riehle and Bauersachs, 2019). In recent years, it has mainly been 
treated using the methods of Western medicine, which are associated 
with significant side effects such as hyponatremia due to 
administration of diuretics. This often leads to debilitating symptoms 
such as confusion, falls, and seizures (Lu et  al., 2019). Moreover, 
reduced cardiac output or elevated central venous pressure in heart 
failure can lead to gastrointestinal dysfunction, localized ischemia, 
and edema in the gut. In turn, these changes can result in intestinal 
epithelial dysfunction and barrier defects, flora translocation, and 
altered composition and metabolites of the intestinal microbiome 
(Nagatomo and Tang, 2015). In heart failure patients, perturbation of 
the intestinal flora and their metabolites may therefore be more closely 
related to development of the condition than for other 
cardiovascular diseases.

Microbiological studies have traditionally been conducted in vitro 
and with isolated cultures (Sonnenburg and Bäckhed, 2016). However, 
many gut microorganisms only remain viable in the host and cannot 
be cultured ex vivo, limiting more detailed study of the intestinal flora 
(Wei et al., 2023). In recent years, contemporary molecular biology 
techniques such as high-throughput sequencing and real-time 
quantitative fluorescence polymerase chain reaction (RT-qPCR) 
(Sender et  al., 2016) have been applied for detection and 
characterization of the intestinal flora. This has enabled the 
identification of more bacterial species, thus permitting a deeper 
exploration of the functional spectrum and compositional diversity of 
the gut microbiome. In this study, the effect of Sanwei sandalwood 
decoction (i.e., an aqueous extract obtained by boiling) on the 
intestinal flora investigated in a rat model of heart failure using a 
macrogenomic approach with the intestinal flora as the entry point. 
Potential evidence was explored for dysbiosis and altered metabolites 
in the characteristic gut microflora in heart failure, with the aim of 
identifying new research directions for treatment of chronic disease.

2. Materials and methods

2.1. Materials

The experimental protocol and animal use were approved by the 
Animal Use and Management Ethics Committee at the Animal 
Experimentation Management Center of Inner Mongolia University 
of Nationalities (Lot No. NM-LL-2019-10-12-01). The experiment was 

designed and implemented in accordance with the National Institute 
of Health Guidelines for the Ethical Use of Animals. All rats were 
acclimatized for 1 week prior to the start of the study.

2.2. Animal experiment

After acclimatization, the rats were assigned to a blank group, 
model group, or Sanwei sandalwood decoction group (i.e., treatment 
group) using the random number table method, with 10 rats per 
group. Animals in the blank group were injected intraperitoneally 
with saline once a week. To prepare the heart failure model, 
doxorubicin (saline preparation, 2 mg/mL) was administered 
intraperitoneally to the remaining rats at a dose of 1.5 mL/kg, once a 
week for 7 weeks. A combined dose of 21 mg/kg was used to establish 
the model, in accordance with the literature (Yuhong et al., 2018). 
After 7 weeks of administration, rats in the treatment group were 
gavaged with Sanwei sandalwood decoction at a dose of 2 g/kg for 30 
consecutive days, while rats in the blank and model groups were given 
an equivalent volume of saline (Zhou, 2017).

2.3. Sample collection and preparation

Rat feces were collected 24 h after the last dose and transferred to 
lyophilization tubes, then snap frozen in liquid nitrogen and stored in 
a −80°C freezer (Shao et al., 2020).

The sample stored at −80°C refrigerator was thawed on ice. A 
400 μL solution (methanol: water = 7:3, V/V) containing internal 
standard was added into 20 mg sample, and vortexed for 3 min. The 
sample was sonicated in an ice bath for 10 min and vortexed for 1 min, 
and then placed in −20°C for 30 min. The sample was then centrifuged 
at 12,000 rpm for 10 min (4°C). And the sediment was removed, then 
centrifuged the supernatant at 12,000 rpm for 3 min (4°C). A 200 μL 
aliquots of supernatant were transferred for LC-MS analysis.

2.4. Preprocessing of sequencing results

The FASTP software was used for raw data quality control. Default 
software parameters were selected to preprocess the raw data obtained 
by Illumina HiSeq sequencing, and the resultant clean data was used 
for subsequent analysis (Karlsson et  al., 2013). To remove host 
sequences from the samples, reads were filtered by comparison against 
the host database using Bowtie2 with the following parameter settings: 
--sensitive, −I 200, −x 400 (Karlsson et al., 2012; Scher et al., 2013).

2.5. Metagenome assembly

After the above preprocessing steps, metagenome assembly was 
performed using the MEGAHIT software. The assembly parameters 
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were as follows: --k-min 35, --k-max 95, --k-step 20, --min-contig-len 
500. For each sample, the preprocessed clean data was compared 
against the assembled contigs to identify paired-end reads that were 
not utilized, using Bowtie2 with the following parameters: −I 200, −x 
400 (Karlsson et al., 2013; Nielsen et al., 2014). Unutilized reads from 
each sample were combined for mixed assembly, with the same 
assembly parameters as for the single samples.

2.6. Gene prediction and abundance 
analysis

Based on the assembled contigs (≥500 bp) from initial and mixed 
assembly, MetaGeneMark was used with default parameters to predict 
ORFs (open reading frames), and after initial analysis, predicted genes 
shorter than 100 nt were filtered out (Mende et al., 2012; Li et al., 2014; 
Oh et al., 2014; Qin et al., 2014). The filtered ORF prediction results 
of all samples (including mixed assembly) were then combined, and 
CD-HIT (Li and Godzik, 2006; Fu et al., 2012) was used to remove 
redundancy and obtain a nonredundant initial gene catalog (with each 
gene defined by the longest nonredundant continuous nucleic acid 
sequence corresponding to that gene). The following parameter 
settings were used: −c 0.95, −g 0, −AS 0.9, −g 1, −d 0 (Li et al., 2014; 
Qin et al., 2014). By default, 95% identity and 90% coverage were used 
for clustering; and as mentioned above, the longest sequence for each 
gene was selected as the representative sequence. Next, Bowtie2 was 
used to compare the clean data for each sample against the initial gene 
catalogue (Li et al., 2014), and the number of reads per gene was 
calculated for each sample, using the following settings: --end-to-end, 
--sensitive, −I 200, −x 400. Genes with ≤2 reads in each sample were 
filtered out to obtain a final gene catalog (of Unigenes) that was used 
for subsequent analysis. Based on the number of reads and gene 
length, an abundance value was calculated for each gene in each 
sample, according to the following equation (Cotillard et al., 2013; Le 
Chatelier et al., 2013; Villar et al., 2015), where R is the number of 
reads compared to the gene, and L is the length of the gene.

2.7. Species annotation

To generate species annotations, the DIAMOND software 
(Buchfink et al., 2015) was employed to compare Unigene sequences 
against those of bacteria, fungi, archaea, and viruses from the NCBI 
NR database, using the lowest common ancestor (LCA) algorithm 
with the BLASTP search protocol and E-value ≤10−5. Note that 
because each sequence may give multiple comparison results, many 
different species classifications can be obtained. To ensure biological 
significance, the MEGAN software (Huson et al., 2011) was used again 
with the LCA algorithm to obtain final species annotation information 
for the sequences. Based on the results of LCA-based annotation and 
the gene abundance values, species abundance information was 
derived for each sample at each taxonomic level (i.e., phylum and 
genus), and a gene number table for each sample at each level (phylum 
compendium genus) was also obtained. The abundance of a species in 
an individual sample was taken as the sum of the annotated gene 
abundance of that species. The gene number of a species in a sample 
was defined as the number of genes annotated from that species, for 
all genes with nonzero abundance. In addition, the following 
procedures were performed based on the abundance tables at each 

classification level (genus/species of phylum): Krona analysis (Ondov 
et al., 2011); relative abundance overview; abundance clustering heat 
map analysis; principal component analysis (PCA); nonmetric 
multidimensional scaling (NMDS) dimensionality reduction; analysis 
of similarities (ANOSIM) inter-/intra-group difference analysis (Rao, 
1961); and linear discriminant analysis effect size (LEfSe) multivariate 
statistical analysis of intergroup differential species.

2.8. Common functions database 
annotation

2.8.1. Sequence alignment
Unigenes were compared against functional databases using 

DIAMOND (with BLASTP, E-value ≤10−5). To filter the results for 
each sequence, the DIAMOND parameter “--max-target-seqs 1” was 
used to retain unique comparison results. Furthermore, the KEGG 
database is subcategorized into six functional levels (Kanehisa et al., 
2006, 2017), while the eggnog (Huerta-Cepas et al., 2016) and CAZy 
databases (Cantarel et al., 2009) have three such levels. The comparison 
results therefore allowed the relative abundance of different functional 
levels to be  calculated (i.e., where the relative abundance of each 
functional level is equal to the sum of the relative abundance of genes 
annotated at that functional level). Based on the results of functional 
annotation and the gene abundance table, the gene number table of 
each sample at each classification level was obtained. The number of 
genes with a certain function in a sample was taken as the number of 
genes with a nonzero abundance among the genes annotated with that 
function. Based on the gene abundance tables at each classification 
level and the number of annotated genes, the following procedures 
were carried out: relative abundance overview; abundance clustering 
heat map analysis; PCA; NMDS dimensionality reduction; ANOSIM 
intergroup difference analysis based on functional abundance; and 
metabolic pathway comparative analysis. Also, Metastate and LEfSe 
analyses of functional differences between groups were performed.

2.8.2. Resistance gene annotation
The CARD database1 was used in conjunction with the 

accompanying Resistance Gene Identifier (RGI) software to search for 
antibiotic resistance ontology (ARO) associations among the Unigenes 
(using RGI’s built-in BLASTP function, with the default E-value of 
<10−30) (McArthur et al., 2013). The relative abundance of each ARO 
was calculated based on RGI and the Unigene abundance information. 
This allowed construction of an abundance histogram, abundance 
clustering heat map, and abundance distribution circle map to 
visualize ARO differences between groups, in terms of resistance 
genes (i.e., Unigenes annotated with ARO) and species attribution 
analysis of resistance mechanisms.

2.9. Mass spectrometry conditions

All samples were acquired by the LC-MS system followed machine 
orders. The analytical conditions were as follows, UPLC: column, Waters 
ACQUITY UPLC HSS T3 C18 (1.8 μm, 2.1 mm × 100 mm); column 

1 https://card.mcmaster.ca/
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temperature, 40°C; flow rate, 0.4 mL/min; injection volume, 2 μL; solvent 
system, water (0.1% formic acid): acetonitrile (0.1% formic acid); The 
column was eluted with 5% mobile phase B (0.1% formic acid in 
acetonitrile) at 0 min followed by a linear gradient to 90% mobile phase 
B (0.1% formic acid in acetonitrile) over 11 min, held for 1 min, and then 
come back to 5% mobile phase B within 0.1 min, held for 1.9 min.

2.10. Statistical analysis

The original data file acquisited by LC-MS was converted into mzML 
format by ProteoWizard software. Unsupervised PCA (principal 
component analysis) was performed by statistics function prcomp within 
R.2 The HCA (hierarchical cluster analysis) results of samples and 
metabolites were presented as heat maps with dendrograms. For 
two-group analysis, differential metabolites were determined by VIP (VIP 
>1) and p-value (p-value <0.05, Student’s t test). Identified metabolites and 
annotated metabolites were annotated and mapped using KEGG 
Compound and Pathway database (http://www.kegg.jp/kegg/compound/ 
and http://www.kegg.jp/kegg/pathway.html).

The data was processed using SPSS 22.0 and values are expressed 
as(x  ̅ ± s). The t-test was used for pairwise comparisons between groups 
if the data met both normality and chi-square; if not, the rank sum test 
was used. One-way ANOVA was used to compare multiple groups. 
Differences where p < 0.05 were regarded as statistically significant.

3. Results

3.1. Gene prediction and operational taxon 
abundance analysis

Basic statistics on the gene catalog are presented in Table 1. Using the 
gene abundance information, core genome and pan-genome analyses 
were performed, along with intersample correlation analysis and Venn 
diagram construction. As depicted in Figure 1A, the core and pan-genome 
analyses revealed the number of genes after sample dilution. The sparse 
curve tends to flatten out and approach with increasing data, indicating 
that the collected samples were suitable for subsequent bioinformatics 
analysis. The number of genes differed between groups, and there was also 
variability between groups (Figure 1B). The Venn diagram (Figure 1C) 

2 www.r-project.org

shows that there were 778,808 common genes between the blank and 
model groups, while 49,315 genes were lost and 521,008 were gained in 
the model group relative to the blank group, suggesting that heart failure 
induces changes in the number of microbial genes found in feces. 
Compared with the model group, this value was also significantly affected 
by treatment with Sanwei sandalwood decoction. Herein, in the rat heart 
failure model, the number of genes specific to the intestinal flora increased 
after the therapeutic intervention. Moreover, we  determined the 
correlation between samples to assess the degree of similarity between 
them, i.e., in terms of gene expression levels. As shown in Figure 1D, the 
correlation coefficients for all pairwise comparisons were <1, indicating a 
low degree of similarity and implying a high number of differential genes 
between experimental groups.

3.2. Relative abundance and annotation of 
rat fecal microorganisms

3.2.1. Results of species relative abundance 
analysis

To visualize the composition and relative abundance of species at 
different taxonomic levels of phylum and genus, the annotated 
sequence information represented by the clustered operational taxon 
abundance (OTUs) was used to plot cumulative bar charts for the 
top 10 species in relative abundance, for all samples. At the phylum 
level (Figure 2A), all groups of rat fecal samples were dominated by 
Firmicutes, Bacteroidota, Actinobacteria, and Proteobacteria, but 
there were some differences in proportion and species composition 
between groups. In the model group, the relative abundance of 
Firmicutes decreased and that of Actinobacteria and Proteobacteria 
increased, compared with the blank group. In the treatment group, the 
relative abundance of Firmicutes and Proteobacteria increased, while 
that of Bacteroidota and Actinobacteria decreased, compared with the 
model group. As indicated in Figure 2B, the abundance of samples in 
each group changed as the taxonomic hierarchy of species changed, 
and the differences between groups were more pronounced.

At the genus level, the microbial community composition in all 
experimental groups of rat fecal samples was dominated by 
Lactobacillus, Bifidobacterium, Limosilactobacillus, Allobaculum, 
Prevotella, and Ligilactobacillus spp., but similarly to the phylum level, 
some differences in relative abundance were apparent between groups. 
In terms of species composition, the relative abundance of 
Lactobacillus, Limosilactobacillus, and Ligilactobacillus spp. decreased, 
while that of Bifidobacterium, Allobaculum, and Prevotella spp. 
increased, in the modelgroup compared with the blank group. For the 
treatment group, the relative abundance of Lactobacillus, 
Bifidobacterium, and Limosilactobacillus spp. increased compared with 
the modelgroup, while that of Ligilactobacillus spp. decreased.

3.2.2. Cluster analysis of the relative abundance 
of the number of annotated genes, and 
dimensionality reduction of species abundance

The top 35 genera (in terms of abundance and information on their 
abundance in each sample) from the relative abundance tables, at different 
taxonomic levels, were used for heat mapping and clustering at the species 
level. This facilitated visualization of the results and aided information 
discovery, thereby enabling identification of species that were more 
aggregated in the samples (Figure 3A). To aid the interpretation of results, 
PCA, NMDS plot were used as a statistical approach, since it is able to 

TABLE 1 Unigenes basic information statistics.

List Unigenes

ORFs No. 3,199,158

Integrity:all 1,500,838 (46.91%)

Integrity:none 209,760 (6.56%)

Integrity:end 847,236 (26.48%)

Integrity:start 641,324 (20.05%)

Total Len.(Mbp) 1874.82

Average Len.(bp) 586.04

GC percent 49.08
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reduce multiple variables into a few principal components through 
dimensionality reduction. It is one of the most important methods for 
achieving this, and when applied to the analysis of gut microorganisms, 
PCA therefore focuses on finding the most relevant combination of 
species to represent the overall gut microbiome. In the blank group of the 
current experiment, it can be seen that the samples were clustered and 
well differentiated. Additionally, in both the model and Sanwei 
sandalwood decoction groups, the samples were generally discrete and 
differentiated, but one abnormal sample was seen in each group 
(Figures  3B–E). This may reflect individual variation in intestinal 
microorganisms, or perhaps it was a consequence of the small sample size.

3.3. Analysis of species differences across 
groups

3.3.1. Clustering analysis of samples based on 
species abundance

The Bray–Curtis distance is often used to characterize the degree 
of similarity between samples, and is one of the most commonly used 
distance metrics in systematic clustering. Based on the tables of gene 
abundance for the experimental samples, a Bray–Curtis distance 
matrix was used to perform intersample clustering. The results are 
presented with integration of the relative abundance of species at the 
gate level, for each group (Figure 4A).

3.3.2. LEfSe analysis of variance
The LEfSe analysis of variance method uses the Kruskal–Wallis 

rank sum test and the Wilcoxon rank sum test to screen for species 
with significant differences in abundance between groups. It then uses 
linear discriminant analysis to downscale the data and assess the 
influence of species with significant differences, to find those species 
or biomarkers that most influence the differences between groups. 
Using the LEfSe online analysis tool, three such species were identified 
(Figures 4B,C). It is evident that the class Erysipelotrichia, the order 
Erysipelotrichales, and the genus Blautia were enriched in the Sanwei 
sandalwood decoction group. Furthermore, the class Actinomycetia, 
the order Bifidobacteriales, the families Erysipelotrichaceae and 
Bifidobacteriales, the genera Bifidobacterium and Ligilactobacillus, and 
the species Lactobacillus intestinalis were enriched in the model group.

3.4. Analysis of relative abundance and 
differences in the biological functions of 
rat fecal microorganisms

3.4.1. Analysis of the relative abundance of 
functional annotations by class

Analysis using the KEGG PATHWAY database revealed that the 
KEGG class I metabolic pathways with the highest relative abundance 
in the rat fecal samples included metabolism, genetic information 

FIGURE 1

(A,B): Dilution profile of core-pan gene; box plot of gene number differences between groups; (C): Clustering of intestinal flora OTUs in each group of 
rats Venn diagram; (D): Heat map of correlation coefficients between samples.
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processing, and environmental information processing (Figure 5A). 
Through comparative analysis of rat fecal microbiome macrogenomes, 
based on the eggNOG database, the functional classes replication, 
recombination, and repair; cell wall/membrane/envelope biogenesis; 
carbohydrate transport and metabolism; and amino acid transport 
and metabolism were found to be more abundant in the rat fecal 
microbiome (Figure  5B). Moreover, comparative macrogenomic 
analysis using the CAZy database showed that the functional classes 
of glycoside hydrolases (GHs), glycosyltransferases (GTs), and 
carbohydrate-binding modules (CBMs) were relatively abundant in 

the rat fecal microbiome, among the six CAZy functional modules 
(Figure 5C).

3.4.2. Analysis of the differences in the relative 
abundance of functions

The relative abundance of each functional class—such as KEGG, 
eggNOG, and CAZy protein families—was compared between rat fecal 
microbiomes, based on the relative abundance distribution of the 
underlying functional classes that were assigned using each database, and 
the differences were evaluated for statistical significance. First, cluster 

FIGURE 2

Histogram of relative abundance of species at the phylum level and genus level (group). (A) Histogram of relative abundance at the phylum level; 
(B) Histogram of relative abundance at the genus level. The horizontal axis indicates the name of the sample; the vertical axis indicates the relative 
proportion of species annotated to a type; the species categories corresponding to each colour block are shown in the legend on the right.
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analysis was performed on the top  30 KEGG ontology (KO) terms 
displaying significant differences in relative abundance in the rat fecal 
microbiome among experimental groups (Figure  6AI). The level 2 
categories amino acid metabolism; energy metabolism; environment 
information processing: signal transduction; carbohydrate metabolism; 

and lipid metabolism were significantly higher in the Sanwei sandalwood 
decoction group than in the blank and modelgroups (Figure 6AII). At 
level 1, it emerged that the cluster analysis was higher in the same group 
in terms of metabolism and environment information processing, 
compared with the blank and model groups (Figure 6AIII).

FIGURE 3

(A): Heat map of gate level abundance clustering; (B-E): Presentation of NMDS results for species based on gate level, presentation of PCA results for 
species based on gate level.

FIGURE 4

(A) In the BrayCurtis distance-based clustering tree diagram, the Bray-Curtis distance clustering tree structure is shown on the left side; on the right 
side, the relative abundance distribution of species at the gate level for each sample is plotted. (B) Histogram of the distribution of LDA values for 
differing species. (C) Evolutionary branching diagrams for divergent species, circles radiating from inside to outside represent taxonomic levels from 
phylum to genus (or species). Species with no significant differences are uniformly coloured yellow, and differential species Biomarker follows the 
group for colouring, with red nodes indicating microbial taxa that play an important role in the red group and green nodes indicating microbial taxa 
that play an important role in the green group.
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Based on the relative abundance distribution of each functional class 
that was annotated from the eggNOG and CAZy databases, we evaluated 
the relationships between rat fecal microbiomes in the different 
experimental groups, to assess which functional classes were enriched in 
each group. In this macrogenomic analysis, assessment of eggNOG 
functional annotations indicated variations in level 1 classification; level 
2 classification; secondary metabolite biosynthesis; transport and 
catabolism; energy production and conversion; and transmigration. 
Moreover, energy production and conversion; transcription; amino acid 

transport and metabolism; signal transduction mechanisms; and 
nucleotide transport and metabolism were significantly higher in the 
feces of rats in the Sanwei sandalwood decoction group than for those in 
the blank and modelgroups. The relative abundance of cell wall/
membrane/envelope biogenesis; coenzyme transport and metabolism; 
posttranslational modification (Figures 6B,C). Functional annotation 
analysis using the CAZy database showed that CBMs, GTs, 
polysaccharide lyases (PLs), GHs, and carbohydrate esterases (CEs) had 
significantly higher relative abundance in the fecal microbiota of rats in 

FIGURE 5

Histogram of relative abundance of functional annotations on level 1.The results of KEGG, eggNOG, and CAZy are shown in order. (A): Histogram of 
relative abundance of functional annotations in KEGG; (B): Histogram of relative abundance of functional annotations in eggNOG; (C): Histogram of 
relative abundance of functional annotations in CAZy. The vertical axis indicates the relative proportion of annotations to a functional class; the 
horizontal axis indicates the sample name; the functional class corresponding to each colour block is shown in the legend on the right.
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the treatment group (Sanwei sandalwood decoction) groups, compared 
with the blank and model groups.

3.5. Resistance genes are prevalent in both 
human gut microbes and other 
environmental microbes

Misuse of antibiotics has induced irreversible changes in human and 
environmental microbial communities, posing new risks to human 
health and ecological systems. The study of antibiotic resistance genes 
(ARGs) has therefore received considerable attention from researchers 
(Guo et al., 2018). In recent years, the CARD resistance gene database 
has been developed to assist these efforts. It has the advantages of 
comprehensive information coverage, user-friendliness, and timely 
updates and maintenance (Jia et al., 2017). Here, it was used to analyze 

the abundance of AROs and produce a bar chart of abundance, a heat 
map of abundance clusters, and a map of abundance circles, as well as 
identifying ARO differences between groups. It also provided 
information on the species affiliation of resistance genes (i.e., Unigenes 
annotated to AROs). The details are shown in Supplementary Figure S1.

To visualize the overall distribution of ARO abundance in each 
group, the top 10 most abundant AROs were selected and plotted in 
an overview circle (Supplementary Figures S2, S3A). Additionally, the 
top 30 AROs were used to generate an abundance clustering heat 
map; and to test whether between-group differences were 
significantly greater than within-group differences, ANOSIM 
analysis of the abundance of resistance genes was performed 
(Supplementary Figure S3B). To further examine differences between 
sample groups, box plots were made of differences in the number of 
resistance genes and the number of AROs between groups 
(Supplementary Figure S3C).

FIGURE 6

Functional abundance clustering heat map. The results of KEGG, eggNOG, and CAZy are shown sequentially. (A): Functional abundance clustering 
heat map in KEGG (I is for level 1, II is for level 2, III is for level 3); (B): Functional abundance clustering heat map in eggnog (I is for level 1, II is for level 
2); (C): Functional abundance clustering heat map in CAZy. Sample information is shown horizontally; functional annotation information is shown 
vertically; the clustering tree on the left side of the graph is the functional clustering tree; the values corresponding to the heat map in the middle are 
the Z-values obtained from normalising the relative abundance of the functions in each row.
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3.6. Nontargeted metabolomics

3.6.1. Principal component analysis of subgroups
The samples of the subgroups for variance comparison were first 

subjected to principal component analysis and orthogonal partial least 
squares discriminant analysis in order to observe the magnitude of 
variability between the variance subgroups and between the samples 
within the groups, which is conducive to the search for variance 
metabolites. From the Figure 7, the group can be clearly distinguished, 
indicating that there is a difference between the groups, and it can be seen 
that the position of the Sanwei sandalwood decoction group is close to the 
normal group, indicating that it has a good regulating effect on heart failure.

3.6.2. Differential metabolite screening
VIP >1 metabolites were chosen. It is commonly accepted that 

metabolites with VIP >1 are substantially different. VIP value shows 
the degree of the influence of between-group differences of the 
corresponding metabolite in the categorical discrimination of each 
group of samples in the model. The student’s t-test p-value 0.05-
selected metabolites. When there was a statistically significant 
difference between groups, metabolites were regarded as differing 
considerably. Table 2 displays some of the results of the differential 
metabolite screening. Sample-specific subgroups were pooled to assess 
the multiplicity-of-difference changes in quantitative metabolite 
information across subgroups following qualitative and quantitative 
analysis of the discovered metabolites. Along with multiplicity of 

difference bar charts and volcano plots, the top 20 metabolite findings 
for each subgroup comparison are displayed (Figure 8). The original 
relative content of differential metabolites obtained by using the 
screening standard identification was standardised by rows using unit 
variance scaling (UV), and the heat map was plotted by R software. 
The results are shown in Figure 9 and Supplementary Figure S4. These 
differential metabolites may eventually be  involved in potential 
biomarkers of Sanwei sandalwood decoction cardio-modulation 
through the gut, laying the groundwork for future research.

3.6.3. Metabolite function annotation
Different pathways are formed inside the body as a result of interactions 

between metabolites. The KEGG database was used to annotate various 
metabolites, and the findings were categorized in accordance with the 
KEGG pathway types, as shown in the accompanying image. KEGG 
pathway enrichment was performed based on differential metabolite 
results, and the size of the dots in the graph represents the number of 
differential significant metabolites enriched to the corresponding pathway. 
The top 20 pathways ranked by p-value were selected and shown from 
smallest to largest (Figure 10; Supplementary Figure S5).

4. Discussion

The human body contains about 10–100 trillion microorganisms, 
the majority of which are bacteria (Ursell et al., 2012). This is a huge 

FIGURE 7

PCA vs. OPLS-DA plots between groups in the negative and positive.
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number that far exceeds the number of somatic cells, and research in 
recent years has increasingly demonstrated the important role of the 
gut microbiome for the host, in both health and disease. Under 
physiological conditions, the intestinal flora is in relative homeostasis, 
but when this balance is disturbed, pathogenic microorganisms can 

lead to host diseases including inflammatory bowel disease and 
colorectal cancer, as well as nonintestinal disorders such as obesity, 
diabetes, autism, and cardiovascular disease (Jia et al., 2019). Given 
the key regulatory role of gut microorganisms in a variety of disease 
areas, researchers have increased their interest in—and exploration 

TABLE 2 Results of differential metabolite screening.

Index Compounds Type

MW0149468 Ganoderic acid H Down

MW0001649 1-Methylnaphthalene Up

MW0005526 5-[4-(4-Hydroxyphenyl)phenyl]benzene-1,3-diol Down

MW0136801 7-(4-Hydroxy-3-methoxyphenyl)-5-methoxy-1-phenyl-3-heptanone Up

MW0144012 8,9-Epoxyeicosatrienoic acid Down

MW0138813 Loxoprofen Up

MEDP1238 Conifery-l-acetate Up

MW0143316 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)octan-3-one Up

MW0158037 Trichilin A Up

MW0105417 Acetyl tributyl citrate Down

MW0141802 1D-myo-inositol 2-amino-2-deoxy-alpha-D-glucopyranoside Down

MW0108209 Mesylate Up

MW0152664 L-Histidine beta-naphthylamide Up

MW0011982 (S)-10,16-Dihydroxyhexadecanoic acid Down

MW0159254 Val-Asn Up

FIGURE 8

Differential multiplicity histograms and volcano plots for the first 20 metabolite results for each subgroup comparison.
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of—new therapeutic approaches and strategies based on targeting the 
intestinal flora.

As outlined above, heart failure is recognized as a multifactorial 
systemic disease with extremely complex pathology, yet one important 
mechanism that informs and explains the associated pathological 
changes is the inflammatory response. It has previously been shown that 
the development of heart failure leads to intestinal mucosal damage and 
flora displacement, and that this dysregulated microbiome causes 

numerous adverse effects in late-stage disease by increasing expression 
of regulatory factors that mediate the inflammatory response (Guo 
et al., 2018; Yu and Jinmin, 2019). In view of this, we hypothesized that 
intervention strategies capable of modulating the composition and 
diversity of the gut flora, enhancing the intestinal barrier, reducing 
intestinal permeability, intervening in microbial metabolite changes, 
and reducing the levels of proinflammatory factors would constitute 
effective treatments for heart failure.

FIGURE 9

Heat map of differential metabolites between the model group and the Sanwei sandalwood decoction group in the negative and positive.

FIGURE 10

Results of KEGG pathway enrichment analysis of differential metabolites in the negative and positive.
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Moreover, in the context of modern microecological research, the 
gut is considered to be  the largest organ of the body. Intestinal 
microbial homeostasis has a beneficial effect on normal metabolism, 
while conversely, an imbalance in the gut flora can negatively impact 
the endocrine, immune, neurological, and even mental functions of 
the host, provoking a series of pathophysiological changes that can 
manifest as cardiovascular disease; the so-called “cardio-intestinal” 
axis adjustment.

4.1. Relative abundance of intestinal flora 
species and abundance clustering analysis

The relative abundance of the genera Bacteroides and Prevotella, 
and the phylum Bacteroidetes, was significantly reduced in the 
intestinal flora in the rat model of heart failure, while the relative 
abundance of the genera Bacteroides, Clostridium, and Lactobacillus, 
and the order Actinomycetales, was markedly increased. After 
treatment with Sanwei sandalwood decoction, the relative abundance 
of the phylum Bacteroidota, and the genera Aspergillus and Prevotella, 
increased significantly in the intestinal flora, while that of Lactobacillus 
spp. decreased. The intervention also led to a significant reduction in 
the relative abundance of Aspergillus spp. and the phylum 
Bacteroidota, while balancing the relative abundance of Lactobacillus 
spp. and other genera that had been altered by heart failure. The 
relative abundance of Phyllobacterium spp. in the intestinal flora of 
rats after heart failure, and the least clustered abundance of these 
species, were significantly rescued after the treatment intervention; 
and the gut microbiota became more enriched in Phyllobacterium 
spp., Lactobacillus spp., and Bifidobacterium spp. These are all 
important probiotic species in the intestinal flora that play key roles 
in metabolic processes in vivo.

4.2. Functional annotation distribution and 
variance analysis

The metabolic functional classes had the highest relative 
abundance in the intestinal flora, among KEGG class I pathways. 
Moreover, carbohydrate transport and metabolism, and amino acid 
transport and metabolism, were more abundant in the gut microbiota 
of all three experimental groups. Of the six protein functional modules 
in the CAZy database, the classes GHs, GTs, and CBMs had higher 
relative abundance; while KO clustering analysis revealed that the 
Sanwei sandalwood decoction group had a greater degree of energy 
metabolism, carbohydrate metabolism, amino acid metabolism, and 
membrane transport compared with the model group. Based on 
eggNOG functional annotation, the processes of biosynthesis; 
transport and catabolism of secondary metabolites; energy production 
and conversion; transcription; amino acid transport and metabolism; 
signal transduction mechanisms; and nucleotide transport and 
metabolism were more abundant in the treatment group. The 
intestinal flora of rats in the dispersion group was significantly higher 
than that in the model group. In summary, the most abundant 
functional annotations in the intestinal flora of rats with heart failure, 
and treated with Sanwei sandalwood decoction, were mainly 
distributed among CBMs/carbohydrate metabolism, amino acid 
metabolism, nucleotide transport, energy metabolism, and GTs.

4.3. Analysis of untargeted metabolomics 
in heart failure

Metabolomics enables qualitative and quantitative assessment of 
metabolites in living organisms (Guo, 2021). Metabolites are 
downstream of gene transcription and protein translation and are 
closely related to phenotypes, especially for multifactorial diseases. 
In recent years, metabolomics has been increasingly used to identify 
heart failure biomarkers (Laíns et  al., 2019). Compared with 
conventional biomarkers, metabolomics is more accurate in 
assessing heart failure-related metabolic disorders, and metabolite 
changes are more conducive to assessing the prognosis of heart 
failure (Cheng et al., 2015; Lanfear et al., 2017). Plasma-targeted 
surrogomics studies in heart failure patients with reduced ejection 
fraction identified 13 metabolites independently associated with 
survival, further demonstrating the promise of metabolic 
impairment and metabolomics in assessing heart failure phenotype 
and risk stratification and identifying therapeutic targets. In this 
study, PCA and OPLS-DA S-PLOT found that the three groups were 
clearly distinguished, while the position of the Sandalwood soup 
group tended to be  the normal group, which could improve the 
metabolism of heart failure, and the classification of KEGG 
differential metabolites in enrichment analysis showed that 
Sandalwood soup may regulate heart failure by regulating 15 
metabolites such as Loxoprofen, Conifery-l-acetate, and Trichilin 
A. It can be concluded that arachidonic acid metabolism pathway 
occupies an important proportion in the pathway classification 
chart, and it is known that arachidonic acid (AA) is an important 
long-chain hyperunsaturated fatty acid in organisms, and its 
metabolism plays an important role in the occurrence and 
development of myocardial fibrosis (Zhang et al., 2018). Experiments 
further show that the issue of the possible effect of Sanwei 
sandalwood decoction on the diversity of intestinal flora in the body 
by regulating differential metabolites, such as increasing the 
expression of AA, is also worth further exploration.

4.4. Others

It is already established that ARGs change in response to variations 
in the microbiome (Zhao et al., 2021), and that reductions in ARGs 
generally correlate with reductions in the bacterial community. In 
particular, research on β-lactam antibiotic resistance genes (ARGs) is 
an important area of study that cannot be  ignored. In this work, 
resistance genes against other antibiotic classes—such as tetracyclines, 
macrolides, and quinolones—were identified less frequently. However, 
in a finding that has not been previously reported, ARGs for some 
commonly used disinfectants and antiseptics (triC and qacH) were 
detected in this study.

5. Conclusion

In conclusion, the intestinal flora plays a key regulatory role in 
the development of heart failure, and its regulation has therefore 
become a promising therapeutic strategy for the disease. In this 
study, we  used macrogenomic sequencing of fecal samples to 
investigate the effects of Sanwei sandalwood decoction on the 
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composition, diversity, and structure of the gut microbiota in a rat 
model of heart failure. The flora composition and structure were 
altered in the intervention group to some extent, but our analysis 
also revealed species with differential and predicted functional 
advantages. These are of interest in designing improved 
interventions, and consequently represent a valuable reference 
point with potential for future application.
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