AUTHOR=Yan Yueyang , Shi Zhanpeng , Wei Haijian TITLE=ROSes-FINDER: a multi-task deep learning framework for accurate prediction of microorganism reactive oxygen species scavenging enzymes JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1245805 DOI=10.3389/fmicb.2023.1245805 ISSN=1664-302X ABSTRACT=
Reactive oxygen species (ROS) are highly reactive molecules that play important roles in microbial biological processes. However, excessive accumulation of ROS can lead to oxidative stress and cellular damage. Microorganism have evolved a diverse suite of enzymes to mitigate the harmful effects of ROS. Accurate prediction of ROS scavenging enzymes classes (ROSes) is crucial for understanding the mechanisms of oxidative stress and developing strategies to combat related diseases. Nevertheless, the existing approaches for categorizing ROS-related proteins exhibit certain drawbacks with regards to their precision and inclusiveness. To address this, we propose a new multi-task deep learning framework called ROSes-FINDER. This framework integrates three component methods using a voting-based approach to predict multiple ROSes properties simultaneously. It can identify whether a given protein sequence is a ROSes and determine its type. The three component methods used in the framework are ROSes-CNN, which extracts raw sequence encoding features, ROSes-NN, which predicts protein functions based on sequence information, and ROSes-XGBoost, which performs functional classification using ensemble machine learning. Comprehensive experiments demonstrate the superior performance and robustness of our method. ROSes-FINDER is freely available at