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Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency 
nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. 
The anammox bacteria form a variety of competitive and mutualistic interactions 
with heterotrophic bacteria that often employ denitrification or dissimilatory 
nitrate reduction to ammonium (DNRA) for energy generation. These interactions 
can be heavily influenced by the influent ratio of ammonium to nitrite, NH4

+:NO2
−, 

where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have 
been demonstrated to have deleterious effects on anammox efficiency. Thus, it 
is important to understand how variable NH4

+:NO2
− ratios impact the microbial 

ecology of anammox reactors. We  observed the response of the microbial 
community in a lab scale anammox membrane bioreactor (MBR) to changes in 
the influent NH4

+:NO2
− ratio using both 16S rRNA gene and shotgun metagenomic 

sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when 
the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased 
to 1:1.1 (day 89–202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 
(day 169–200). Over this same timespan, the overall nitrogen removal efficiency 
(NRE) remained relatively unchanged (85.26 ± 0.01% from day 0–89, compared to 
85.49 ± 0.01% from day 89–169, and 83.04 ± 0.01% from day 169–200). When the 
ratio was slightly increased to 1:1.17–1:1.2 (day 202–253), the ammonium removal 
efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. 
Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance 
of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the 
course of the experiment. The relative abundance of Planctomycetes, the phylum 
to which anammox bacteria belong, decreased from 77.19% at the beginning of 
the experiment to 12.24% by the end of the experiment. Analysis of metagenome 
assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH 
genes used for DNRA after the introduction of lower influent NH4

+:NO2
− ratios. The 

high relative abundance of DNRA bacteria coinciding with sustained bioreactor 
performance indicates a mutualistic relationship between the anammox and DNRA 
bacteria. Understanding these interactions could support more robust bioreactor 
operation at variable nitrogen loading ratios.
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1. Introduction

Nitrogen removal from wastewater is paramount to the 
remediation of anthropogenic nutrient pollution and the protection of 
sensitive aquatic environments (USEPA, 2007; Smith and Schindler, 
2009; Davidson et al., 2014). One strategy to remove nitrogen from 
wastewater is anaerobic ammonium oxidation (anammox), in which 
ammonium (NH4

+) is anaerobically oxidized using nitrite (NO2
−) as an 

electron acceptor (Mulder et al., 1995; van de Graaf et al., 1995; Strous 
et  al., 1998). Anammox is a biogeochemical process facilitated by 
chemolithoautotrophic bacteria in the Phylum Planctomycetes (Strous 
et al., 1999; Schmid et al., 2000) and is estimated to account for up to 
70% of fixed nitrogen removal in marine environments (Kuypers et al., 
2003; Devol, 2015). The anammox process has shown great potential 
for robust sidestream nitrogen removal, with full scale installations 
demonstrating nitrogen removal efficiencies up to 90% and ammonium 
removal rates up to 9.5 kg NH4

+-N/L·d (Abma et al., 2007; Joss et al., 
2009; Lackner et al., 2014) while using 60% less energy and producing 
90% less sludge than conventional nitrification–denitrification systems 
(Jetten et al., 1997; Lackner et al., 2014; Cho et al., 2019). Despite these 
benefits, anammox-based water treatment faces multiple challenges 
including long start up periods (6 months-2 years) (Jetten et al., 2001; 
Kuenen, 2008; Kartal et  al., 2013) and process instability due to 
inhibitory compounds (Jin et al., 2012; Lotti et al., 2012), operational 
fluctuations, and microbially-provoked destabilizations (Ali and 
Okabe, 2015). Thus, prior anammox research has sought to better-
understand microbial community dynamics in order to design, 
maintain, and operate more resilient reactors.

Anammox reactors harbor phylogenetically and functionally 
diverse bacteria that engage in a variety of synergistic, competitive, 
and mutualistic interactions (Guo et al., 2016; Bhattacharjee et al., 
2017; Lawson et al., 2017; Pereira et al., 2017). The presence of a core 
microbial community identified alongside anammox bacteria—which 
have never been isolated in pure culture—suggests an ecological niche 
specific to the conditions found inside of the reactor. Previous research 
consistently identifies bacteria belonging to the phyla Proteobacteria, 
Chloroflexi, Ignavibacteria, and Bacteroidetes as part of this core 
community (Gonzalez-Martinez et al., 2015; Keren et al., 2020). Many 
of the interactions occurring among different anammox community 
members are predicated on an exchange of organic carbon substrates, 
secondary metabolites, and various nitrogen species (Jenni et al., 2014; 
Zhao et al., 2018; Cao et al., 2020; Zhang et al., 2020, 2021). These 
complex relationships are key to improving nitrogen removal 
efficiency and sustaining microbial growth within bioreactors. For 
example, heterotrophic bacteria performing nitrate reduction through 
nar or nap nitrate reductases can reduce nitrate (NO3

−) to nitrite, 
providing a substrate for anammox; anammox bacteria then produce 
organic carbon that feeds heterotrophic partners, forming a nitrite 
loop. However, other nitrogen metabolisms can disrupt this loop. 
Bacteria performing dissimilatory nitrate reduction to ammonium 
(DNRA) with nrfA or nrfH cytochrome nitrite reductases convert 
nitrite back to ammonium, forming antagonistic relationships with 
anammox bacteria that can disrupt reactor performance (Einsle et al., 

2002; Speth et al., 2016; Wang et al., 2019). Heterotrophs performing 
DNRA actively compete with denitrifiers for organic carbon substrates 
and both nitrate and nitrite, a competition that has been shown to 
depend on C/N ratio, carbon source availability, and hydraulic 
retention time (van den Berg et al., 2016, 2017a,b).

The competition between bacteria performing DNRA and 
denitrification can also be altered by influent resource concentrations 
(Jia et  al., 2020). In full scale systems, anammox is coupled with 
nitritation to provide a nitrite source, generally resulting in a nitrogen 
influent stream of approximately 50% ammonium (NH4

+) and 50% 
nitrite (NO2

−), or a NH4
+:NO2

− molar ratio of 1:1 (Joss et al., 2009; 
Lackner et al., 2014). Because of the competition between denitrifying 
bacteria and DNRA for nitrite, the NH4

+:NO2
− ratio needed within an 

anammox reactor tends to be  higher. Highly enriched anammox 
cultures remove ammonium and nitrite at a ratio between 1:1.2 and 
1:1.32 (Zhu et al., 2017). Any divergence from this ratio can lead to 
poor reactor performance, or in extreme cases, reactor crashes. While 
changes to reactor performance during ratio changes has been well 
documented, the underlying changes to the microbial community that 
drive performance changes are poorly understood.

Given that full-scale anammox reactors are susceptible to 
performance destabilization due to variable nitrogen loading (Joss 
et  al., 2011), it is important to evaluate the effects of fluctuating 
nitrogen species ratios on the complex network of metabolic 
interdependencies between anammox, DNRA, and denitrification 
bacteria. Here we constrain the microbial community response to 
perturbations induced by influent nitrogen loading ratio changes in a 
lab scale anammox reactor. We evaluate the effects of variable nitrogen 
loading ratios on reactor performance, anammox activity, and 
microbial community dynamics; we  also assess the changes in 
microbial interactions as a result of changing influent conditions using 
16 S rRNA amplicon sequencing and shotgun metagenomic 
sequencing analysis. The results provide insight into the competitive 
and synergistic relationships between bacteria employing different 
nitrogen metabolisms, and how these complex relationships affect 
reactor performance, stability, and resiliency.

2. Methods

2.1. Bioreactor operation

A 1 L anaerobic membrane bioreactor (MBR) was operated for 
1 year prior to the experiment. The reactor was enriched for anammox 
bacteria from anaerobic digester solids. The specific details of initial 
inoculation and operation can be  found in (Keren et  al., 2020). A 
polyvinylidene fluoride membrane with a pore size of 0.22 μm was 
mounted to the inside of the reactor and a gas mix (Argon:CO2 = 95:5; 
50 mL/min) was continuously supplied to purge the system of oxygen 
and maintain circumneutral pH (6.9–7.2) (Supplementary Figure S2). 
Temperature was maintained at 37°C using a heating jacket (Eppendorf, 
Hauppauge, NY) and mixing was provided through an impeller at a 
rate of 200 rpm. A synthetic media containing ammonium, nitrite, 
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bicarbonate, and trace nutrients prepared anaerobically under nitrogen 
was continuously fed to the reactor; the exact composition can 
be found in Supplementary Table S1. Influent and effluent samples 
were collected every other day to monitor concentrations of 
ammonium, nitrite, and nitrate using HACH test kits (HACH, 
Loveland, CO), as described in the manufacturer’s methods 10031, 
10019, and 10020, respectively. Mixed liquor suspended solids (MLSS) 
and mixed liquor volatile suspended solids (MLVSS) were measured 
according to standard methods (USEPA, 2001).

The experiment took place over 252 days during which the 
hydraulic retention time (HRT) of the reactor was maintained at 12 h 
(via an effluent pump) and the solids retention time (SRT) was 
maintained at 50 days (via biomass wasting). For the first 88 days of 
the experiment, NH4

+and NO2
−were loaded at the conventional 1:1.32 

ratio at concentrations of 500 mg-N/L and 660 mg-N/L, respectively. 
On day 89, the influent ammonium concentration was raised to 
600 mg-N/L, decreasing the NH4

+:NO2
− ratio to 1:1.1. On day 169, the 

influent nitrite concentration was raised to 680 mg-N/L, increasing the 
NH4

+:NO2
− ratio to 1:1.13. From day 200 to 252, the total nitrogen 

loading was slowly increased while also increasing the NH4
+:NO2 ratio 

from 1:1.13 to 1:1.2 as shown in Table 1. This range of NH4
+:NO2

− 
ratios was selected for the experiment in order to maintain stable 
operation of the reactor, as lower ratios (<1:1) have been demonstrated 
to lead to the accumulation of free ammonia (FA) (Fernández et al., 
2012) and higher ratios (>1:1.3) have been shown to lead to nitrite 
inhibition (Jin et al., 2013). The dominant anammox strain in our 
MBR (Brocadia sinica) has also been shown to have higher sensitivity 
to nitrite inhibition than other strains such as Kuenenia (Oshiki et al., 
2011). Thus the influent nitrogen ratios tested in this experiment were 
selected to avoid these issues.

2.2. DNA extraction

Biomass samples were collected every 2–10  days via syringe 
through an extraction port, flash frozen in liquid nitrogen, and stored 
at −80°C until further use. Genomic DNA was extracted from the 
samples using the DNeasy PowerSoil Kit (Qiagen, Carlsbad, CA) as 
described in the manufacturer’s protocol. DNA quality was assessed 
using a NanoDrop Spectrophotometer (Thermo Scientific, Waltham, 

MA) and Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). 
DNA was quantified using a Qubit fluorometer (Thermofisher 
Scientific, Walthan, MA), diluted to 10 ng/μl with nuclease free water 
(Thermo Scientific, Waltham, MA), and stored at −20°C until further 
use. Shotgun metagenomic sequencing samples were sent to the Joint 
Genome Institute (JGI) in Walnut Creek, CA. There, DNA was 
sequenced (150 bp paired-end) on an Illumina HiSeq  2500 1 T 
sequencer (Ilumina, San Diego, CA). 16S rRNA sequencing for samples 
collected from day 1 to 45 were sequenced at the Institute for 
Environmental Genomics at the University of Oklahoma and the 
remaining samples were sequenced at JGI on an Illumina MiSeq 
sequencer (Illumina, San Diego, CA).

2.3. 16S rRNA gene analysis

The microbial community composition was evaluated by 16S 
ribosomal RNA sequencing of 28 DNA samples collected throughout 
the experiment. The V4 region was amplified using primers 515F 
(5′-GTGCCAGCMGCCGCGG-3′) and 806R (3′-TAATCTWTGG 
VHCATCAG-5′), with barcodes attached to the reverse primer. 
Amplicons were pooled at equal molarity and purified with the 
QIAquick Gel Extraction Kit (QIAGEN Sciences, Germantown, MD). 
Paired-end sequencing (250 bp paired-end) was then performed on 
the Illumina MiSeq sequencer (Illumina, San Diego, CA). The full 
protocol is provided by Wu et al. (2015). Sequence processing and data 
analysis was conducted using MOTHUR v.1.39.5, following the MiSeq 
Standard Operating Procedure (SOP) (Schloss et al., 2009), and OTUs 
were assigned based on a 97% sequence similarity threshold.

2.4. Metagenomic sequencing, assembly, 
and binning

Three DNA samples were used for metagenomic sequencing, two 
from single timepoints on day 37 and 140 and one bulked from 
samples taken on days 232, 235, and 237. Resulting sequences from 
each time point were processed separately according to the procedure 
previously reported in Keren et  al. (2020). KEGG Automated 
Annotation Service (KAAS) was used to annotate predicted gene 
sequences using Hidden Markov Models (HMMs). Single time point 
genome abundances were calculated using reads per kilobase per 
million (RPKM). The log ratio change for each genome was calculated 
based on the procedure previously reported in Keren et al. (2020). 
Briefly, three genomes with stable coverage across the three time 
points were selected as reference frame genomes. The coverage of each 
genome was then divided by the coverage of the three reference frame 
genomes. These ratios were then used to calculate the log ratio changes 
between samples yielding three values, one for each reference frame 
genome. This was done in order to account/adjust for differences in 
sequencing depth between samples, which can otherwise lead to 
biased results. Relative replication rates were calculated using iRep 
(Brown et  al., 2016). Briefly, the replication rates of bacteria 
were estimated by calculating the coverage ratio between the origin of 
replication and the terminus of replication. In a population that is not 
actively replicating, the coverage at the ratio and terminus will be the 
same, and the ratio will be  one. For populations that are actively 
replicating the coverage will be greater around the origin of replication 

TABLE 1 Influent nitrogen loading and NH4
+:NO2

− ratio data.

Day
Influent 

ammonium 
(mg-N/L)

Influent 
nitrite 
(mg-
N/L)

NH4
+:NO2

− 
ratio

Nitrogen 
loading 

rate  
(g N/L-d)

0 500 660 1.32 2.32

89 600 660 1.1 2.52

169 600 680 1.13 2.52

200 600 700 1.17 2.6

217 600 710 1.18 2.62

218 600 720 1.2 2.64

235 640 768 1.2 2.82

243 660 792 1.2 2.9

250 680 816 1.2 2.99
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because of replication forks that have not finished replicating. Thus, 
the higher this ratio the higher the proportion of the population that 
is actively replicating.

2.5. Statistical analysis

Principal component analysis (PCA) was applied to evaluate 
the correlation between taxa abundance for different pathways 
(anammox, denitrification, and DNRA) and reactor performance 
parameters. In order to assign pathways to specific taxa, 16S 
rRNA sequences obtained from metagenomes with genes 
encoding for each pathway were aligned to representative 
sequences from amplicon sequencing following the procedure 
described in Keren et al. (2020). For MAGs not containing 16S 
rRNA sequences but classified down to the species level, 
sequences were obtained from NCBI. PCA analysis was 
conducted using R1 with the “factoextra” package in RStudio.2

3. Results

3.1. Bioreactor performance

Under the initial NH4
+:NO2

− ratio of 1:1.32, the average 
ammonium and nitrite removal efficiencies were 99.77 ± 0.04% 
and 96.85 ± 2.31%, respectively (Table  2), and the average 
nitrogen removal rate (NRR) taking into consideration the 
generation of nitrate from nitrite by anammox bacteria to 
generate reducing equivalents for carbon fixation was 
1.98 ± 0.03 g-N/L·d. This resulted in a nitrate production rate of 
0.075 ± 0.002 g-N/L·d and a NO3

−:NH4
+ ratio of 0.298 ± 0.0007:1, 

which is slightly above the conventional ratio of 0.26:1 (Strous 
et  al., 1998). Following the influent ratio shift on day 89, the 
average ammonium concentration in the effluent increased from 
1.14 ± 0.22 mg-N/L to 55.19 ± 1.68 mg-N/L, which was expected 
due to the increased NH4

+ in the influent. Of the 100 mg-N/L 
NH4

+ added to the influent, about half was emitted in the effluent, 
while the remaining ammonium was likely removed through the 
anammox reaction or was assimilated for biomass synthesis. 
After increasing the NO2

− influent concentration, the nitrogen 
loading rate (NLR) was steadily increased from 2.60 g-N/L·d on 
day 200 to 2.99 g-N/L·d on day 250 (Table 1). From day 89 to day 

1 https://www.r-project.org/

2 https://www.rstudio.com/

202 the average ammonium removal efficiency fell to 
90.74 ± 0.25% and the nitrite removal efficiency increased to 
99.57 ± 0.04%; the NRR increased to 2.16 ± 0.01 g-N/L·d. This 
resulted in a nitrate production rate of 0.066 ± 0.002 g-N/L·d and 
a NO3

−:NH4
+ ratio of 0.24 ± 0.005:1. From day 202 to day 253, 

ammonium removal efficiency increased back to 97.28 ± 0.45%, 
and the NO3

−:NH4
+ ratio decreased again to 0.237 ± 0.005:1 

(Figure 1).

3.2. Microbial community in MBR through 
16S amplicon sequencing

16S rRNA amplicon sequencing was conducted to ascertain changes 
in abundance of taxonomic groups throughout the reactor lifecycle. 
Figure 2 shows the relative abundance of 16S rRNA genes at the phylum 
level. At the beginning of the experiment, the dominant phylum in the 
reactor was Planctomycetes, accounting for 77.19% of total reads. Other 
significant phyla included Chloroflexi, Ignavibacteria, and Proteobacteria 
accounting for 7.73, 4.57, and 8.67% of total reads respectively, which is 
consistent with previously reported results (Pereira et al., 2017). Of the 
reads belonging to Chloroflexi, over 99% belonged to the class 
Anaerolineae and of the reads belonging to Proteobacteria, 50.40% 
belonged to the class Alphaproteobacteria. Over the course of the 
experiment, the relative abundance of Planctomycetes decreased from 
77.19 to 12.24%. Meanwhile, the relative abundance of Chloroflexi and 
Ignavibacteria increased from 7.73 and 4.57% to 23.36 and 38.22%, 
respectively. The relative abundance of the phylum Bacteroidetes also 
increased from <0.05% at the beginning of the experiment to 7.30% by 
the end. The Shannon, Simpson, and Chao indices were calculated using 
relative abundance data from sequenced amplicons, which indicated that 
the microbial diversity of the community increased over the course of 
the experiment. Further information on diversity calculations and results 
can be found in the Supplementary Table S3.

The abundance of taxonomic groups was also aggregated at the 
genus level (Figure  3). These results are consistent with relative 
abundances at the phylum level, demonstrating high abundance genera 
in Chloroflexi, Ignavibacteria, Proteobacteria, and Bacteroidetes phyla. 
Several genera associated with the families Anaerolineaceae, 
Rhodocylacea, Burkholderiaceae and the order Ignavibacteriales were 
consistently abundant throughout the experiment, which was consistent 
with previously reported results (Du et al., 2017; Hu et al., 2018; Pereira 
et al., 2019; Xiao et al., 2021). Several of the genera from Anaerolineaceae 
and Ignavibacteriales increased by at least one order of magnitude 
following the initial ratio change made on day 89. Multiple genera from 
Rhodospiralles, Flavobacteriales, Sphingobacteriales, and 
Chitinophagales that were previously undetected or low abundance 
increased by at least two orders of magnitude post-ratio change.

TABLE 2 Membrane bioreactor (MBR) performance and effluent data.

Day NH4
+ Removal 

Efficiency
NO2

− Removal 
efficiency

Nitrogen removal 
efficiency

Nitrogen removal 
rate (g  N/L-d)

Nitrate production 
rate (g  N/L-d)

∆ NO3
– 

:∆NH4
+

0–89 99.77 ± 0.04% 96.85 ± 2.34% 85.26 ± 0.01% 1.98 ± 0.03 0.08 ± 0.01 0.30 ± 0.01

89–169 90.85 ± 0.29% 99.56 ± 0.05% 85.49 ± 0.01% 2.15 ± 0.01 0.06 ± 0.01 0.23 ± 0.01

169–200 90.14 ± 0.09% 99.65 ± 0.02% 83.04 ± 0.01% 2.13 ± 0.01 0.08 ± 0.01 0.29 ± 0.01

200–252 97.28 ± 0.45% 99.76 ± 0.03% 88.21 ± 0.01% 2.37 ± 0.03 0.07 ± 0.01 0.24 ± 0.05
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3.3. Metagenome sequencing results

After read quality control 342,892,526 reads were obtained from 
all three metagenome samples. Reads were assembled into 
Metagenome Assembled Genomes (MAG), resulting in 27,836 contigs 
with a median N50 of 2,138 bp. Contigs were binned to draft genomes 
resulting in 129 draft genomes accounting for 74.62% of quality 
filtered reads on average across all three samples 
(Supplementary Table S4). These MAGs represented 20 bacterial phyla 
and one archaeal phylum, as shown in Figure 4. The most abundant 
genomes based on coverage were affiliated with Planctomycetes, 
Proteobacteria, Ignavibacteriae, Chloroflexi, and the super-phylum 
Candidate Phyla Radiation (CPR). A full list of genomes is available 

in Supplementary Table S5. AMX1 (Brocadia sinica), the only 
anammox MAG recovered, accounted for 44.97% of all reads on 
average across all three metagenome samples. AMX1 had an average 
GC content of 42.29%, a genome size of 3.1 Mbp, and 2,859 open 
reading frames (ORFs) which was consistent with other previously 
reported anammox genomes for this strain (Oshiki et al., 2015; Feng 
et al., 2019).

3.4. Nitrogen cycle gene abundances

To assess the changes in abundance of nitrogen metabolic 
genes, the relative abundance of these genes was calculated for 
each metagenomic sampling timepoint (Figure 5). The metabolic 
genes with the highest abundance throughout the duration of the 
experiment included hydrazine dehydrogenase (hdh), hydrazine 
synthase (hzsA/B/C), hydroxylamine oxidoreductase (hao), 
respiratory nitrate reductase (narGH), nitrous oxide reductase 
(nosZ), and cytochrome c membrane associated nitrite reductases 
(nrfAH) with relative abundances ranging from 4.3 to 32.3%. For 
the purposes of this study, we are utilizing nrfAH, the gene 
encoding the one-step reduction of nitrite to ammonium as a 
proxy for DNRA.  Likewise, we are employing nirK and nirS, both 
used for nitrite reduction to nitric oxide, as proxies for 
denitrification. The abundance of functional analogs nirK and nirS, 
were only 0.9 and 0.1%, respectively; however, the relative 
abundance of respiratory nitrate reductases narGH was 30.99% on 
average, indicating the wide prevalence of nitrate reduction 
capacity. The nitrogen gene relative abundances for samples from 
day 37 and 140 were nearly identical; by day 232, the relative 
abundance of nrfAH nitrite reductases and narGH nitrate 
reductases increased slightly and the relative abundance of 
anammox associated hydrazine synthase and hydrazine 
dehydrogenase decreased slightly (Figure  5). The taxonomic 
variability and relatively stable metabolic composition suggest 
high levels of functional redundancy amongst bacteria in 
the reactor.

To understand how different nitrogen metabolisms influenced 
microbial competition throughout the duration of the experiment, the 
abundance of key individual MAGs was calculated for each timepoint 
as shown in Figure  6. narGH nitrate reductases were the most 
abundant of any nitrogen metabolic gene and widely distributed 
amongst MAGs. The next most abundant nitrogen metabolism gene 
identified in key MAGs was nrfAH. The top 5 most abundant MAGs 
including AMX01 (Brocadia), IGN01 (Ignavibacterium), CFLX01 
(Chloroflexi), PROT01 (Burkholderiales), and BAC01 all contained 
narGH. AMX01, CFLX01, and IGN01 also contained nrfAH. The 
abundance of AMX01 decreased from 9.67 RPKM on day 37 to 7.81 
RPKM on day 232, while the abundances of CFLX01 and IGN01 
increased from 14.11 and 9.18 RPKM on day 37 to 23.02 and 15.98 
RPKM on day 232. Many of the MAGs that encoded for narGH also 
lacked the remaining genes necessary for the full denitrification 
pathway, which could result in the accumulation of nitrite. This is 
consistent with previously reported results (Speth et  al., 2016) 
supporting the presence of a nitrite loop, in which nitrate is recycled 
back to anammox bacteria via partial denitrification of nitrate to 
nitrite (Kartal et al., 2011). Many genomes encoding for DNRA also 
encode genes for partial denitrification but for the purposes of our 

FIGURE 1

(A) Bioreactor performance nitrogen speciation data. (B) Bioreactor 
performance during the experiment in terms of NRR, NLR, and NRE. 
(C) Bioreactor performance stoichiometric ratios of nitrogen species.
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analysis, we assume these bacteria will carry out DNRA as the most 
energetically favorable pathway.

Nitrogen transport and sensing genes, which can be used to 
infer substrate affinity, were identified in the top 14 most abundant 
MAGs by coverage (Figure 7), and all MAGs with genome coverage 
above 40% (Supplementary Figure S4). This analysis was performed 
to assess how effectively different organisms compete for various 
nitrogen substrates. Nitrate, a byproduct of anammox biosynthesis, 
is frequently abundant in anammox reactors, while nitrite is kept 
limiting to prevent nitrite toxicity. Therefore, the bacteria with the 
greatest affinity for nitrite will have a competitive advantage. Most 
genomes contained transporters belonging to the Nitrate/Nitrite 
Porter (NNP) family, including narK, nrtP, and nasA for nitrate 
and nitrite membrane transport (Moir and Wood, 2001). 
Consistent with previously reported anammox metagenomes (Ji 
et  al., 2022; Wang et  al., 2022), AMX01 contained Nitrate 
Transporter superfamily (NRT) nitrate/nitrite transporters, the 
high affinity nitrate/nitrite transporter nrtB, and a polytopic 
membrane transporter specifically for nitrite, nirC. Several 
genomes, excluding those of anammox bacteria, also encoded 
genes for putative formate-nitrite transporters from the formate-
nitrate transporter (FNT) superfamily, including formate channel 
focA and formate permease fdhC. Previous research has shown that 
some denitrifying bacteria have a higher affinity for nitrite than 
nitrate (Kraft et al., 2014). This was supported by the presence of 
FNT transporters in a higher proportion of MAGs without nrfAH 
than those with these nitrate-metabolizing genes. The majority of 
genomes also encoded nitrate/nitrite sensor protein complexes 
narX/L and nar Q/P. These genes, which are often colocated on the 
nar operon, have been demonstrated to regulate expression of 
nitrate/nitrite reductases as well as other respiratory proteins 
(Browning et al., 2006).

3.5. Microbial community dynamics

Log-ratio (LR) changes between day 232 and day 37 were 
calculated using each MAG’s coverage normalized to three reference 
genomes (Figure 8A). Of the 50 MAGs that experienced LR changes 
above the upper 95% confidence interval (CI) 
(Supplementary Table S7), 25 had RPKM abundances lower than the 
95% CI (Supplementary Table S9) and 32 contained narGH, 15 
contained nirKS, and 17 contained nrfAH. Of the 57 MAGs that 
experienced LR changes below the lower 95% CI, 36 had RPKM 
abundances lower than the lower 95% CI, and 35 contained narGH, 
21 contained nirKS, and 13 contained nrfAH. Significant log-ratio 
changes in coverage did not have a strong correlation with taxonomy 
(Supplementary Table S6).

iRep values, which estimate each MAG’s replication rate, ranged 
between 1.12 and 2.29 (Figure 8B). As expected, Brocadia had the 
lowest replication rates at all three time points with an average of 1.14. 
CFLX13 (Chloroflexi) had the highest replication rates with an average 
of 2.15. PROT03 (Rhodocyclales) experienced the most substantial 
decrease in replication rates during the course of the experiment, 
falling from 1.85 at day 37 to 1.43 at day 232 (a 23% decrease); CPR01 
experienced the most significant increase, from 1.39 on day 37 to 2.15 
on day 232 (a 55% increase). With the exception of CPR01, all of the 
MAGs that demonstrated increased replication rates between time 
points had negative log-ratio changes between day 37 and 232. This 
observation could be an indication of higher mortality rates suggestive 
of r-type strategists, or organisms well adapted to optimize growth 
during unstable environmental conditions. These types of organisms 
have shorter life cycles but very high reproduction rates associated 
with low efficiency substrate utilization (Grime, 1977; Andrews and 
Harris, 1986; Ho et al., 2017).

FIGURE 2

Changes in relative abundance at the phylum level of 16  S rRNA amplicon sequences over time from day 16 of the experiment to day 252.
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3.6. Taxon abundance and reactor 
operational parameters

To evaluate the effects of different nitrogen pathways on reactor 
performance, PCA analysis was conducted for the abundance of 
anammox, nirKS (denitrifying), and nrfAH (DNRA) associated taxa 
(Figure  9). The abundance of anammox bacteria is positively 
correlated with ammonium removal efficiency and the nitrate 
production rate, indicating the anammox bacteria are primarily 
responsible for ammonium removal and nitrate production as 
expected. The abundance of DNRA and denitrifying bacteria is 
positively correlated with nitrogen removal efficiency, nitrite 
removal efficiency, and the nitrogen removal rate, and negatively 
correlated with the ammonium removal efficiency, nitrate 
production rate, and effluent nitrite concentrations. However, the 
abundance of DNRA bacteria is more strongly associated with 
nitrite removal efficiency than denitrification. These results are 

consistent with the performance of the MBR throughout the course 
of the experiment, as the abundance of anammox bacteria 
decreased after the ratio change on day 89, while the ammonium 
removal efficiency decreased as well. Nevertheless, the overall 
nitrogen removal rate and nitrogen removal efficiency increased 
along with the increased growth of DNRA bacteria.

4. Discussion

4.1. Microbial community shifts in reactor

While previous studies have examined the performance of 
anammox reactors under variable influent loading ratios, analyses of 
the effects on the microbial community are limited. After the 
introduction of decreased NH4

+:NO2
− ratios, we observed an increase 

in the microbial diversity of the system. Of the 317 genera identified 

FIGURE 3

Changes in logarithmic abundances of 16  S rRNA amplicon reads aggregated at the genus level over time from day 16 of the experiment to day 252.
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through amplicon sequencing, 36% increased by at least one order of 
magnitude after the ratio change, and the alpha diversity also 
increased steadily. This increased diversity may correspond to 
increased availability of ammonium as a growth-limiting nitrogen 
source. Of the 129 MAGs identified, only 25 contained canonical 
assimilatory nitrate/nitrite reductases to utilize nitrate or nitrite as 
nitrogen sources; this suggests that most of the microbial community 
may require ammonium as a fixed nitrogen source for cell growth. 
During the initial nitrogen loading ratio, effluent ammonium 
concentrations remained low, within the range of 
0–0.143 mM. Anammox bacteria are known to have high affinities for 
ammonium, as evidenced by the presence of multiple ammonium 
transporters in their genomes (Hu et al., 2012; Kartal et al., 2012; Van 
Niftrik and Jetten, 2012). This gives anammox microbes a competitive 
advantage for ammonium uptake, even at low concentrations. When 
the ratio of nitrogen substrates changed, the low fixed nitrite 
concentration would have limited ammonium oxidation, leading to 
an increased concentration of ammonium in the reactor, in excess of 
what anammox bacteria could use. This resulted in increased reactor 
ammonium concentrations (Figure 1), which may have supported the 
growth of other organisms with lower affinities for ammonium 
uptake to support biosynthesis.

Increased microbial diversity could also be  explained by the 
interaction of diversifying stochastic drift constrained by deterministic 
homogenous selection. Based on theory supporting these processes, a 
microbial community will trend towards functional homogeneity 
during static environmental conditions (homogenous selection), but 
will also undergo variable changes in composition due to weak 
selection pressures (drift) (Stegen et al., 2015; Zhou and Ning, 2017). 
In anammox reactors, these processes would result in the selection of 
bacteria well-adapted to the conditions created by reactor operational 
parameters and the dominance of anammox bacteria, independent of 
taxonomy, as shown through the log-ratio changes (Figure  8A). 
However, when the reactor maintains these environmental conditions 
for extended periods of time, weak selection can promote fluctuations 
in the microbial community composition. Throughout the duration 
of the experiment, the reactor maintained relatively stable 
performance, except for effluent ammonium concentrations rising 
post-ratio change. Despite this consistency, populations of bacterial 
taxa from Ignavibacteriae, Chloroflexi, and Bacteroidetes still 
fluctuated. This is similar to results presented by Ya et al. (2023) where 
increased abundance of Chloroflexi and Proteobacteria was observed 
despite stable reactor operation. Functional redundancy amongst 
these bacterial groups could contribute to their increased abundance, 

FIGURE 4

Maximum likelihood phylogenetic tree from concatenated ribosomal proteins of three metagenomic samples taken during the experiment.
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despite the lack of any operational or natural perturbations. This 
hypothesis, combined with the sustained high activity of anammox 
bacteria despite low abundance, could provide an explanation for the 
maintenance of efficient bioreactor performance (>85% nitrogen 
removal) despite significant changes to the microbial community.

4.2. Synergistic interactions between DNRA 
and anammox

After the influent NH4
+:NO2

− ratio change, we observed increased 
abundance of bacteria capable of performing DNRA. Amplicon 
sequencing and shotgun metagenomic sequencing revealed increased 
abundance of bacteria belonging to Ignavibacteriae, Chloroflexi, and 
Bacteroidetes, phyla previously associated with DNRA in anammox 
reactors (Wang et al., 2019; Keren et al., 2020; Bryson et al., 2022). 
While there is not sufficient evidence to conclude that the ratio change 
directly led to increased abundance of DNRA bacteria in this reactor 
system, the co-occurrence of this trend with stable reactor operation 
is an intriguing observation worth consideration. Previous studies 
have reported the presence and increased replication of DNRA 
bacteria to coincide with decreased reactor performance (Keren et al., 
2020). However, DNRA bacteria have also been shown to form 
symbiotic interactions with anammox bacteria, promoting robust 
reactor performance (Li et  al., 2020; Sheng et  al., 2021). Many 
anammox species can also perform DNRA using simple organic acids 
as substrates (Castro-Barros et al., 2017), further complicating the 
characterization of the interplay between these metabolisms. Zhou 
et al. (2023) reported very similar results to those observed in this 
work, demonstrating increased abundance of DNRA bacteria with 
improved nitrogen removal efficiency (NRE) at lower NH4

+:NO2
− 

ratios, but deleterious effects on NRE at higher NH4
+:NO2

−(Zhou 
et al., 2023). The results from that study illustrate the delicate balance 

between anammox and DNRA, and how the complexity of these 
interactions is impacted by influent loading rates, organic carbon 
concentrations, and anammox species niche differentiation.

The observation of increased abundance of bacteria utilizing 
DNRA post-ratio change could be  explained using a few key 
considerations. Previous research on the competitive balance between 
DNRA and denitrification suggests that DNRA is generally favored 
over denitrification at higher C/N ratios (van den Berg et al., 2016). 
This observation has also been purported to apply for both nitrate and 
nitrite and under dual limitation conditions when both the supply of 
electron donor and electron acceptor are limited in the environment 
(van den Berg et al., 2017a). Organic carbon concentrations, estimated 
from the biodegradable fraction of biomass measured through MLVSS 
(Supplementary Figure S3) remained substantially higher than effluent 
nitrate and nitrite concentrations throughout the duration of the 
experiment indicating conditions favorable for DNRA. From day 0 up 
until day 89 when the influent NH4

+:NO2
− ratio was 1:1.32, anammox 

bacteria, DNRA bacteria, and denitrifiers actively competed for nitrite 
and anammox bacteria were able to sustain relative dominance likely 
due to a higher affinity for nitrite as evidenced by multiple nitrite 
transporters (Figure 7). However, on day 89 when the NH4

+:NO2
− 

ratio was shifted to 1:1.1, the influent ammonium concentration was 
increased, and this would have required more nitrite to undergo the 
anammox reaction to completely oxidize ammonium to dinitrogen 
gas. Lowering the NH4

+:NO2
− ratio could have intensified the 

competition for nitrite, and this increased competition could select for 
bacteria that are capable of utilizing already limited substrates more 
efficiently. From a thermodynamic perspective, the theoretical amount 
of energy produced per mole of nitrite for DNRA and anammox is 
comparable (Castro-Barros et al., 2017). However, the yield of biomass 
produced per mole of nitrite through DNRA is effectively higher than 
through anammox, and bacterial growth rates are also significantly 
higher under DNRA (Figure 8B). Thus, when the ratio shift occurred 

FIGURE 5

Nitrogen gene relative abundances from metagenomic sequencing from three time points during the experiment.
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and nitrite limitation was intensified, DNRA bacteria could have been 
poised to proliferate because of their ability to grow and biosynthesize 
more efficiently. It is important to consider that anammox bacteria 
also convert nitrite to nitrate to generate reducing equivalents for 
carbon fixation and biomass production (Strous et  al., 2006). 
Additional competition for nitrite could lead to anammox bacteria 
diverting more nitrite towards energy generation than carbon fixation. 
This could result in decreased biomass production, which could offer 
a possible explanation for the decrease in cell abundance observed 
throughout the duration of the experiment. This explanation neglects 
the capability of anammox bacteria to utilize partial DNRA to convert 
nitrate back to nitrite to use for the anammox reaction. However, this 
reaction has only explicitly been identified to support the oxidation of 

volatile fatty acids (VFAs) (Castro-Barros et  al., 2017) and is 
uncharacterized for alternative carbon substrates.

Reactor configuration and biomass growth type adds another 
dimension of complexity to the dynamics between anammox, DNRA, 
and denitrifying bacteria. Bryson et al. (2022) reported higher abundance 
of Ignavibacteriae and Phycisphaerae with nrfAH genes used for DNRA 
in two stage anammox configurations as compared with one stage 
configurations, citing a negative selection pressure on facultatively 
aerobic denitrifiers in a strictly anaerobic environment (Bryson et al., 
2022). Our findings are consistent with those observations given that the 
strict anaerobic conditions provide a niche for fermentative bacteria 
(Gonzalez-Gil et al., 2015; Speth et al., 2016; Bhattacharjee et al., 2017). 
These observations could provide insight into the conditions that favor 

FIGURE 6

Heatmap showing presence of nitrogen genes in MAGs and abundance of MAGs from three timepoints with metagenome samples measured as 
RPKM.
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DNRA in anammox systems. Many of the bacteria with nrfAH could 
be coupling DNRA to the fermentation of extracellular amino acids and 
exogenous carbon substrates. This reaction is more bioenergetically 
favorable than pure fermentation (Kraft et al., 2011), and could be even 
more competitive than alternative nitrogen pathways when the carbon 
substrate is more reduced. IGN01 and IGN03 both contain genes 
encoding for acetate kinase, and CFLX01 encodes genes for acetate 
ligase, suggesting that these strains have the ability to ferment acetate or 
propionate. This would be especially advantageous under the conditions 
found in the MBR where the concentrations of fermentable substrates, 
such as extracellular amino acids and polysaccharides, are likely much 
higher than non-fermentable substrates such as acetate, ethanol, or 
methanol. Fermentable sugars such as D-Arabinose, D-Ribose, and 
D-Mannose and sialic acids such as neuraminic acid, commonly found 
in anammox extracellular polysaccharides (Yin et al., 2015; Boleij et al., 
2020; Wang et al., 2020), have also been shown to selectively enrich 

FIGURE 8

(A) Log ratio changes between D37 and D232 using different genomes as reference frames. (B) Replication rate values on D37, D140, and D232.

FIGURE 7

Putative nitrate/nitrite transporters and sensors encoded in MAGs.
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DNRA bacteria over denitrifiers (Carlson et al., 2020). When the ratio 
shift occurred, and the competition for nitrite intensified, the ability to 
couple nitrite reduction to fermentation of highly reduced carbon 
substrates could have also contributed to the enrichment of DNRA. Thus, 
the type of carbon source and the oxidative conditions in anammox 

systems also has a substantial impact on the competitive balance between 
anammox, denitrifiers, and DNRA bacteria.

The balance between DNRA and anammox is predicated on an 
exchange of nitrate, ammonium, and organic carbon substrates as shown 
in Figure 10. DNRA bacteria are thought to utilize substrates derived 

FIGURE 10

Conceptual diagram of metabolic exchanges occurring between anammox and DNRA bacteria within the tested bioreactor.

FIGURE 9

PCA plot of changes in taxa abundance for anammox, denitrification, and DNRA with reactor operational parameters. Ellipses represent 95% 
confidence intervals.
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from extracellular polymeric substances (EPS) produced by anammox 
bacteria (Keren et  al., 2020), which would necessitate a symbiotic 
relationship between these two pathways. DNRA can provide anammox 
bacteria with nitrite through the reduction of nitrate via nar and nap 
nitrate reductases, or ammonium through the reduction of nitrite with 
nrfAH nitrite reductases. This steady flow of material exchanges can result 
in enhanced nitrogen removal in a variety of ecosystems (Ahmad et al., 
2021; Sheng et al., 2021). Despite this, DNRA can still actively compete 
with anammox for nitrite, and even potentially destabilize aggregates 
through overconsumption of EPS, leading to anammox cell death (Keren 
et al., 2020). This tipping point is a pivotal junction to distinguish in order 
to optimize reactor efficiency and resiliency. It is also important to 
evaluate how this relationship changes at more extreme NH4

+:NO2
− ratios 

(<1:1.1 and >1:1.3). Thus, further research is needed to identify and 
parameterize the equilibrium of this dynamic.

4.3. Reactor performance implications

Anammox reactors are known to be  sensitive to operational 
conditions and are susceptible to destabilizations after perturbation. 
These systems are particularly sensitive to nitrite fluctuations (Bettazzi 
et  al., 2010; Puyol et  al., 2014). The formation of synergistic 
relationships between anammox and DNRA can help to alleviate the 
deleterious effects of nitrite inhibition by keeping nitrite concentrations 
low. These interactions have been demonstrated to assist in the 
recovery of anammox reactor performance following nitrite inhibition 
(Qiao et al., 2022; Zhou et al., 2023), and to help stimulate the recovery 
of anammox bacteria from dormancy (Zhu et al., 2019). Promoting 
synergy between anammox and DNRA bacteria could be even more 
important at higher nitrogen loading rates, which cause the reactor to 
be more susceptible to nitrite inhibition (Tang et al., 2010). Throughout 
the duration of this study, nitrite concentrations rarely rose above 
detectable levels in the effluent, which can be  attributed to the 
abundance of excess ammonium for the anammox reaction (1 mole of 
NH4

+ requires 1.32 moles of NO2
− to be fully oxidized) but also to the 

reduction of nitrite to ammonium by DNRA bacteria and, to a lesser 
extent, nitrite reduction to dinitrogen gas by denitrifying bacteria. The 
abundance of DNRA bacteria was also positively correlated with the 
nitrite removal efficiency, nitrogen removal efficiency, and nitrogen 
removal rates (Figure  9). These results provide evidence for the 
positive contributions of DNRA towards robust reactor performance. 
The interactions between anammox and DNRA bacteria can 
be enhanced by organic carbon amendments to encourage the growth 
of DNRA microbes, which has been previously reported to have 
beneficial effects on reactor performance (Jenni et al., 2014; Zhang 
et al., 2021; Fan et al., 2022). Taking advantage of the synergy between 
anammox and DNRA could be especially advantageous during reactor 
startup, where anammox activity is vulnerable to performance 
disruptions due to nitrite inhibition. These interactions could also 
be  leveraged during periods of elevated nitrite concentrations by 
dosing with organic carbon to stimulate the growth of DNRA bacteria.

5. Conclusion

In a single-stage anammox MBR, adjusting influent NH4
+:NO2

− 
from the conventional ratio of 1:1.32 to 1:1.1 led to a significant 
change in the microbial community. Despite relatively minor changes 

in total nitrogen removal efficiency (85.26 ± 0.01% pre-ratio change vs. 
85.833 ± 0.002% post-ratio change), the relative abundance of 
anammox bacteria in the system decreased from 77.19 to 12.24% by 
16 S rRNA amplicon sequencing. This coincided with the growth of 
bacteria capable of performing DNRA; the phyla Ignavibacteriae and 
Chloroflexi increased from 7.73 and 4.57%, respectively, to 23.36 and 
38.22%. These results demonstrate the positive effects of a stable 
dynamic between anammox and DNRA, which can result in robust 
reactor performance and enhanced nitrogen removal.
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