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Antimicrobial resistance (AMR) poses a significant threat to humans and animals as 
well as the environment. Within agricultural settings, the utilization of antimicrobial 
agents in animal husbandry can lead to the emergence of antimicrobial resistance. 
In Chile, the widespread use of animal-derived organic amendments, including 
manure and compost, requires an examination of the potential emergence of 
AMR resulting from their application. The aim of this research was to identify and 
compare AMR genes found in fertilized soils and manure in Los Andes city, Chile. 
Soil samples were collected from an agricultural field, comprising unamended 
soils, amended soils, and manure used for crop fertilization. The selected genes 
(n  =  28) included genes associated with resistance to beta-lactams, tetracyclines, 
sulfonamides, polymyxins, macrolides, quinolones, aminoglycosides, as well as 
mobile genetic elements and multidrug resistance genes. Twenty genes were 
successfully identified in the samples. Tetracycline resistance genes displayed 
the highest prevalence, followed by MGE and sulfonamides, while quinolone 
resistance genes were comparatively less abundant. Notably, blaOXA, sulA, tetO, 
tetW, tetM, aac (6) ib., and intI1, exhibited higher frequencies in unamended soils, 
indicating their potential persistence within the soil microbiome and contribution 
to the perpetuation of AMR over time. Given the complex nature of AMR, it is 
crucial to adopt an integrated surveillance framework that embraces the One 
Health approach, involving multiple sectors, to effectively address this challenge. 
This study represents the first investigation of antimicrobial resistance genes in 
agricultural soils in Chile, shedding light on the presence and dynamics of AMR 
in this context.
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Introduction

Antimicrobial resistance (AMR) is a growing public health 
concern worldwide, affecting both human and animal health, as well 
as the environment (Boden and Mellor, 2020; Shawver et al., 2021). 
The potential causes of global AMR comprise excessive use of 
antibiotics in animals, misuse of antibiotics in humans, over-the-
counter antibiotic availability, the growth of international travel, poor 
sanitation and hygiene, and the discharge of unmetabolized antibiotics 
or their residues into the environment via manure, urine, and feces 
(Aslam et al., 2018). AMR occurs when bacteria, viruses, fungi, and 
parasites develop resistance to the drugs that are commonly used for 
their treatment (Puvača, 2022). As a consequence, AMR limits the 
effectiveness of antibiotics, leading to longer hospital stays, increased 
morbidity and mortality, and increased healthcare costs, and have a 
detrimental impact on the Gross Domestic Product of countries 
(Boeckel et al., 2019; Abushaheen et al., 2020). As a result, infections 
related to AMR are becoming a renewed threat to public health 
(Ventola, 2015). It is crucial to address this issue by implementing 
effective strategies to prevent the spread of antimicrobial resistance 
and promote the responsible use of antibiotics to ensure the continued 
efficacy of these life-saving drugs (Roca et al., 2015).

AMR can manifest as antimicrobial-resistant bacteria and 
antimicrobial resistance genes (ARGs), both of which have the 
potential to enter and persist in ecosystems through various pathways. 
These pathways include soil, water, crops, and gut microbial 
communities of wildlife, livestock, and humans (Du and Liu, 2012; He 
T. et al., 2021). In agricultural settings, the use of antimicrobial agents 
in animal husbandry can lead to the selection and proliferation of 
resistant bacteria and ARGs (Thanner et  al., 2016; Mshana et  al., 
2021). These resistant organisms can subsequently contaminate the 
environment through animal waste, runoff, and irrigation (Roe and 
Pillai, 2003; Chemaly et al., 2014; Adegoke et al., 2016). Additionally, 
animals serve as reservoirs and vectors of AMR genes, facilitating its 
transmission and persistence between domestic and wild animals, and 
environments (Graham et al., 2019; Bennani et al., 2020). Humans 
play a crucial role in this dynamic relationship, by actively participating 
in activities such as farming, food production, and recreational 
pursuits, and wastewater management (Fouz et al., 2020; Jadeja and 
Worrich, 2022). These activities not only involve interactions with 
animals and their environments, but also have the potential to 
contribute to the dissemination of AMR genes in the environment and 
among animal populations (Thakur and Panda, 2017).

Animal-derived organic amendments, such as manure and 
compost, are commonly used in Chilean agriculture (Infante and San 
Martín, 2016). The use of integrated nutrient management practices, 
which include the use of organic manures, has been found to improve 
soil physical, chemical, and biological properties, resulting in 
enhanced crop productivity and better quality of crop produce (Rani 
et  al., 2015; Shakoor et  al., 2021). However, the use of these 
amendments can also contribute to the development of AMR in soil 
bacteria, which can have negative impacts on human and animal 
health (Zhang et al., 2020; Yang et al., 2021). Recent research has 
focused on the effects of different types of organic amendments on soil 
health and greenhouse gas emissions (Kalus et al., 2019; Urra et al., 
2019). Nonetheless, limited information is available on the emergence 
of AMR resulting from the application of animal-derived organic 
amendments in fertilized soils in Chile.

The detection of antimicrobial residues in the environment is 
frequently linked to the usage of commonly employed antimicrobials 
in animal production and human health, that through various 
pathways, including inadequate disposal of antimicrobials into sewage 
systems or solid waste management, discharge of treated or untreated 
wastewater intro water bodies, runoff from agricultural fields where 
manure is applied, and leaching from livestock waste storage facilities, 
can enter the environment (Bian et al., 2015; Monteiro et al., 2016; 
Lima et al., 2020). Antibiotics, including tetracyclines, macrolides, 
fluoroquinolones, and sulfonamides, are among the most prevalent 
antimicrobial residues identified (Huong et al., 2020; Yang et al., 2021).

The use of antimicrobial agents in animal husbandry and 
agriculture should be carefully managed to minimize the risk of AMR 
development and spread. Understanding the prevalence and 
distribution of resistance genes in livestock manure and fertilized soils 
can help guide the development of strategies to minimize the spread 
of antibiotic resistance. This research article aims to identify and 
compare antimicrobial resistance genes detected in unamended soils, 
amended soils, and manure the Los Andes city, Chile. By investigating 
the relationship between animal amendments and AMR in Chilean 
fertilized soils, this study intends to shed light on the potential impact 
of this practice on the health of humans, animals, and the environment, 
and highlight the importance of a One Health approach to tackle 
this issue.

Methods and results

Samples

The soil samples were collected from an agricultural field located 
in the city of Los Andes, Valparaiso region, Chile, where peach crops 
are cultivated. The different soil samples consisted in: a) unamended 
soils, which have not been fertilized in September 2021 (32°50′40.1”S 
70°33′36.9”W); b) soils amended, in September 2021, with organic 
fertilizers of animal origin (32°53′31.7”S 70°35′34.8”W); c) organic 
amendments of animal origin used for crop fertilization. The organic 
amendments of animal origin corresponded to samples of cow and 
horse manure, acquired in August–September 2021 locally by the 
producer from the agricultural field, and were not traceable. For 
each condition, four samples with five technical replicates 
were considered.

The soil samples were obtained from five different locations at a 
depth of 0–20 centimeters using the envelope method (Buta et al., 
2021). The samples were collected using a sterile metal spatula and 
transferred to transparent polyethylene bags labeled as NascoTM 
Whirl-PakTM. All samples were transported under refrigeration 
conditions (4°C) to the Research Laboratory of Universidad de Las 
Americas Campus Providencia for processing, where they were stored 
at a freezing temperature (−20°C) until analysis.

DNA extraction from soils and organic 
amendments

The collected samples were air-dried overnight at room 
temperature (20–25°C) and sieved to remove particles larger than 
2 mm prior to their utilization (Barrios et al., 2021). Genomic DNA 

https://doi.org/10.3389/fmicb.2023.1239761
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fresno et al. 10.3389/fmicb.2023.1239761

Frontiers in Microbiology 03 frontiersin.org

(gDNA) extraction was performed in triplicate for each sample. To 
obtain gDNA from soil and animal-derived organic amendments, the 
DNeasy® PowerSoil® Pro Kit (Qiagen, Germany) was used following 
the manufacturer’s instructions. All gDNA samples were stored at 
−20°C until further analysis. DNA concentration of each sample was 
measured using a SPECTROstar® Nano absorbance plate reader 
(BMG Labtech), according to the manufacturer’s instructions. The 
positive controls employed consist of ARG adquired from various 
bacterial sources, encompassing both pathogenic and environmental 
bacteria, that had been previously isolated (Fresno et  al., 2013; 
Retamal et al., 2015).

Identification of antimicrobial resistance 
genes

Genomic DNA (0.5 ng/μL) underwent quantitative real-time PCR 
(qPCR) analysis to determine genes associated with resistance to 
different selected (n = 28) antimicrobials and horizontal gene transfer. 
Genes associated with resistance to beta-lactams (blaCTX-M-04, 
blaTEM, blaOXA, blaSHV), tetracyclines (tetA, tetB/P, tetC, tetG, tetM, 
tetO, tetW, tetX), sulfonamides (sul1, sul2, sulA), polimyxins (mcr-1), 
macrolides (ermB, ermC, ermQ), quinolones (gyrA, aac (6′)-ib, qepA), 
aminoglycosides (aadA9), mobile genetic elements (MGE) (intI1, 
intI2, dfrA1) and multidrug resistance (mexF, oprJ) were determined. 
The details of the primers and references of the used genes can 
be found in Supplementary Table S1.

A reaction mixture (total volume: 25 μL) was used, consisting of 
12.5 μL of Brilliant II SYBR GREEN qPCR Master Mix (Stratagene), 
0.5 μL of each specific forward and reverse primer for each gene, 11 μL 
of high-purity sterile water (Roche Diagnostics), and 0.5 μL of 
extracted DNA. All genes selected for the study were analyzed in 
triplicate. Reactions were performed using an AriaMX real-time PCR 
instrument (Agilent Technologies®). The thermal cycling conditions 
used consisted of one cycle at 95°C for 10 min, followed by 40 cycles 
of 30 s at 95°C and 1 min at 60°C. The Pfaffl method (Pfaffl, 2001) was 
used to determine the expression of ratio between investigated 
samples. Analysis were based on the values of the threshold cycle (Ct), 
calculated according to the efficiency of the reaction for each pair of 
primers, estimated using LinReg software (Ruijter et al., 2009). The 
data obtained were normalized with the relative abundance of 16S 
rRNA gene to present the frequency of genes in each of the investigated 
samples (Suzuki et al., 2000).

Statistical analysis

Statistical analyzes were conducted in R-Studio software Version 
1.3.1093. The results of ARG differences were analyzed according to 
their sample of origin. In addition, an antimicrobial resistance gene 
profile was determined based on their presence or absence. 
Statistically significant differences between samples were determined 
using the non-parametric Kruskal-Wallis test, results were 
considered statistically significant at a significance level of p < 0.05. 
A Principal Component Analysis (PCA) was conducted to explore 
the relationships within the dataset, the Pearson correlation 
coefficient was employed to assess the relationship between 
the variables.

Results

In this study, out of the 28 ARGs, 20 were identified and detected 
(Supplementary Table S1), in both amended and unamended soils, and 
animal manure. Tetracycline resistance genes were predominantly 
observed in both types of soils, followed by mobile genetic elements 
and multidrug resistance genes (Figures  1A,B). Conversely, when 
analyzing animal manure, the primary genes identified were MGE, 
followed by tetracycline and multidrug resistance genes (Figures 1A,B).

Significant statistical differences (p < 0.05) were observed when 
comparing the relative abundance of different groups of antimicrobial 
resistance genes (ARGs) between each condition (Figure  1B). 
Specifically, mobile genetic element (MGE) genes and genes associated 
with multidrug resistance exhibited notable differences. MGE genes 
(dfrA1, aadA9, intL2) were predominantly identified in manure 
samples, while genes related to multidrug resistance (MexF, oprJ) were 
more prevalent in the unamended soil samples. The most correlated 
ARG abundance profiles were amended and unamended soil samples, 
according to Pearson’s correlation (r = 0.9486).

The analysis of samples collected from animal manure and 
unamended soils revealed a significantly higher abundance of ARG 
compared to samples from amended soils, as illustrated in 
Figure 1C. Among all tested conditions, tetracycline resistance genes 
exhibited the highest number of detections, followed by mobile genetic 
elements and sulfonamides. In contrast, the presence of genes related 
to quinolone resistance was found to be relatively scarce in the samples.

The principal component analysis shows that the first component 
explains 92.8% of the variance (Figure 2). This indicates that the ARGs 
observed in the samples do exhibit variation based on their origin, i.e., 
amended soils, unamended soils, and animal manure. We detected 
those genes conferring resistance to aminoglycosides, sulfonamides 
and MGE are mainly found in animal manure samples, while genes 
conferring resistance to tetracyclines and multidrug related genes are 
associated with both amended and unamended soils.

None of the samples showed the presence of genes associated with 
polymyxin resistance (mcr-1) or macrolide resistance (ermB, ermC, 
ermQ). Additionally, the genes tetB/P, blaTEM, blaSHV, and qepA 
were not detected in any of the samples (Supplementary Table S2).

Discussion and conclusion

Antimicrobial resistance genes have the potential to be transmitted 
from animals and humans to the environment, where they can persist 
and spread (Iwu et al., 2020; Buta et al., 2021). The soil microbiome 
has the capacity to serve as a reservoir for these resistance genes, 
facilitating the perpetuation of antimicrobial resistance within the 
surrounding environments (Pu et al., 2019).

The use of fertilizers in agriculture offers various advantages, such 
as waste recycling, replace chemical fertilizers, enhanced soil quality, 
and reduced production expenses, among others (Ganesan, 2022). 
However, the use of animal amendments as fertilizers can introduce 
pathogens from animal feces into the environment (Zhang et  al., 
2020). Additionally, manure can contain antimicrobial residues, 
bacteria (including commensals) carrying resistance genes, and the 
resistance genes themselves, which can eventually contaminate the 
environment, water bodies, and soil (den Meersche et al., 2019; Lima 
et al., 2020). Moreover, crops cultivated in these amended soils have 
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FIGURE 1

Relative abundance of antimicrobial resistance genes (ARGs) in non-amended soils, amended soils and animal-derived organic amendments, by gene 
(A) and by antimicrobial group (B), antimicrobial resistance genes (N°) in non-amended soils, amended soils and animal-derived organic amendments (C).

FIGURE 2

Principal component analysis of relative abundances of antimicrobial resistance groups in non-amended soils, amended soils and animal-derived 
organic amendments.
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the potential to acquire these resistance genes, thereby increasing the 
likelihood of antimicrobial resistance transmission to humans and 
animals through the consumption of these crops (He L.-Y. et al., 2021; 
Huang et al., 2021).

In livestock production, the most frequently found ARGs are 
related to sulfonamide resistance (sul) (Makowska et al., 2016), this 
finding is consistent with the results obtained in this study, which 
identified the presence of all genes associated with sulfonamide 
resistance. It is important to understand that the detection of ARG in 
agricultural soils extends beyond regional borders, given the global 
nature of AMR and, specifically, sul genes can originate from different 
sources (Heuer et  al., 2011; Chaturvedi et  al., 2021). Tetracycline 
resistance genes (tet), detected in this study, are widely distributed in 
different pathogenic and environmental bacteria and are often detected 
in wastewater treatment plants, soils, surface waters, and groundwater 
(Chee-Sanford et  al., 2001; Li et  al., 2010; Wang et  al., 2017). In 
agreement with this study, different authors have demonstrated the 
presence and persistence of multidrug-related genes and mobile 
genetic element genes in soil samples (Fricke et al., 2008; Zhang et al., 
2020; Delgado-Baquerizo et  al., 2022). The extensive use of 
antimicrobials in agriculture, including the application of animal 
manure and organic amendments, has been identified as a major 
contributing factor to the dissemination and maintenance of multidrug 
resistance genes in the environment (Iwu et  al., 2020). The high 
prevalence of multidrug-related genes and mobile genetic elements in 
agricultural soils highlights the critical role of the environment as a 
reservoir and potential source of resistance genes (He et al., 2020; Lima 
et al., 2020), emphasizing the need for effective strategies to mitigate 
the environmental dissemination of antimicrobial resistance. The 
search for MGE provides insights for AMR prevention and control 
strategies that limits the acquisition and spread of AMR (Gillings, 
2014; Hendriksen et al., 2019; Vrancianu et al., 2020). The identification 
of ARG in Latin America constitutes poses a substantial risk to food 
safety and security in this region (Reichert et al., 2019). While there is 
limited data on the occurrence of ARG in South America, studies have 
shown that clinically relevant ARG are more abundant in low- and 
middle-income settings in Africa, Asia, and South America, compared 
to high-income countries (Fouz et al., 2020).

In this study, the presence of antimicrobial resistance genes 
(ARGs) was compared among amended soils, unamended soils, and 
animal manure. Unamended soils referred to soils that had not 
received fertilization in the current year but had been previously 
amended in other seasons. These unamended soils should not 
be considered as completely clean since they carry a significant ARG 
load due to previous amendments. Interestingly, certain genes (such 
as blaOXA, sulA, tetO, tetW, tetM aac (6) ib, intL1) exhibited higher 
frequencies in unamended soils (Figure 1C). This finding suggests the 
potential persistence of these genes within the soil microbiome, 
contributing to the perpetuation of antimicrobial resistance in those 
environments over time (He L.-Y. et  al., 2021). Conversely, genes 
including blaCTX, sul1, sul2, tetA, dfrA1, aadA9 and intL2 were 
detected at higher frequencies in animal manure 
(Supplementary Table S2). This observation is consistent with the 
expectation that manure would contain a greater abundance of ARGs, 
considering the association of farm animals, such as cows and horses 
from which the manure originated, with antimicrobials in animal 
production systems (Zhu et  al., 2013; Xie et  al., 2018). The soil 
microbiome can harbor ARG from various sources over time or even 
be the origin of these ARG (Colomer-Lluch et al., 2011; Forsberg et al., 

2012). This implies that, regardless of whether soils receive fertilization 
or not, that may possess the potential to disseminate ARG to animals, 
plants, and humans (Forsberg et al., 2014; Cycoń et al., 2019). To 
prevent and mitigate this risk, an integrated approach is essential, 
which encompasses the management of animal-derived fertilizers, as 
well as addressing contamination sources like irrigation water, 
wastewater, and different animals, both wild and domestic.

There are various abiotic factors present in the soil, including pH, 
moisture content, heavy metals, temperature, and others, that play a 
significant role in determining the abundance of antibiotic resistance 
genes (Liu W. et  al., 2021). These factors exert their influence by 
affecting the succession of bacterial communities in the soil 
microbiome, as well as the presence of mobile genetic elements (Liu 
B. et  al., 2021). This could potentially elucidate the mechanisms 
responsible for the preservation of genes within unamended soils 
across successive seasons. Interestingly, resistance genes, when grouped 
by resistance type, were found to vary among the environments 
analyzed (Figure 2), where a relationship is seen between unamended 
and amended soils and multidrug resistance related genes and 
tetracyclines resistance genes, and between sulfonamides, 
aminoglycosides and MGE with animal manure. However, it is 
important to note that further analysis and examination of additional 
factors that may provide a more comprehensive understanding of the 
factors influencing resistance variations in the samples.

In the context of this study, it is important to note that the potential 
for contamination from human and animal sources cannot be ruled out, 
given the possible influence of various environmental reservoirs, such as 
wastewater and run-off from livestock facilities and agriculture (Holvoet 
et al., 2013; Berglund, 2015). The surveillance of antimicrobial resistance 
needs to consider the various stakeholders involved in the spread and 
persistence of AMR (Roca et  al., 2015). The One Health approach 
acknowledges the interdependence of animals, humans, foods, and the 
environment, in the transmission and amplification of AMR. Therefore, 
it is crucial to adopt an integrated surveillance framework that embraces 
the One Health approach, involving multiple sectors, to effectively 
address the complex challenge of AMR (White and Hughes, 2019).

This study represents the first investigation of antimicrobial 
resistance genes (ARGs) in agricultural soils in Chile, and it stands as 
one of the early studies of its kind in South America. However, to 
derive more comprehensive and significant conclusions, further 
research involving a larger sample size is warranted. Additionally, 
future studies should consider the detection of antimicrobial residues 
across different environments, animals, and human sources, thereby 
expanding our understanding of this complex issue. By understanding 
and addressing the interplay between animals, humans, and the 
environment, we can effectively mitigate the persistence and expansion 
of AMR and safeguard public health and ecosystem integrity.
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