
Frontiers in Microbiology 01 frontiersin.org

An extracellular polysaccharide is 
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A novel aluminum-tolerant bacterial strain CA42 was isolated from the aquatic 
plant Eleocharis dulcis, which grows in a highly acidic swamp in Vietnam. 
Inoculation with CA42 allowed Oryza sativa to grow in the presence of 300  μM 
AlCl3 at pH 3.5, and biofilms were observed around the roots. Using 16S rRNA 
gene sequencing analysis, the strain was identified as Pullulanibacillus sp. CA42. 
This strain secreted large amounts of an extracellular polysaccharide (CA42 EPS). 
Results from structural analyses on CA42 EPS, namely methylation analysis and 
nuclear magnetic resonance (NMR), indicated that the chemical structure of 
CA42 EPS was a glycogen-like α-glucan. Purified CA42 EPS and the commercially 
available oyster glycogen adsorbed aluminum ions up to 15–30  μmol/g dry weight. 
Digestion treatments with α-amylase and pullulanase completely attenuated 
the aluminum ion-adsorbing activity of purified CA42 EPS and oyster glycogen, 
suggesting that the glycogen-like structure adsorbed aluminum ions and that its 
branching structure played an important role in its aluminum adsorbing activity. 
Furthermore, the aluminum tolerance of CA42 cells was attenuated by pullulanase 
treatment directly on the live CA42 cells. These results suggest that CA42 EPS 
adsorbs aluminum ions and is involved in the aluminum tolerance mechanism 
of Pullulanibacillus sp. CA42. Thus, this strain may be a potential plant growth-
promoting bacterium in acidic soils. In addition, this study is the first to report a 
glycogen-like polysaccharide that adsorbs aluminum ions.
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1. Introduction

Acid sulfate soil is the common name given to soils containing iron 
sulfides (pyrites). It is estimated that this kind of soil covers approximately 
500,000 km2 worldwide (Michael et al., 2017) and is especially abundant 
in Australia and Asia. When acid sulfate soil is dug up, pyrite becomes 
exposed to the air and is oxidized to sulfuric acid; consequently, both soil 
and water show a lower pH. Such soil is known as actual acid sulfate soil 
(AASS) (Dent and Pons, 1995). Below pH 4.5, aluminum becomes more 
soluble and toxic to plants, and a few micronutrients, such as manganese 
(Lasat, 2002) and iron (McGrath et al., 2001), become more soluble and 
toxic. Most plant nutrients, especially phosphorus, become more limited 
in acidic soils (Kochian et al., 2004), leading to serious environmental 
destruction and significant economic problems.

However, few plants can survive in such extreme environments. 
Since it has become clear that acid- and aluminum–resistant 
microorganisms coexist in the rhizosphere of such plants, such 
microorganisms may be  used for AASS bioremediation and crop 
cultivation. The use of these microorganisms in protecting the 
microenvironment of the plant surface and rhizosphere may yield a 
new and effective bioremediation method that can be used to recover 
AASS. Furthermore, protecting only the plant surfaces and 
rhizosphere is economical and has a minimal environmental impact.

In our previous study on developing bioremediation measures for 
AASS, we isolated several bacteria associated with plants grown in the 
highly acidic aquatic environments of AASS in Southeast Asia and 
reported new bacterial species (Aizawa et al., 2007, 2008, 2010a,b). For 
instance, we isolated a new strain of Acidocella aluminiidurans AL46 
from Panicum repens grown in a highly acidic swamp in the AASS of 
Vietnam (Kimoto et al., 2010). AL46 grows at pH 3.0 and is tolerant to 
500 mM aluminum sulfate or 200 mM aluminum chloride, which are 
higher than those observed in other bacteria. Furthermore, AL46 
produces an aluminum-binding capsular polysaccharide that may 
be involved in resistance to high concentrations of aluminum (Aizawa 
and Urai, 2020). An aluminum-tolerant bacterium, CA42, was recently 
isolated from the Chinese water chestnut Eleocharis dulcis, growing in 
a highly acidic swamp in the AASS of Vietnam. CA42 was selected for 
plant growth promotion in acidic soils based on its ability to restore rice 
growth in inoculation experiments in the presence of aluminum ions. 
CA42 also produces a large amount of extracellular polysaccharide (EPS).

In the present study, we identified and characterized CA42 and 
determined the structure and aluminum-adsorbing ability of the EPS 
it produces. Furthermore, we validated the involvement of EPS in the 
aluminum tolerance of CA42.

2. Materials and methods

2.1. Isolation of the aluminum-tolerant 
strain CA42

CA42 was isolated from E. dulcis by using diluted tryptic soy 
broth 1:10 (1/10 TS) agar plates, which were prepared by diluting 
2.75 g tryptic soy without glucose broth (BD, Franklin Lakes, NJ, 
United States) per liter of water and solidified with 15.0 g of agar (BD) 
per liter (pH 4.0). Acidic plates were prepared by mixing double-
strength TS medium component without agar and 3% agar solution 
that had been autoclaved separately to prevent agar hydrolysis. The 
growth of CA42 in the presence of AlCl3 was tested using modified TS 

(MTS) medium (2.75 g·l−1 tryptic soy without glucose, 0.2 g·l−1 
MgCl2·7H2O, 0.1 g·l−1 CaCl2·2H2O, 0.1 g·l−1 NaCl, 0.02 g·l−1 FeCl2·6H2O, 
0.5 g·l−1 (NH4)2SO4; pH 4.0).

Furthermore, the AlCl3 tolerance of CA42 was examined through 
a growth promotion test (inoculation experiments) on rice plants 
(IR36) in Yoshida’s solution (pH 3.5) containing 300 μM AlCl3. Briefly, 
IR36 seeds were surface-sterilized as described by Kochian and Shaff 
(1991). Inoculation experiments were performed as described by 
Elbeltagy et al. (2001). Inoculated plants were cultivated in Yoshida’s 
solution (pH 3.2) (Yoshida, 1976) for 60 days in growth chambers 
(LPH-350S; Nippon Medical & Chemical Instruments Co. Ltd., 
Osaka, Japan) with 100 μmol m−2 s−1 illumination from cool-white 
fluorescent lamps at a 12-h photoperiod at 30°C.

2.2. Characterization of CA42

The 16S rRNA gene of strain CA42 was amplified via PCR using 
universal primers (Tamura et al., 2001), and the nearly complete 16S 
rRNA gene nucleotide sequence (1,546 bp) was obtained. Sequence 
similarity was determined using the featured identification service of 
EzBioCloud (16S-based ID)1 (Yoon et al., 2017). Multiple alignments 
of the sequence data were performed using ClustalX (Thompson et al., 
1997). Subsequently, phylogenetic relationships with closely related 
species were determined using MEGA version 11 (Tamura et  al., 
2021). Evolutionary distances were computed as previously described 
(Jukes and Cantor, 1969). Phylogenetic trees were constructed using 
the maximum parsimony (Kluge and Farris, 1969), maximum 
likelihood (Felsenstein, 1981), and neighbor-joining (Saitou and Nei, 
1987) methods. The reliabilities of these tree topologies were evaluated 
using bootstrap analysis with 1,000 replicates (Felsenstein, 1985).

The production of indole acetic acid was tested by using 1/10 TS 
containing 1% (w/v) glucose and 5 mM tryptophan (pH 3.5 and 6.0).

2.3. Extraction and purification of CA42 
EPS

CA42 EPS was extracted from cells cultivated on 1/10 TS agar plates 
and purified using enzymatic treatments, phenol-chloroform treatment, 
and ethanol precipitation, as previously described (Urai et al., 2006).

2.4. Monosaccharide analysis

CA42 EPS (50 μg) was completely hydrolyzed using 2 M 
trifluoroacetic acid (TFA) at 100°C for 3 h. The obtained 
monosaccharides were labeled with 4-aminobenzoic acid ethyl ester 
(ABEE) and analyzed using high-performance liquid chromatography 
(HPLC; Nexera System; Shimadzu, Kyoto, Japan), as described 
previously (Urai et al., 2006). To determine the absolute configuration 
of CA42 EPS, the TFA hydrolysate of EPS was converted into 
acetylated (−)-2-butyl glycoside and analyzed using gas–liquid 
chromatography (GLC) (Leontein et al., 1978; Gerwig et al., 1979).

1 https://www.ezbiocloud.net/
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2.5. Nuclear magnetic resonance (NMR) 
analysis

NMR spectra were recorded at 500 MHz (1H) and 125 MHz 
(13C) using an ECA 500 instrument (JEOL Ltd., Tokyo, Japan) or 
at 600 MHz (1H) and 150 MHz (13C) with an ECZ 600 instrument 
(JEOL Ltd.). Chemical shifts were administered in parts per 
million (ppm), with acetone (δ 1H 2.23 ppm, δ 13C 31.1 ppm) used 
as an internal reference for samples measured in D2O solutions. 
Signals were assigned based on the results of the heteronuclear 
single-quantum coherence (HMQC) and heteronuclear multiple-
bond coherence (HMBC) experiments. 1H NMR chemical shifts 
of the overlapping signals were obtained from the center of the 
cross peaks in the 2D spectra.

2.6. Methylation of CA42 EPS

Methylation of CA42 EPS was performed as described 
previously (Ciucanu and Kerek, 1984). Subsequently, the 
methylated polysaccharide was hydrolyzed, reduced with  
sodium borodeuteride, acetylated, and analyzed using  
GLC–mass spectrometry (MS) (GCMS-QP2020NX; Shimadzu, 
Kyoto, Japan).

2.7. Enzymatic digestion of CA42 EPS

CA42 EPS was digested with pullulanase (Sigma-Aldrich Co. LLC, 
St. Louis, MO, United States) or α-amylase (Tokyo Chemical Industry 
Co., Ltd., Tokyo, Japan) in 0.1 M acetate buffer (pH 5.0) at 37°C 
overnight. After denaturation of the enzyme via heat treatment at 
100°C for 5 min, the products were recovered via freeze-drying. 
Oyster glycogen (FUJIFILM Wako Pure Chemical Corporation, 
Tokyo, Japan) and amylose (Sigma-Aldrich Co. LLC) were added 
using the same procedure.

Gel filtration column chromatography was performed using 
the Bio-Gel P-2 gel filtration column (900 mm × 15 mm ϕ; 
Bio-Rad Laboratories, Inc., CA, United  States), with 0.2 M  
acetic acid as the eluent. Fractions containing saccharides  
were monitored using the phenol-H2SO4 method (Dubois 
et al., 1956).

2.8. Evaluation of aluminum ion-adsorbing 
activity of CA42 EPS

The aluminum ion-adsorbing ability of CA42 was measured 
according to methods reported by Kerven et  al. (1989) and 
Maejima et  al. (2017). A colorimetric method using the 
pyrocatechol violet (PCV) reagent was used to measure the free 
aluminum ions in the glucan samples containing the aluminum 
solution. An aqueous solution of CA42 EPS or standard glucan 
(final concentration of 1 mg/mL) was mixed with AlCl3 to a final 
concentration of 25 μM, and the concentration of free aluminum 
ions was measured by determining the adsorbance of PCV at 
585 nm. The reduction in free Al3+ ions observed in the presence 
of glucans was considered as the amount of Al3+ adsorbed by 
the glucan.

2.9. Effect of pullulanase treatment on the 
aluminum tolerance of CA42

CA42 was cultured in 1/10 TS broth at 28°C for 2 d, and cells 
were recovered using centrifugation at 10,000 × g for 10 min. Cells 
were resuspended in 1 mL of 0.1 M acetate buffer (pH 5.0). Then, 
30 μL of pullulanase was added, and the cells were incubated at 37°C 
for 4 h. Pullulanase-treated cells were recovered using centrifugation 
at 10,000 × g for 10 min, and the cells were rinsed with acetate buffer. 
Then, 5 μL of 1 M AlCl3 solution was added, and the cells were 
incubated at 28°C for 4 h. The cells exposed to aluminum ions were 
rinsed with 0.85% (w/v) saline, while the number of living cells was 
measured by calculating the number of colony-forming units on the 
1/10 TS agar plates. Escherichia coli BW25113 was used as a control 
to evaluate aluminum toxicity. The survival rate of each strain was 
compared to that of cells that were not exposed to aluminum ions.

2.10. Statistical analysis

SPSS software (version 20.0; IBM Japan, Tokyo, Japan) was used. 
Normality of distribution and equality of variance were assessed using the 
Shapiro–Wilk’ and Levene’s tests. p values <0.01 were considered significant.

3. Results

3.1. Isolation and characterization of the 
aluminum-tolerant strain CA42

Among the bacteria isolated from E. dulcis using 1/10 TS agar 
plates containing 5 mM AlCl3 (pH 3.5), strain CA42 restored the 
growth of rice plants in Yoshida’s solution (pH 3.5) containing 300 μM 
AlCl3 (Figure 1A). In addition, biofilm was observed around the roots 
of the rice plants inoculated with CA42 (Figure 1B). The organism 
formed yellowish, round, smooth, and flat colonies with entire margins. 
The strain showed good growth on 1/10 TS agar plates at 20–37°C, 
with optimal growth at 30°C. Strain CA42 showed good growth at pH 
4–6, with optimal growth at pH 5 when cultured at 30°C for 5 d.

The 16S rRNA gene sequence of CA42 showed 98.38 and 97.95% 
similarity to those of P. naganoensis (AB021193) and P. uraniitolerans 
(AM931441), respectively. The partial 16S rRNA gene sequence of 
CA42 was submitted to the GenBank/EMBL/DDBJ databases 
(Accession number: AB520692). Furthermore, phylogenetic analysis 
results revealed that strain CA42 belonged to the genus 
Pullulanibacillus (Figure  2). These and other physiological and 
biochemical data (unpublished) suggest that the isolate represents a 
novel species of the genus Pullulanibacillus.

CA42 produced indole acetic acid in tryptophan-containing 
medium, indicating that CA42 belongs to plant-growth promoting 
rhizobacteria. Furthermore, CA42 showed good growth in the 
presence of 5 mM AlCl3 in MTS medium and produced a large 
amount of EPS on 1/10 TS agar plates.

3.2. CA42 produced a glycogen-like EPS

Purified CA42 EPS was observed to be a white fibrous compound 
soluble in hot water and dimethyl sulfoxide, but not in cold water, 
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methanol, or ethanol. At 280 or 255 nm, little or no adsorption was 
detected, suggesting that the CA42 EPS did not contain proteins or 
nucleic acids. Furthermore, the monosaccharide content of CA42 EPS 
was determined via TFA hydrolysis, followed by HPLC analysis. The 
results showed the presence of glucose as the sole polysaccharide 
component. The absolute configuration of glucose was determined 

using GLC with the acetylated (−)-2-butyl derivatives. The results 
showed that the glucose had the d-configuration.

One resonance signal was observed at δ 5.25 and δ 100.6 in the 
anomeric regions of the 1H and 13C NMR spectra, respectively (Figure 3). 
These anomeric signals were assigned to the α configuration based on 
the observed chemical shift values (Bubb, 2003). In addition, the 13C 

FIGURE 1

Inoculation of Oryza sativa cultivar indica IR36 with Pullulanibacillus sp. CA42 in Yoshida’s solution (pH 3.5) containing 300  μM aluminum chloride (A). 
1, Non-inoculated rice. 2, Rice inoculated with Pullulanibacillus sp. CA42. Biofilm around the roots of the rice inoculated with Pullulanibacillus sp. CA42 
was observed. Enlarged photo of each root (B).

FIGURE 2

Neighbor-joining tree based on a nearly complete 16S rRNA gene sequence, showing the positions of strain CA42 and its phylogenetic neighbors. 
Filled circles indicate the corresponding nodes (groupings) that were also recovered in the maximum-likelihood and maximum-parsimony trees. 
Numbers at the nodes are percentages of bootstrap values based on 1,000 resampled datasets; only those above 70% are indicated. The sequence of 
Bacillus subtilis NCIB 3610T was used as an outgroup. Bar, 0.01 nucleotide substitutions per nucleotide position.
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NMR spectrum showed one signal at δ 61.5 (C-6) and eight at δ 70–79 
(C-2–C-5). The 1H NMR spectrum displayed several signals at δ 3.31–
3.84 (H-2–H-6). The 1H chemical shifts of the CA42 EPS were assigned 
using two-dimensional total correlation spectroscopy (TOCSY) and 
two-dimensional double quantum filtered-correlation spectroscopy 
(DQF-COSY) experiments and showed two spin systems (Table 1). The 
13C chemical shifts of CA42 EPS were assigned using HSQC and HMBC 
(Table 1). The results of the NMR analyses clearly showed that the CA42 
EPS mainly consisted of α-1,4-linked residues of d-glucose.

Next, the CA42 EPS was methylated, and the derived alditol acetates 
were analyzed using GLC-MS (Table 2). Three peaks were observed, 
which were identified as 1,5-di-O-acetyl-2,3,4,6-tri-O-methyl-d-glucitol; 
1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl-d-glucitol; and 1,4,5,6-tetra-O-
acetyl-2,3-di-O-methyl-d-glucitol. The presence of 1,4,5,6-tetra-O- 

acetyl-2,3-di-O-methyl-d-glucitol indicated that CA42 EPS is branched 
at C-6 of the d-glucose residues.

CA42 EPS was digested by pullulanase, specifically degrading 
α-1,6-glucosidic bonds at the branching point of glycogen, and was 
fractionated using gel filtration column chromatography. Glucose, 
maltobiose, and maltotriose were detected using the phenol–H2SO4 
method (Figure 4). When oyster glycogen was treated using the same 
procedure, almost the same elution profile was obtained (Figure 4). 
These results indicate that CA42 EPS has a side-chain structure similar 
to that of oyster glycogen. In summary, CA42 EPS is glycogen-like 
polysaccharide consisting of a repeating unit (Figure 5).

3.3. Adsorption of aluminum ion by CA42 
EPS

To analyze the role of CA42 EPS in aluminum tolerance, 
we examined whether the polysaccharide adsorbed aluminum ions 
(Figure  6). CA42 EPS adsorbed 14.2 ± 0.2 μmol/g (dry weight) 
aluminum ion at a low pH. Commercially available oyster glycogen 
also adsorbed 22.8 ± 0.1 μmol/g (dry weight) aluminum ion, while 
amylose showed little to no adsorption (0.5 ± 0.4 μmol/g dry weight). 
In addition, enzymatic treatment with either α-amylase or pullulanase 
completely attenuated the aluminum ion adsorption activity of CA42 
EPS, as well as that of oyster glycogen. These results suggest that the 
glycogen-adsorbed aluminum ion and its branching structure play 
important roles in the aluminum tolerance of CA42.

3.4. Pullulanase treatment attenuated the 
aluminum tolerance of CA42 cells

Since pullulanase treatment attenuated the aluminum 
ion-adsorption activity of CA42 EPS, we  validated the effect of 
pullulanase treatment on the aluminum tolerance of CA42 cells. E. coli 
was used to evaluate the aluminum toxicity. The survival rate of each 
strain was compared with that in the absence of aluminum. The 
survival rate of E. coli was approximately 2%, regardless of pullulanase 
treatment. CA42 showed 53% survival in the presence of aluminum 
and 16% survival after pullulanase treatment (Figure 7). These results 
suggest that CA42 EPS is mainly involved in the aluminum tolerance 
of Pullulanibacillus sp. CA42.

FIGURE 3
1H nuclear magnetic resonance (NMR) spectrum (A) and 13C NMR 
spectrum (B) of CA42 extracellular polysaccharide, recorded in D2O 
at 70°C. ppm, parts per million.

TABLE 1 1H and 13C NMR chemical shifts (ppm) of CA42 EPS recorded in D2O at 70°C.

Glycosyl 
residue

H-1
C-1

H-2
C-2

H-3
C-3

H-4
C-4

H-5
C-5

H-6a
C-6

H-6b

→4)-α-d-Glcp-(1→
5.25

100.6

3.53

72.4

3.84

74.1

3.52

78.3

3.72

72.2

3.69

61.5
3.78

α-d-Glcp-(1→
5.25

100.6

3.45

72.7

3.59

73.9

3.31

70.4

3.60

73.6

3.63

61.5
3.73

TABLE 2 Methylation analysis of CA42 EPS.

Derivatives Structural feature Molar ratio

1,5-Di-O-acetyl-2,3,4,6-tri-O-methyl-d-glucitol Glcp-(1→ 1.2

1,4,5-Tri-O-acetyl-2,3,6-tri-O-methyl-d-glucitol →4)-Glcp-(1→ 12.2

1,4,5,6-Tetra-O-acetyl-2,3-di-O-methyl-d-glucitol →4,6)-Glcp-(1→ 1.0
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FIGURE 5

Repeating unit structure of the CA42 extracellular polysaccharide.

FIGURE 6

Adsorption of aluminum ion by CA42 extracellular polysaccharides 
(EPS) and standard glucans. Adsorbed ammonium ion in μmol was 
divided by the samples in grams. (a), native sample; (b), α-amylase-
treated sample; (c), pullulanase-treated sample. *p  <  0.01; NS, not 
significant.

4. Discussion

In the present study, we  aimed to characterize the novel 
aluminum-tolerant strain CA42, isolated from AASS, which 
allows Oryza sativa to grow in the presence of 300 μM AlCl3 at 
pH 3.5. The strain was identified as Pullulanibacillus sp. CA42, 
and this is the first strain belonging to the genus Pullulanibacillus 
that showed aluminum tolerance. CA42 produced a large amount 
of EPS, a glycogen-like α-glucan, that adsorbs aluminum ions. To 
the best of our knowledge, this study is the first to characterize 
EPS produced by a strain belonging to the genus Pullulanibacillus. 
The branching structure of CA42 EPS plays an important role in 
its aluminum adsorption activity. This study is the first report of 
glycogen-like EPS that adsorb aluminum ions. Furthermore, 
aluminum tolerance of CA42 was attenuated via pullulanase 
treatment. Our findings suggest that CA42 can act as a plant 
growth-promoting bacterium in acidic soils, and that CA42 EPS 

may protect plants growing in AASS. Currently, we  are 
conducting cloning experiments using CA42 EPS synthetic genes 
to construct EPS-deficient mutants. With these knockout 
mutants, we intend to clarify the roles of CA42 EPS in aluminum 
tolerance and plant growth promotion. The mechanism 
underlying the aluminum adsorption capacity of CA42 EPS and 
its application as a new aluminum-adsorbing substance that 
functions in acidic environments should be elucidated in future 
studies. This study proposes the new mechanism of aluminum 
tolerance using a bacterial extracellular polysaccharide. The 
strain isolated in this study may be  a potential plant growth-
promoting bacterium in actual acid sulfate soils.

FIGURE 4

Results of gel filtration column chromatography of CA42 
extracellular polysaccharide (EPS) and oyster glycogen treated with 
pullulanase. Oligosaccharides were applied to the Bio-Gel P-2 gel 
filtration column (900  mm  ×  15  mm ϕ), and 0.2  M acetic acid was 
used as the eluate. Glucose, maltobiose, and maltotriose were used 
as size markers. Closed circles, CA42 EPS; opened circles, oyster 
glycogen; OD, optical density.

FIGURE 7

Effect of pullulanase treatment on the aluminum tolerance of CA42. 
The survival rate of each strain was compared to that of cells not 
exposed to aluminum ions. E. coli was used as the control to 
evaluate the aluminum toxicity. −, no treatment; +, pullulanase 
treatment. *p  <  0.01; NS, not significant.
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