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Introduction: A common task in the analysis of microbial communities involves 
assigning taxonomic labels to the sequences derived from organisms found in 
the communities. Frequently, such labels are assigned using machine learning 
algorithms that are trained to recognize individual taxonomic groups based on 
training data sets that comprise sequences with known taxonomic labels. Ideally, 
the training data should rely on labels that are experimentally verified—formal 
taxonomic labels require knowledge of physical and biochemical properties of 
organisms that cannot be directly inferred from sequence alone. However, the 
labels associated with sequences in biological databases are most commonly 
computational predictions which themselves may rely on computationally-
generated data—a process commonly referred to as “transitive annotation.”

Methods: In this manuscript we explore the implications of training a machine 
learning classifier (the Ribosomal Database Project’s Bayesian classifier in our 
case) on data that itself has been computationally generated. We generate new 
training examples based on 16S rRNA data from a metagenomic experiment, 
and evaluate the extent to which the taxonomic labels predicted by the classifier 
change after re-training.

Results: We  demonstrate that even a few computationally-generated training 
data points can significantly skew the output of the classifier to the point where 
entire regions of the taxonomic space can be disturbed.

Discussion and conclusions: We conclude with a discussion of key factors that 
affect the resilience of classifiers to transitively-annotated training data, and 
propose best practices to avoid the artifacts described in our paper.
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1. Introduction

Public databases are at the core of virtually all computational analyses of genomic data sets. 
The identity of organisms in a sample, the function of genes, and the phenotypic consequences 
of a genomic variant (among many other tasks) are all predicted by comparing newly-generated 
data to previously-annotated sequences in a reference database. The annotation of genomic 
features with taxonomic, functional, or phenotypic information is performed through a range 
of computational approaches, such as nearest-neighbor search-based techniques (where a 
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sequence receives the label of the database sequence it most closely 
resembles) or supervised machine learning (where a model is trained 
using pre-annotated sequences for each label, and new sequences are 
annotated based on their statistical fit to the corresponding model).

Ideally, every label associated with an entry in a database would 
be  the result of a careful experimental characterization of the 
corresponding organism, gene, or protein. For example, in microbial 
taxonomy, each label is defined based on morphological and 
phenotypic features of organisms (Sanford et al., 2021). However, the 
number of entries in biological sequence databases that are labeled on 
the basis of experimental evidence represents a small minority among 
all entries. As an example, Mahlich et al. (2018) describe that only 6,835 
out of over 200,000 enzyme sequences from the SwissProt database are 
annotated on the basis of an experimental confirmation of enzyme 
function. Furthermore, in many cases, labels (in this case Enzyme 
Commission, or E.C., numbers) assigned to enzyme sequences did not 
have a single experimentally-verified sequence in the database.

The vast majority of labels associated with biological sequences 
are determined computationally from labels already present in 
databases, labels that themselves may have been inferred 
computationally. This situation is commonly referred to as “transitive 
annotation” since a particular label may be determined through a 
(potentially long) transitive chain of computational predictions. As in 
the case of the game “telephone,” the longer the inference chain, the 
more likely it is that errors are introduced. While the fact that 
transitive annotation introduces errors is well appreciated (Iliopoulos 
et al., 2003; Salzberg, 2007; Schnoes et al., 2009; Promponas et al., 
2015), the impact of these errors on machine learning models is less 
well understood. In this manuscript, we  focus on taxonomic 
annotation using a naïve Bayes classifier developed for the annotation 
of 16S rRNA gene sequences—the Ribosomal Database Project (RDP) 
classifier (Wang et al., 2007). We chose this data set and classifier since 
they are established resources in microbial ecology, and are extensively 
used by researchers around the world. However, our general 
methodology and conclusions apply more broadly to any sequence-
based machine-learning classifier.

2. Background

The introduction of errors in biological databases due to transitive 
annotation has been recognized since the 1990s. Doerks et al., for 
example, state in 1998: Database searches are used to transfer functional 
features from annotated proteins to the query sequences. With the 
increasing amount of data, more and more software robots perform this 
task. While robots are the only solution to cope with the flood of data, 
they are also dangerous because they can currently introduce and 
propagate mis-annotations (Doerks et al., 1998). An attempt to model 
the process through which errors are introduced was made by Gilks 
et al. (2002) within the context of a simple annotation strategy that 
assigns a new sequence the label of the database sequence that is closest 
to it. Schnoes et  al. (2009) highlight the significant error levels in 
protein databases, largely attributing these errors to the computational 
prediction of functional labels, contrasting this finding with the low 
error rates in manually curated databases. Promponas et al. (2015) 
explore several types of errors in protein functional annotations that 
are introduced by annotation approaches that go beyond simple 
sequence similarity. These are just a few examples that demonstrate the 

general awareness in the bioinformatics community of the fact that 
transitive annotation approaches lead to errors. Most of the research in 
this space, however, focuses on functional annotation prediction, and 
largely assumes simple annotation algorithms. To our knowledge, the 
impact of transitive annotation on taxonomic annotation performed 
with machine learning models has not yet been explored.

Here we  focus specifically on the RDP classifier, a naïve Bayes 
classifier (Wickramasinghe and Kalutarage, 2021) for 16S rRNA gene 
sequences (Wang et  al., 2007). During the training phase, the RDP 
classifier evaluates the frequency of 8-mers (substrings of length 8) 
extracted from the training sequences, estimating the conditional 
probability of observing each 8-mer in a given taxonomic group. During 
classification, the 8-mers in a query sequence are used to estimate the 
probability that the query sequence originates from a particular 
taxonomic group, and the sequence is classified into the taxonomic 
group with the highest probability of a match. Given the large imbalance 
between the total number of 8-mers (65,536) and the number of 8-mers 
in any given sequence (~1,600 in a full-length 16S rRNA gene sequence), 
8-mer frequencies are expected to be low in any given sequence and 
taxonomic group, thus the addition of a single sequence may have a 
significant impact on the distribution of 8-mers within taxonomic 
groups, and therefore on the classifier’s output. We empirically explore 
this intuition in the remainder of the manuscript.

3. Methods

3.1. Experimental design

We set out to mimic a common situation in bioinformatics 
research. Scientists analyze some biological samples and generate 
sequences from the organisms present in those samples. These 
sequences are assigned taxonomic labels using a classifier, and are then 
deposited in a public database, annotated with the corresponding 
taxonomic labels. At a later point, scientists may use some of these 
sequences and their annotation as part of the training data for a new 
version of the classifier. To better understand how the impact of a 
particular sequence on the classifier output depends on the distance 
between this sequence and the decision boundary between adjacent (in 
feature space) taxonomic labels, we also generated artificial sequences 
that span the “space” between biological sequences that have divergent 
labels. The details are provided below. Note that in our experiment 
we do not assume any knowledge about the sequences that were used 
to train the classifier in the first place, rather we simply explore the 
effect of adding one or more new sequences to the training set.

We rely on a data set comprising 112,435 sequences of 16S rRNA 
gene operational taxonomic units (OTUs) generated in a study of 
childhood diarrhea in the developing world (Pop et al., 2014). These 
sequences were assigned taxonomic labels using the RDP classifier 
(version 2.5 obtained from https://github.com/rdpstaff/classifier), 
using the v18 version of its training dataset. All sequences were 
classified at the genus level, meaning the most specific classification 
we can obtain is a genus label. Within these data, we identified pairs 
of OTUs that are neighbors in sequence space yet were assigned 
divergent genus-level labels. Specifically, we identified 1,250 OTUs 
from 184 genera which formed 14,451 pairs of sequences that shared 
a family-level classification but diverged at the genus level, and that 
could be aligned to each other using BLAST (Altschul et al., 1990). 
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We considered only alignments that could be obtained using BLAST 
with default parameters and where the alignment covered more than 
85% of the shorter sequence. For each pair of aligned sequences, 
we then computed a set of 10 edit “paths”—chains of sequences that 
differ from the prior sequence by exactly one edit operation 
(substitution, insertion, or deletion of a nucleotide) and that together 
represent the chain of edits necessary to transform one sequence in 
the pair into the other (Figure 1A). We restricted our analyses to 10 
distinct edit paths for the sake of computational tractability. Thus, 
each chain comprises the two (real) sequences in the pair, as well as 
a number of artificial sequences equal to the edit distance between 
the paired sequences. All artificial sequences were assigned 
taxonomic labels using the RDP classifier. Given that the original pair 
of sequences have divergent genus labels, this process allows us to 
empirically determine the distance (in number of edit operations) 
over which the classifier retains the same genus label as the endpoint 
of the edit path. In other words, we are effectively estimating the 
decision boundaries, within sequence space, of the labels assigned by 
the classifier. We then used this information to select sequences that 
are added to the training set for the classifier (Figure  1B), then 
explored the impact of the changes in training data on the genus-level 
boundaries identified within our data set. In order to emulate the 
transitive annotation process, each sequence added to the training 
data set was assigned the label provided by the classifier itself, i.e., the 
new training data simply reinforce the classifier’s initial prediction. 
We provide a flowchart and a detailed pseudocode used to identify 
candidate sequences for generating edit paths and the pseudocode to 
compute the edit paths in the Supplementary Figures S1–S3.

3.2. Experimental details

The training of the RDP classifier is orientation-specific, i.e., each 
sequence is processed in the “forward” orientation only (as defined 
according to the standard orientation of the Escherichia coli 16S rRNA 
gene). Since the experimental process used to generate the 16S rRNA 
gene sequences used in this study processed sequences in reverse, 
sequences were reverse complemented before being added to the 
training data set. Furthermore, the RDP classifier’s training data set 
comprises full-length 16S rRNA gene sequences, while the 
experimental data contain only a subset of this gene (between primers 
338R and 27F, encompassing the hypervariable regions V1-V2) (Pop 
et al., 2014). When augmenting the training data, we added these 
partial sequences rather than trying to generate full-length versions of 
the 16S rRNA gene sequence by splicing the artificially-generated 
fragment into the backbone of the 16S rRNA gene. We made this 
choice for simplicity, and because pilot experiments demonstrated that 
the results are not affected by the length of the artificial sequence 
added to the training data set (results not shown).

4. Results

4.1. Proof of concept

As a proof of concept, we highlight a pair of sequences from the 
childhood diarrhea data set, one classified in the genus Dialister 
(sequence 3382_932) and the other in the genus Allisonella (sequence 

FIGURE 1

Overview of experimental setup. (A): two sequences from the input (A,B) are aligned to each other, then multiple “edit paths” are computed between 
them by creating a set of sequences that differ between each other by exactly one edit, and that connect A to B. We show two such paths: A-S1-S2-B 
and A-S3-S4-B, which differ through the order in which the edits are made (highlighted by gray boxes). (B): Modeling the impact of transitive 
annotation. Two sequences from the input that belong to distinct taxonomic genera A (empty circles) and B (gray circles) are aligned to each other and 
an edit path is computed (small circles). The transition in the label assigned to the intermediate sequences (change in shading) empirically identifies the 
location of the decision boundary that separates the two genera. A sequence close to the decision boundary (highlighted with a black arrow) is added 
to the training data for the classifier, resulting in a shift of the decision boundary, changing the label of the sequences previously belonging to genus B 
(reflected by a decrease in the size of the green region). The distance from a sequence to the decision boundary is denoted by δ.
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3928_5349). These sequences differ from each other by 53 edits. Thus, 
we generated 52 artificial sequences each differing from the next one 
by one nucleotide edits, covering the entire path between 3382_932 
and 3928_5349. We computed ten different paths, each following a 
different order of edits, and classified each of the intermediate 
sequences at the genus level. The labels assigned to each intermediate 
sequence along the 10 paths are shown as different colors in 
Figure  2B. We  focus on path 3 shown isolated in Figure  2A, that 
comprises sequences classified as Allisneolla, and Dialister, with the 
changes in color representing where the path crosses the decision 
boundaries for the RDP classifier.

From this path, we selected the sequence labeled S1 (annotated as 
Allisonella) and added this sequence to the training data set for the 
RDP classifier. After retraining the classifier, we re-annotated all the 
sequences, with the new labels shown in Figure 2C. Focusing just on 

path 3 (Figure 2A), we note that all the sequences previously labeled 
as Dialister are now labeled Allisonella. Furthermore, in the original 
data set, 1,811 OTU sequences were classified as Dialister. After 
re-training, 1,596 of these sequences were classified as Allisonella, 
demonstrating the significant impact of changing the decision 
boundary of the classifier through the addition of a single new 
sequence to the training data set.

4.2. Exploring the sensitivity of the RDP 
classifier

We define the sensitivity of the classifier as the number of 
sequences that change their label after the addition of one sequence to 
the training data set. As indicated above, the sequences added to the 

FIGURE 2

The effect of adding a single sequence (labeled S1 in panel A) to the training data set of the RDP classifier. Each row in the figure represents a set of 
edits between sequence 3928_5349(leftmost column) and sequence 3382_932. The colors correspond to the genus-level classification of each 
sequence, as shown in the legend. The shaded squares underneath each sequence represent the level of confidence in the classifier, from white (low 
confidence) to black (high confidence). (A) Path 3: The top two rows represent the original taxonomic labels and confidence values. The bottom two 
rows represent the taxonomic labels along this path obtained by adding sequence S1 to the training dataset. (B) The original taxonomic labels for 10 
edit paths between the two sequences. (C) The taxonomic labels for all sequences along the 10 edit paths after the addition of sequence S1 to the 
training data set of the RDP classifier. As seen in all panels, the addition of this single sequence results in the change in labels of all sequences in the 
data, resulting in a significant increase in the number of sequences labeled Allisonella.
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training data were either individual OTU sequences from the 
childhood diarrhea data set, or artificial sequences generated along an 
“edit path” between OTU sequences with divergent taxonomic labels. 
After retraining the classifier, we analyzed the number of sequences 
that changed taxonomic labels, as well as the taxonomic “distance” of 
the change, i.e., the level of the most recent common ancestor between 
the original label and the label assigned after re-training.

4.2.1. Sensitivity depends on distance from 
decision boundary

We re-trained the RDP classifier after adding to the training data 
set, one by one, the 995 OTU sequences that had been paired with a 
sequence from a different genus. As described above, by traversing the 
edit path between the sequences, we are able to estimate the location 
of the classifier’s decision boundary between the two genera. Figure 3A 
highlights the relationship between the sensitivity of the classifier to 
the addition of a single training sequence and δ, the distance of this 
sequence from the decision boundary. As can be seen in the figure, the 
closer a training example is to the decision boundary, the more 
significant is its impact, in terms of the number of sequences that 
change labels after retraining the model (Pearson correlation between 
impact and distance to boundary is −0.13, p < 0.005).

4.2.2. Sensitivity depends on support in training 
data set

The “strength” of the support in the training data, i.e., the number 
of training sequences that share a particular genus label, may impact 
the sensitivity of the classifier. Specifically, we addressed two questions: 
(i) does the impact of a newly added training sequence depend on the 
level of support of its label? (ii) does the level of support for a label 
influence its sensitivity to adversarial perturbations (likelihood the 
label is changed by a newly added training sequence)?

Figure 3B highlights the number of sequences that change labels 
as a new training sequence is added to the classifier, as a function of 
the level of support of the training sequence. As can be  seen, the 
sensitivity of the classifier drops (Pearson correlation ρ −0.05, value 
of p <0.005) with the increase in the number of training sequences 
with the same label as the newly added example. In other words, 
adding new training examples to a label that is already well represented 
in the database has a lower impact than for less well represented labels.

Figure 3C highlights the number of sequences that change labels 
as a new training sequence is added, as a function of the level of 
support in the training data for the changed label. As can be seen, 
labels that are well supported in the training database are less sensitive 
to the addition of new training sequences for neighboring taxa.

FIGURE 3

Sensitivity of the RDP Classifier. (A) The sensitivity of the classifier to the introduction of a single training sequence. X-axis: δ: the distance to the 
decision boundary (the number of edits needed for the taxonomic label of the sequence to change) Y-axis: sensitivity of the classifier (the number of 
sequences whose label changed upon adding a single training sequence) along the Y-Axis. (B) The effect of training class size on the sensitivity of the 
classifier. X-axis: the number of sequences that have the same label as the added training sequence; Y-axis: the sensitivity of the classifier. (C) X-axis: 
the number of sequences that have the same label as the sequence that changed labels upon adding one training sequence; Y-axis: the sensitivity of 
the classifier. (D) Comparing the impact of adding OTU (query) sequences to the training data with the impact of adversarially-created artificial 
sequences (The y-axis is trimmed to remove outliers).
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4.2.3. The inclusion of a single training sequence 
can affect distant taxa

To further substantiate the taxonomic magnitude of changes 
induced by the addition of a training sequence, we focused on a pair 
of taxonomic groups: Streptococcus and Lactococcus. We selected 238 
pairs of sequences with divergent labels. From the edit path between 
pairs of such sequences, we selected the sequence labeled Streptococcus 
that was closest to the decision boundary between Streptococcus and 
Lactococcus. This sequence was then added to the training data set 
with the label Streptococcus (the same as the label assigned by the 
classifier). We note that the training database contained 171 and 24 
sequences labeled as Streptococcus and Lactococcus, respectively. After 
re-training, we identified all the sequences that changed labels, and 
computed the most recent common ancestor between the original and 
the retrained label. From the 238 training sequences determined as 
described above, 233 (98%) caused changes that spanned microbial 
phyla. We observed 3,509 label changes after the inclusion of one or 
more training sequences, the majority (over 99.88%) of which changed 
to Streptococcus—an expected outcome given that the newly added 
training sequences had that taxonomic label. Note, however, that the 
data set comprised just 204 sequences labeled Lactococcus, thus most 
of the changes impacted genera that were not involved in the design 
of adversarial examples. Furthermore, several sequences changed 
labels to taxa other than Streptococcus. One sequence changed labels 
from Lachnospiraceae incertae sedis to Clostridium XVIa, one from 
Clostridium XVIa to Lachnospiraceae incertae sedis, one from 
Ligilactobacillus to Pilibacter, and interestingly, one sequence 
previously labeled as Streptococcus changed its label to Haloplasma.

More broadly, a total of 231,580 label changes occured after the 
addition to the training data set of one of 995 OTU sequences. A total 
of 2,481 (1.7%) such changes occur between different phyla, 1,048 
(0.45%) between different classes, 57,267 (24.73%) between different 
orders, 9,434 (4.07%) between different families, and 161,350 (69.67%) 
between different genera. Some notable phylum level label changes 
include 272 sequences that changed from Faecalibacterium (phylum 
Bacillota) to Succinivibrio (phylum Pseudomonadota) and 109 
sequences that changed from Pseudescherichia (phylum 
Pseudomonadota) to Anoxybacillus (phylum Bacillota).

4.2.4. The sensitivity of the RDP classifier to 
“worst case” training examples

To explore the impact of training examples that are most likely to 
lead to prediction changes, we added to the training set sequences that 
were just one nucleotide away from the decision boundary between 
pairs of taxa. Specifically, we  selected 995 sequences from the 
childhood diarrhea data set that were confidently labeled by the RDP 
classifier (classification accuracy of at least 0.8). Among these, 
we identified 9,358 pairs that had divergent genus-level labels, and that 
could be aligned to each other as described earlier. We then added to 
the training data set the sequence along the edit path that was closest 
to the decision boundary. We then compared the impact of adding this 
training example with that of adding its “parent” - the original OTU 
sequence from which the path originated. Figure 3D compares the 
distribution of changes to classifier predictions between the worst-case 
scenario (addition of sequence adjacent to decision boundary) and the 
“natural” experiment (addition of one of the OTU sequences to the 
training data). Selecting the sequences adjacent to the decision 
boundary results in a larger number of classification changes 

(KS-Statistic 0.12, p-value <0.005), with the median number of label 
changes increasing from 3 to 7. At the extremes, a sequence selected 
along the edit path between a Barnesiella and a Coprobacter OTU, 
caused 16,034 sequences to change labels, while an OTU sequence 
labeled Massiliprevotella, caused 11,594 sequences to change labels 
after its addition to the training data set.

4.2.5. Transitive annotation impacts the labels of 
type strain sequences

Our analysis so far has focused on changes to the labels assigned 
to sequences derived from uncultured biological samples. To evaluate 
whether transitive annotation can impact the labels associated with 
sequences extracted from validated organisms, we analyzed a set of 
sequences obtained from type strain isolates. Specifically, downloaded 
type strain sequences from the SILVA database (specifying ‘[T] [T]’ in 
the query field) and re-classified them using the RDP classifier. We, 
then, focused on 107 sequences for which the SILVA and RDP 
classifications agreed. We then performed the same experiment as 
described in the experimental design section—we paired these 
sequences with sequences from different genera and created artificial 
training examples along the corresponding edit path. After retraining 
the classifier, 53 type strain sequences changed their label to a different 
genus. As a concrete example, sequence HQ286045 from the type 
strain Streptomyces aidingensis (Xia et al., 2013), changed its label to 
Prauserella after the introduction of a transitively annotated sequence 
labeled Prauserella, sequence obtained from the edit path between two 
type strain sequences AF466190 – Prauserella (Li et al., 2003) and 
AJ252832 - Amycolatopsis (Lee et al., 2000).

4.3. Studying the cumulative effect of 
training examples

The analysis so far focused on the effects of a single added training 
sequence. Here we explore the cumulative effect of adding multiple 
sequences to the training data of the classifier. Specifically, we focus 
on several “target” taxa and explore how much of these taxa can 
be obfuscated by the iterative addition of training examples from 
neighboring taxonomic groups.

We focus on the genera Dorea, Mediterraneibacter and Dialister. 
For each of the three genera, we sampled multiple sequences from the 
edit paths connecting them to neighboring genera. For each such 
sequence, we evaluated the number of sequences from the target genus 
that changed their label. We then sorted these sequences in decreasing 
order of their impact, and added them, one by one, to the training data 
set, retaining the previously added sequences. The cumulative effect 
of these additions is shown in Figure  4. Specifically, we  plot the 
number of sequences that are classified as Dorea, Mediterraneibacter 
and Dialister with the number of transitive annotations performed 
along the x-axis. We  note that for all three taxa considered, the 
number of sequences whose labels change tends to saturate beyond a 
certain threshold. The point at which a particular genus label could 
not be degraded further by the addition of new training data varied 
across taxa: 199 for Dorea, 528 for Mediterraneibacter, and 222 for 
Dialister. We highlight the Dorea example in Supplementary Figure S4 
where we focus on 6 Dorea sequences and their neighboring genera, 
together with the corresponding distances to the decision boundary. 
Also, the Supplementary Table S1 contains all sequences originally 
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labeled as Dorea that eventually changed the label to a different genus. 
It is important to note, however, that our experiment does not 
represent a comprehensive “attack” on the specific labels, rather 
we sought to model a situation that can occur in practice as researchers 
populate the sequence databases with data from specific 
taxonomic groups.

5. Discussion

It is important to start by stating that we intentionally did not 
attempt to assess the accuracy of the predictions made by the RDP 
classifier and how this accuracy may be impacted by the addition of 
sequences to the training data. First and foremost, we did not want to 
delve into a possibly contentious debate about our definition of the 
correctness of taxonomic labels, particularly as the correctness of 
taxonomies itself is a debated topic (Hugenholtz et al., 2021). Second, 
we  argue that precise measurements of accuracy are ultimately 
irrelevant to the main findings of our paper. We  show that small 
changes to the data used to train the RDP classifier lead to significant 
changes in the classifier output, even though the new training data 
were labeled by the classifier itself. The fact that genus-level boundaries 
are sensitive to small perturbations in the training data implies errors 
are likely introduced as boundaries shift, an important observation 
even if the individual errors are not precisely identified.

As we have shown above, the impact on the classifier output of a 
single training sequence depends on three main factors: (i) the 
distance from the training sequence to a decision boundary (which 
we estimated empirically here); (ii) the number of training sequences 
that have the same label as the newly added sequence; and (iii) the 
number of training sequences that support the labels that may 
be  impacted by retraining the model. These observations are not 
surprising given the way in which the naïve Bayes classifier used in 
our study operates. Since each taxonomic label is implicitly defined by 
the distribution of 8-mers within the training sequences with that 
label, factors (ii) and (iii) are consistent with the intuition that 8-mer 
distributions become more robust as more training examples are 
added. The first factor can be explained by the fact that the difference 

in 8-mer profiles of two sequences depends on the distance between 
them. Training examples that are nearby (in sequence space) 
sequences with divergent labels, share a large fraction of 8-mer profiles 
with them, thus having a stronger influence on classifier predictions 
when these 8-mers are added to the training data.

While we expected that the addition of a single training data point 
may have a local impact on the output of the classifier, we  were 
surprised to see that some training examples led to the re-labeling of 
large numbers of sequences (exceeding 10,000 in one case), and that 
some of the changes traversed phylum boundaries. This observation 
implies caution is warranted when interpreting the output of 
automated annotation tools, particularly in the context of broad 
taxonomic surveys.

As we  embarked on this project, we  were concerned that an 
unlucky combination of transitively annotated sequences could lead a 
classifier to obscure one or more taxonomic groups. Our initial 
experiments demonstrate that erasing individual taxonomic groups is 
not trivially achieved, though we  have not explored all possible 
“attacks.” Even so, the impact on the representation of individual 
taxonomic labels in the output of the classifier is quite significant, with 
more than half of the sequences originally classified in individual 
groups changing labels after adversarial training. This observation 
brings into question the accuracy of taxonomic profiling experiments, 
particularly when conducting meta-analyses that rely on different 
versions of classification tools.

Our findings underscore the importance of careful training of 
classifiers. We recommend here a few best practices in the context of 
taxonomic annotation, however readers are encouraged to also 
explore additional resources developed in different contexts (Wang 
et al., 2020; Artrith et al., 2021) As much as possible, the training data 
should be derived from experimental evidence, and computationally-
derived labels should only be used when absolutely necessary (e.g., 
when the genomes analyzed are obtained from metagenomic samples 
rather than cultured specimens). Cross-validation and/or sensitivity 
analysis should be used to ensure that the classifier output is robust to 
small changes in the training data, and to identify the training 
examples that have a significant impact on the output so that these 
examples can be  validated. Furthermore, both the classification 

A B C

FIGURE 4

Cumulative effect of multiple training examples. Plots showing the number of sequences(Y-axis) classified as (A) Dorea (B), Mediterraneibacter, 
(C) Dialister after the iterative addition to the training data set of new training examples (X-axis). The star indicates the number of sequences classified 
using the default database (prior to the addition of any new training sequences).
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software and the training database must be properly versioned and 
this information clearly documented in publications in order to enable 
meta-analyses. If the precise taxonomic label of sequences is important 
for a study (e.g., in the context of pathogen identification), or if precise 
abundance measurements need to be  obtained, it is preferable to 
create specialized classifiers for the taxa of interest, which can be more 
effectively validated than general purpose multi-class classifiers.

We want to very clearly state that our study is just a start and 
we  have only scratched the surface of the impact of transitive 
annotation on classifier output. We have limited our analyses to a 
random sample of sequences (and corresponding taxonomic labels) 
in order to limit the computational cost of our analyses, and only 
focused on one type of classification strategy—supervised learning 
using a naïve Bayes classifier. Additional research is needed to better 
understand the interplay between the accuracy of training data and 
classifier performance for a broader set of commonly-used 
classification algorithms used in genomics, including semi-supervised 
approaches (Triguero et al., 2015). It is also important to build bridges 
between the bioinformatics community and the broader research on 
data poisoning taking place in other fields of computing (Wang et al., 
2022). Such cross-field interactions are particularly relevant due to 
recent advances in artificial intelligence. Impressive new technical 
capabilities made possible by these advances are coupled with new 
vulnerabilities that must be  rapidly understood and overcome in 
order to allow the safe use of this technology in 
biomedical applications.
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