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Although microorganisms constitute the most diverse and abundant life form on 
Earth, in many environments, the vast majority of them remain uncultured. As it is 
based on information gleaned mainly from cultivated microorganisms, our current 
body of knowledge regarding microbial life is partial and does not reflect actual 
microbial diversity. That diversity is hidden in the uncultured microbial majority, 
termed by microbiologists as “microbial dark matter” (MDM), a term borrowed 
from astrophysics. Metagenomic sequencing analysis techniques (both 16S rRNA 
gene and shotgun sequencing) compare gene sequences to reference databases, 
each of which represents only a small fraction of the existing microorganisms. 
Unaligned sequences lead to groups of “unknown microorganisms” that are 
usually ignored and rarefied from diversity analysis. To address this knowledge 
gap, we analyzed the 16S rRNA gene sequences of microbial communities from 
four different environments—a living organism, a desert environment, a natural 
aquatic environment, and a membrane bioreactor for wastewater treatment. 
From those datasets, we chose representative sequences of potentially unknown 
bacteria for additional examination as “microbial dark matter sequences” (MDMS). 
Sequence existence was validated by specific amplification and re-sequencing. 
These sequences were screened against databases and aligned to the Genome 
Taxonomy Database to build a comprehensive phylogenetic tree for additional 
sequence classification, revealing potentially new candidate phyla and other 
lineages. These putative MDMS were also screened against metagenome-
assembled genomes from the explored environments for additional validation and 
for taxonomic and metabolic characterizations. This study shows the immense 
importance of MDMS in environmental metataxonomic analyses of 16S rRNA 
gene sequences and provides a simple and readily available methodology for the 
examination of MDM hidden behind amplicon sequencing results.

KEYWORDS

metagenomics, microbial dark matter, microbial community, amplicon sequencing, 
bacteria

OPEN ACCESS

EDITED BY

George Tsiamis,  
University of Patras, Greece

REVIEWED BY

Lucas Auer,  
Institut National de recherche pour 
l’agriculture, l’alimentation et l’environnement 
(INRAE), France  
Federica Chiappori,  
National Research Council (CNR), Italy  
Daljeet Singh Dhanjal,  
Lovely Professional University, India

*CORRESPONDENCE

Ariel Kushmaro  
 arielkus@bgu.ac.il

RECEIVED 25 June 2023
ACCEPTED 04 October 2023
PUBLISHED 02 November 2023

CITATION

Barak H, Fuchs N, Liddor-Naim M, Nir I, 
Sivan A and Kushmaro A (2023) Microbial dark 
matter sequences verification in amplicon 
sequencing and environmental metagenomics 
data.
Front. Microbiol. 14:1247119.
doi: 10.3389/fmicb.2023.1247119

COPYRIGHT

© 2023 Barak, Fuchs, Liddor-Naim, Nir, Sivan 
and Kushmaro. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 02 November 2023
DOI 10.3389/fmicb.2023.1247119

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1247119﻿&domain=pdf&date_stamp=2023-11-02
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/full
mailto:arielkus@bgu.ac.il
https://doi.org/10.3389/fmicb.2023.1247119
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1247119


Barak et al. 10.3389/fmicb.2023.1247119

Frontiers in Microbiology 02 frontiersin.org

1. Introduction

The most diverse and abundant life form on planet Earth, 
microorganisms play a fundamental role in the planet’s ecosystem 
health by cycling nutrients, degrading environmental pollutants, 
facilitating primary production, and providing essential nutrients and 
chemicals such as oxygen and different vitamins that humans and 
animals cannot produce themselves (Morowitz et al., 2011; Rinke 
et al., 2013; Solden et al., 2016). The conventional methods of studying 
these microorganisms and to elucidate their capabilities have, in the 
past, relied on already well-developed, classical laboratory techniques, 
in particular the use of cultivation methods. Nonetheless, in many 
environments only limited numbers of microorganisms have been 
cultivated to date (Solden et al., 2016; Zamkovaya et al., 2021). The 
famous “great plate count anomaly” is one of the earliest depictions of 
the gap between the actual number of bacteria present in a given 
sample and the much smaller number that can be effectively cultivated 
(Staley and Konopka, 1985). The extent of microorganism diversity 
was further elucidated by analyzing microbial ribosomal RNA (rRNA) 
gene sequences directly collected from environmental samples (Baker 
and Dick, 2013). During the last few decades, the 16S rRNA gene has 
emerged as the most sequenced taxonomic marker (Tringe and 
Hugenholtz, 2008), forming a cornerstone for systematic classification 
that is also exploited as a genetic marker to infer the phylogenetic 
relationships among prokaryotes.

The use of metabarcoding based on short variable region 
sequencing of the 16S rRNA gene has revolutionized microbial 
ecology, allowing for the rapid and high-throughput identification of 
complex microbial communities (Santos et al., 2020). However, due to 
the short amplicon lengths used in this analysis, this approach has 
limitations in the extent to which it can accurately affiliate microbial 
taxa to species or even genus levels, a resolution that is insufficient for 
differentiating closely related taxa. In addition, this method is prone 
to PCR amplification biases, sequencing errors, and variations in the 
copy number of the 16S rRNA gene across different taxa. To address 
these limitations, recent strategies have been developed that enable 
nearly full-length sequencing of the 16S rRNA gene, improving the 
accuracy of microbial identification and facilitating the discovery of 
novel taxa. Included among these approaches are long-read 
sequencing technologies such as PacBio and Oxford Nanopore and 
hybrid sequencing approaches that combine short-read and long-read 
sequencing technologies. These methods provide higher resolution 
and more accurate taxonomic classification, thereby increasing the 
reliability of microbial identification in various research fields. 
Nevertheless, Illumina short variable region sequencing is still the 
standard sequencing technology and the most frequently used method 
in microbial ecology studies. The importance of 16S rRNA gene 
sequences to the field notwithstanding, an exclusive reliance on this 
analytical method may fail to provide complete information about 
bacterial classification. According to Yarza et al. (2014), a sequence 
identity of 94.5% or lower for two 16S rRNA genes provides strong 
evidence that they belong to distinct genera, while lower sequence 
identities of 86.5% correspond to families, 82% to orders, 78.5% to 
classes and 75% to phyla. Analyses of the 16S rRNA gene from 
environmental samples revealed that fewer than half of the known 
microbial phyla are represented by at least one cultivated 
representative. Moreover, among all microbial isolates, more than 88% 
belong to only four bacterial phyla (from among the more than 1,500 

estimated phyla): Proteobacteria, Firmicutes, Actinobacteria and 
Bacteroidetes (Rinke et al., 2013; Solden et al., 2016). To date, the 
phyla that contain only uncultured representatives, identified via the 
phylogenetic analysis of rRNA genes recovered from environmental 
samples, have been referred to as candidate phyla. Lacking the support 
of bacterial culture results, rRNA based sequence analysis alone is 
unable to classify the majority of the microbial population. 
Microbiologists have therefore compared the problem of this 
“uncultured microbial majority” to that of “dark matter” in 
astrophysics, adopting similar terms such as “microbial dark matter” 
(MDM) to describe the uncultivated microbes (Hedlund et al., 2014; 
Jiao et al., 2021). Among the MDM, one prominent group of candidate 
phyla radiation (CPR) is known by the super-phylum name 
Patescibacteria (Harris et al., 2004; Nakai, 2020).

Genomic analyses of CPR representatives showed that metabolic 
limitations have prevented our ability to cultivate these organisms, 
which are typically smaller than cultivated bacteria (∼0.2 microns) 
(Vigneron et al., 2020) and with shorter genomes (∼1 Mbp). Moreover, 
they often have unusual ribosome compositions that contain self-
splicing introns and proteins encoded within their rRNA genes, a 
feature rarely reported in bacteria (Brown et  al., 2015). Many are 
thought to be  unable to produce their own nucleotides and are 
believed to possess minimal amino acid contents and limited cofactor 
biosynthetic capacity. Indeed, analyses of their genomes showed that 
they lack CRISPR (Tian et al., 2020) and the components necessary to 
synthesize membrane lipids (Castelle and Banfield, 2018). 
Nevertheless, their genomes have been recovered from diverse 
environments ranging from the human microbiome to drinking water 
to marine and deep subsurface sediments and soil (Méheust et al., 
2019). A recent phylogenetic study found that protein family presence/
absence patterns cluster the Patescibacteria super-phyla together and 
separate from all other bacteria and archaea.

Debate over the extent of the MDM diversity has led to estimates 
that it could account for as much as 25–50% of all bacterial diversity 
(Hug et al., 2016; Parks et al., 2017; Schulz et al., 2017). The inability 
to definitively determine its contribution to diversity may be because 
some of its groups are not detected in 16S rRNA gene taxonomic and 
diversity surveys due to primer mismatch and/or to the presence of 
introns within their 16S rRNA gene that may interfere with polymerase 
chain reaction (PCR) amplification (Castelle and Banfield, 2018). 
There is accumulating evidence that these uncultivated 
microorganisms account for a larger portion of the Earth’s biomass 
and biodiversity than was previously thought, reflecting the profound 
bias of the current body of knowledge about microbial life.

In metagenomic sequencing analysis (both 16S rRNA gene and 
shotgun sequencing), sequences are compared to reference databases 
that contain only a small part of the existing microorganisms. This 
results in uncovering of groups of yet unclassified microorganisms. 
Despite the increasing awareness of their immense importance, these 
unclassified amplicon sequences, designated by us as “microbial dark 
matter sequences” (MDMS), are usually ignored or discarded during 
typical microbial community profiling studies.

The aim of this study, therefore, was to provide additional support 
for the immense importance of MDMS in environmental 
metataxonomic analyses using the 16S rRNA gene. To that end, 
we analyzed 16S rRNA gene sequences collected from four different, 
highly diverse environments—a living organism, rocks from a desert 
environment, natural aquatic environments and a membrane 
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bioreactor for wastewater treatment. Our ongoing studies of the varied 
microbiomes of these environments availed us of the necessary 
samples from each environment. Of the sequences collected, 163 16S 
rRNA representative gene sequences, obtained from amplicon 
sequencing, were chosen for additional examination as potential 
MDMS. These sequences were screened against various databases and 
aligned to the GTDB (Genome Taxonomy Database) to build a 
comprehensive phylogenetic tree for additional sequence 
classifications. The putative MDMS were screened against 
metagenome-assembled genomes from the explored environments for 
additional validation and for taxonomic and metabolic capacity 
characterization. Using a relatively simple, currently available 
methodology, this study sheds additional light on MDMS that will 
improve our conceptualization of the bacterial diversity in 
any environment.

2. Materials and methods

2.1. Total genomic DNA extraction

For the purposes of this study, we used total gDNA obtained from 
four vastly different environments:

 - A membrane bioreactor (MBR) used to treat chemical industry 
wastewater; system description and DNA extractions described 
in Barak et al. (2020).

 - Larvae of the beetle Capnodis tenebrionis (CT); experiment 
described in Barak et al. (2019).

 - Surfaces of Negev desert rocks (NDR)—12 rock samples from 
two petroglyph sites in the Negev desert of Israel from the 
Ramat Matred and Har Michya sites; experiment and DNA 
extraction procedure described in Irit et al. (2019) and Nir 
et al. (2019).

 - Confined and unconfined aquifers—five biomass samples 
scraped from different coupons made of glass, steel and stainless 
steel that had been deployed in water wells in the Arava Valley.

 - In addition, 20 biomass samples were obtained By sterile filtering 
50 L of water from The wells In The Arava Valley using The 
Stericup-GP sterile vacuum filtration system containing a 
polyethersulfone membrane with a pore size of 0.22 μm (Merck, 
Gillingham, United Kingdom). Extraction of total genomic DNA 
from The biomass samples Was carried Out using The MoBio 
PowerWater isolation Kit (MoBio laboratories Inc. Carlsbad, CA, 
United  States) and The DNeasy PowerSoil Kit (Qiagen, 
United States).

2.2. Next generation amplicon sequencing

The total genomic DNA that was extracted from the samples was 
submitted to the DNA Services facility (DNAS) of the Research 
Resources Center at the University of Illinois Chicago (UIC) for gene 
sequencing of the bacterial small subunit (16S) of ribosomal RNA 
(rRNA) using the Illumina MiSeq platform with a sequencing length 
of 300 bps. Prior to sequencing, two PCR amplification steps were 
performed. During the first PCR reaction, fragments of the V3–V4 

(environments 1–3) and V1–V3 (aquifers) regions of the 16S rRNA 
gene were amplified using universal primers (341F/806R and 
27F/534R, respectively) (Jumpstart Consortium Human Microbiome 
Project Data Generation Working Group, 2012; Hugerth et al., 2014; 
Elovitz et al., 2019) to which were attached the 5′ linker sequences CS1 
and CS2 (known as common sequence 1 and 2). The second PCR 
reaction was done to prepare the library as described by Green 
et al. (2015).

2.3. Metataxonomic data analysis

Raw reads were merged using the PEAR software package 
(v0.9.10) (Zhang et al., 2014), with a quality score threshold of 25 for 
trimming and a base PHRED quality score of 33. Sequence data were 
screened to remove low-quality sequences and potentially chimeric 
sequences with the Mothur software package (v1.36.1) (Schloss 
et  al., 2009). Sequences that contained more than eight bases 
homopolymers or any ambiguous bases were removed, and a length 
cutoff of 250 bp was used. The resultant sequences file was screened 
against the phix 174 genome (ID—MN385565) using BLASTN 
(Chen et al., 2015) to remove sequencing/processing artifacts. The 
quality-controlled sequences were then processed with the Qiime 
software package (v1.9.1) (Caporaso et al., 2010). Briefly, sequence 
data were clustered into operational taxonomic units (OTU) at 97% 
similarity. Representative sequences from each OTU were extracted 
and classified using the “assign_taxonomy.py” script with the 
UCLUST assignment method, utilizing the SILVA database (Quast 
et al., 2012).

Representative sequences were also aligned using the “align_
seqs.py” script with percent identity thresholds of 75 and 90% to the 
Silva alignment reference file (Quast et  al., 2012). The aligned 
sequences were filtered using the silva_lanemask_mothur file and 
then used to produce a phylogenetic tree. Four biological 
observation matrices (BIOM) (McDonald et  al., 2012) were 
generated at taxonomic levels from phylum to genus using the 
“make_OTU_table.py” script. Sequences that failed to align with 
the Silva DB for the above-mentioned thresholds were not included 
in the BIOM tables. An additional BIOM table was also generated 
in which no alignment-based sequence filter was applied. The 
“filter_otus_from_otu_table.py” script ensured that only OTUs with 
minimum total observation counts of 50 reads were retained. All 
data analysis was done using the Silva database (v.138) as a 
reference. BIOM tables were converted from read counts to relative 
abundances and the relative abundances of the unassigned OTUs 
from each dataset were plotted to present the differences between 
75 and 90% alignment thresholds.

Beta diversity (pairwise sample dissimilarity) was calculated using 
Bray-Curtis, and a 2D nMDS plot was generated using R.

The OTU table (based on all representative sequences, without 
eliminating alignment failures) was converted from read numbers to 
relative abundance values, and OTUs that were not assigned to any 
known lineage (not even at the phylum level) and that had relative 
abundance summaries higher than 0.5% were chosen for further 
observation as putative MDMS (Supplementary Table S6 presents a 
summarized overview of taxa at the phylum level, derived from the 
biome table).
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2.4. Taxonomic analysis of putative MDMS

For a more comprehensive taxonomic classification, the 163 
putative MDMS were compared to four different databases using 
BLASTN (Altschul et al., 1990): the Silva database (v.138) (Quast et al., 
2012), EzBioCloud’s 16S database (updated in May 2018) (Yoon et al., 
2017), the GTDB (r89) (Parks et  al., 2018) and the nucleotide 
collection database (nt) of the NCBI last accessed in February 2020 
(NCBI Resource Coordinators, 2013). Manual observation of the 
similarity percentage and query cover of the obtained hits for each 
putative MDMS provide a more accurate taxonomic classification 
based on similarity percentage as described in Yarza et al. (2014).

2.5. Phylogenetic analysis of putative 
MDMS

To generate a phylogenetic tree that integrates our putative 
MDMS with the known bacteria, we used the SSU rRNA sequences 
with lengths of 600–2,000 bases from the GTDB repository (bac120 
ssu r89). First, the GTDB SSU rRNA sequences were aligned using the 
SSU-ALIGN v.0.1 software (Nawrocki, 2009). The aligned sequences 
were then masked based on posterior probability (PP) annotation at 
the default value of 0.95 for aligned residues and as a value of 0.70 for 
the gap threshold based on the frequency of gap characters in each 
column. Numerous candidates of the CPR super-phylum known to 
encode insertions were clustered in several locations of these MDMS 
16S rRNA genes. The SSU-ALIGN algorithm that was used in the 
secondary structure-and function-based multiple sequence alignment 
(MSA) analysis only included parts of the gene that lacked 
the insertions.

The putative MDMS were added to the GTDB MSA using the 
MAFFT v7.464 software (with the Addfragments option) (Katoh and 
Standley, 2013). The full phylogenetic tree was generated based on the 
merged alignment using FastTree_v2.1.10 (Price et  al., 2010). 
Visualization was carried out using the Interactive Tree of Life (iTOL) 
online interface (Letunic and Bork, 2016).

2.6. MDMS existence validation

Specific primers were designed for about 30 MDMS using Primer-
BLAST (Ye et al., 2012). Primers suggested by Primer-BLAST were 
examined through the Amplifx software for GC content, self-dimer, 
Tm and annealing to the target sequence. Primers were synthesized by 
SIGMA-ALDRICH Co., LLC (Rehovot, Israel). The primers were 
attached to the 5′ linker sequences CS1 and CS2 and the samples 
originated each MDMS of interest were sent for sequencing using 
Illumina MiSeq platform by the DNA Services facility (DNAS) of the 
Research Resources Center at the University of Illinois Chicago (UIC). 
The obtained sequencing data was analyzed as described in the 
“Metataxonomic data analysis” section previously. If the amplification 
was not specific, it was ignored. If it did provide specific OTU, the 
representative OTU sequence was compared to the original MDMS 
sequence using blast. Only sequences with high levels of similarity 
(>95%) and 100% query cover are shown.

Furthermore, targeted chimera check was conducted for all 
MDMS, utilizing the DECIPHER web tool (v2.27.2) (Firth et al., 2009).

2.7. Metagenomic analysis, putative MDMS 
screening, and genome characterization

Genomic DNA from 17 representative samples from the two 
environments with abundances of MDMS (NDR and aquifers) were 
sequenced by the Illumina NextSeq500 platform in the DNA Services 
(DNAS) Facility of the Research Resources Center at the University of 
Illinois at Chicago (UIC).

Metagenomic data were processed by the metaWRAP pipeline 
v1.2.1. Raw reads were subjected to quality control (QC) using 
TrimGalore v0.5.0 (Krueger, 2012) and low-quality reads were 
removed. The QC-passed sequences were assembled using 
MetaSPAdes v3.13.0 (Nurk et al., 2017) (or MEGAHIT v1.1.3 (Li et al., 
2015) in Ramat-Matred samples due to memory limitation). The 
assemblies and the QC-passed sequences were used for metagenomic 
binning using three different algorithms: MaxBin v2.2.6 (Kang et al., 
2015), metaBAT v2.12.1 (Kang et al., 2015), and CONCOCT v1.0.0 
(Alneberg et al., 2013). The resulting three bin sets were consolidated 
to obtain a single, strong bin set with a minimum completion of 50% 
and a maximum contamination of 10%. The consolidated bin set was 
reassembled using both “strict” and “permissive” algorithms, and once 
the reassembled bin had been improved, it replaced the original bin.

The chosen 163 putative MDMS were screened against both the 
assembly results and the final bins using BLASTN. The results were 
examined manually based on the percent similarity (>96%) and cover 
and on the overlap locations.

The consolidated matched MDMS bins were functionally 
annotated using Prokka v1.13 (Seemann, 2014) with metaWRAP’s 
Annotate_bins module. Additional metabolic and biogeochemical 
functional trait profiling was carried out using the METABOLIC 
profiler software (Zhou et  al., 2019) with METABOLIC-C.pl. 
version 4.0.

See Supplementary Figure S2 for an outline of the methodology  
pipeline.

3. Results and discussion

Microbial community analysis based on 16S rRNA gene 
amplicon sequencing is a widespread and important technique in 
microbiological research (Prodan et al., 2020) that allows researchers 
to characterize the environment and to determine which 
microorganisms, both cultured and uncultured, are present in an 
environmental sample. General analyses of the 16S rRNA gene 
sequences should compare them to relevant databases. Based mainly 
on laboratory-cultured bacteria, however, these databases (and 
indeed, most of our knowledge of microorganisms) are relatively 
limited in scope, thus rendering the resulting notion of the tree of life 
unable to present a comprehensive picture of the microbial world. 
Shedding light on the “dark matter” inhabiting the tree of life may 
therefore improve our understanding of explored environments and 
contribute to reshaping the microbial world’s taxonomy.

Today’s whole genome shotgun sequencing studies, especially 
those focused on single-cell sequencing, constitute the leading 
methods used to explore uncultured microorganisms and expand our 
knowledge of the microbial world (Jiao et al., 2021; Wiegand et al., 
2021). Indeed, this technique has illuminated the understudied 
“microbial dark matter” (MDM), thereby helping to fill the gaps in the 
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growing tree of life and eventually explain those microorganisms’ roles 
in the environment. To date, however, phylogenetic studies rely mostly 
on 16S rRNA sequences and metagenomic shotgun sequencing.

The objective of this study is to fortify our ability to discover the 
hidden potential of the “microbial dark matter” by using 16S rRNA 
amplicon sequencing. To achieve this, we performed bioinformatic 
analyses of 16S rRNA gene sequences obtained from four very 
different environments representing diverse conditions: (1) A 
contaminated industrial environment, i.e., a membrane bioreactor 
used to treat chemical industry wastewater; (2) Capnodis tenebrionis 
as a living habitat; and two natural desert environments, (3) desert 
rocks with petroglyphs, and (4) water wells (confined and unconfined 
aquifers) in the Arava Valley. These environments, varied habitats that 
have yet to be  rigorously explored, demonstrate their potential as 
sources for the discovery of new, unculturable bacteria.

As expected, non-metric multidimensional scaling (nMDS) 
analysis (Figure  1) showed high variance between the datasets 
(confined and unconfined aquifers treated as two separate groups). 
Anosim and Permanova tests supported this result with a p-value of 
0.0001 and test statistics of 0.998 and 11.394, respectively.

Using a set of bioinformatic filters, we  generated a total of 
5,174,233 high-quality reads obtained from 61 samples. These reads 
originated from an initial dataset comprising approximately 14 million 
raw reads. Among the 5,558 representative OTUs with a minimum of 
50 repeated observations, 529 OTUs (~9.5%) were not assigned to any 
known lineage. We  found a major difference in the number of 
unassigned OTUs when data were rarified based on 75 and 90% 
identity thresholds for alignment (Figure 2), a finding which may 
indicate that the “dark” part of the microbial environment is located 
in the gap between the 75 and 90% similarity thresholds. These cutoffs 
(75 and 90%) were chosen based on the recommended minimum 
percent similarities to include a sequence in an alignment and to 
consider a database match a hit, respectively.1 Interestingly, natural 

1 http://qiime.org/

aquifer water and desert rocks contained higher number of unassigned 
OTUs in both relative abundance and absolute numbers compared to 
the engineered environment of the wastewater treatment system. 
Indeed, according to previous works, unclassified sequences are 
commonly found in less studied natural environments such as natural 
water habitats (Keshri et al., 2015; Panda et al., 2017) and semiarid 
endoliths (Hug et al., 2016). Since aquifer samples were sequenced for 
the variable regions V1-V3 and all other samples were sequenced for 
V3–V4, it could also explain part of the differences in the portion of 
unclassified sequences between the different environments.

The relative abundances of the unassigned OTUs ranged from 
minor to as high as 40% of the reads obtained from a confined aquifer 
sample. Indeed, our results together with those of recent works 
(Zamkovaya et al., 2021) demonstrate that “microbial dark matter” are 
key ecological players within their respective communities. While 
Lynch et al. (2012) emphasize the importance of novel phylogenetic 
diversity in what has been dubbed the “rare biosphere,” wherein they 
examine low relative abundance sequences, the present study focuses 
on the highly abundant but uncharacterized sequences. Rare biosphere 
sequences are liable to be missed by metagenomic sequencing due to 
the lack of a PCR amplification step (Pascoal et al., 2021).

Based on their relative abundances, 163 of the unassigned 
sequences were chosen to represent putative MDMS, and these were 
screened against four different updated databases: Silva, EZ, NCBI, 
and GTDB. The best match for each MDMS after manual observation 
is presented in Supplementary Table S1. To enable assumptions about 
their taxonomic attributions, the putative MDMS were also aligned to 
the GTDB to build a phylogenetic tree (Figure 3) that was pruned into 
four smaller trees (Figure  4) to facilitate a more comprehensive 
perspective of MDMS distribution across the tree of life. A substantial 
number of the MDMS (40 out of 163) were found to be part of the 
Patescibacteria super-phylum (Figure 4A). Indeed, it is reasonable that 
a relatively large portion of the MDMS belongs to the Patescibacteria 
super-phylum, since they are largely uncultured and therefore 
understudied. Interestingly, it is still not known whether the distinct 
phylogenetic position of Patescibacteria in the tree of life is due to 
rapid evolution by genome reduction or to its early evolutionary split 

FIGURE 1

Non-metric multidimensional scaling (nMDS) based on Bray-Curtis, with normal data ellipses (stress level: 0.09).
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from the non-Patescibacteria (Méheust et  al., 2019; Wiegand 
et al., 2021).

Eight MDMS were related to the Elusimicrobiota and four were 
related to the Planctomycetota phylum. A group of 53 
MDMS, all obtained from aquifer samples, was situated near the 
Nitrospirota phylum. A tree of putative MDMS from aquifers 
(Supplementary Figure S1A) suggests that the members of this group 
do not necessarily belong together. Comparisons of their BLAST 
results with the GTDB also yielded similarities of 75–85% to different 
phyla such as Bacteroidota, Methylomirabilota, Desulfuromonadota, 
Actinobacteriota, Planctomycetota, etc. Nitrospirota have been shown 
to consistently coexist with Patescibacteria, after which they are the 
most common phylum in the groundwater population (Herrmann 
et al., 2019; Yan et al., 2021). Nevertheless, it seems that in our case, 
not all of the 53 MDMS are part of the Nitrospirota phylum, which 
may be due to their misclassification.

In the general phylogenetic tree (Figure  3), MDMS were also 
integrated within different phyla, including the Gammaproteobacteria, 
Firmicutes, Bacteroidota, Cyanobacteria, etc. We also validated the 
existence of the putative 16S rRNA MDMS by specific PCR 
amplification and Mi-Seq Illumina re-sequencing using specific self-
designed primers for a few representative MDMS (Table  1). 
Comparisons of the re-sequenced fragments to the original putative 
MDMS yielded similarity percentages of 95.91–100%, indicating 
appropriate primer design and the existence of these sequences in our 
sequencing data. In the present work, each MDMS is a representative 
sequence of a group of similar sequences (97% similarity) that 
constitute an OTU. Previous works found that distinct taxa may 
be found within a single OTU (Needham et al., 2017). Therefore, when 
validating the putative MDMS against resequencing results, we treat 
similarity percentages higher than 94.5% as relevant because they may 
indicate sequences of the same genus (Yarza et al., 2014).

The MDMS were compared against the draft genomes that were 
generated from the metagenomic analyses of samples obtained from 
the natural aquifers and desert rocks. The metagenomics study of 
aquifers included nine samples with a sequencing depth of 120 million 
sequences, leading to the generation of a total of 106 consolidated bins 
(with a minimum completion of 50% and a maximum contamination 
of 10%). In parallel, the analysis of desert rocks involved eight samples 
with a sequencing depth of 181 million sequences, resulting in the 
identification of 45 bins. Nine of the draft genomes presented 
similarities to the MDMS higher than 96% (Table 2). The estimated 
level of completeness for those genomes ranged from 54.38 to 96.47%. 
15 of the MDMS were present in the assembly results of the same 
samples (Supplementary Table S3). Finding only 9 matches 
corresponds to the discovery that ribosomal protein genes may 
be absent in over 20–40% of nearly complete metagenome-assembled 
genomes (Mise and Iwasaki, 2022).

To ensure the integrity of the MDMS data, we  performed an 
additional chimera check, specifically targeted to the 163 
MDMS. Among the sequences analyzed, 20 sequences exhibited 
potential chimeric features (Supplementary Table S2). Although the 
low false-positive chimera detection was reported by DECIPHER 
(Firth et al., 2009), some of the 20 MDMS sequences which were 
suspected as chimeric were found to be similar to sequences in the 
metagenomic data in the validation process. Due to the limited 
overlap of the reads and low coverage percentages observed in some 
of the validated sequences, drawing definitive conclusions about the 
suspected chimeric sequences poses challenges. Thus, it is without 
doubt that several of the putative MDMS might be chimeric, which 
suggests that their taxonomic and phylogenetic analysis are incorrect.

The nine draft genome matches to putative MDMS were 
characterized in terms of metabolic capacities based on their genes 
(Supplementary Table S4). Table 3 provides the assumed taxonomic 

FIGURE 2

Dots represent the relative abundance of each unassigned OTU for the studied environments: Aquifers (confined and unconfined), CT, Capnodis 
Tenebrionis; MBR, industrial wastewater (membrane bioreactor); NDR, Negev desert rocks. The identity thresholds are 75% (left) and 90% (right).

https://doi.org/10.3389/fmicb.2023.1247119
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Barak et al. 10.3389/fmicb.2023.1247119

Frontiers in Microbiology 07 frontiersin.org

attribution for the 9 MDMS. A034 is probably a new class within the 
Nitrospirota phylum, A010 is related to the Desulfuromonadota and 
it may be a new class within this phylum or a new, separate phylum. 
A078 and R008 belong to the Gammaproteobacteria and 
Chloroflexota, respectively. Five of the MDMS genomes were 
identified as part of the Patescibacteria super-phylum, such that A020 
and A083 are apparently Paceibacteria, A014 is Microgenomatia, and 
A054 and A0146 are putative new candidate phyla. MDMS that were 
identified as part of the Patescibacteria super-phylum have fewer 
features than the other MDMS (Table 3 and Supplementary Table S4). 
Such a discrepancy could be caused by the typically small genome size, 
relatively small percentage of completeness, and lack of basic 
metabolic capacities that characterized the members of this group 
(Tian et al., 2020), but it could also be due to the lack of information 

about the functional genes of these uncultured microorganisms. 
Figure 5 presents some of the metabolic capacities of A010 (related to 
the Desulfuromonadota) and demonstrates the large amount of 
information that can be  tapped about a prevalent MDMS (A010 
constituted 40% of the reads in one sample) but that may be ignored 
due to their low similarity to existing databases. Bin A010 was 
assembled with a completion level of 94.6%. In addition to the 
comprehensive information about bacterial transport systems, 
we found genes whose expression controls morphology properties 
such as gram negativity, rod shape and basal body flagella. Moreover, 
it also contained genes for twitching mobility, sporulation, 
gluconeogenesis and glycolysis, chitin degradation, formate oxidation, 
selenate and arsenate reduction, and parts of the nitrogen and sulfur 
cycles. This metagenome-assembled genome also contained genes 

FIGURE 3

Phylogenetic tree. One hundred and sixty three representatives of the unassigned group are marked with black dots and integrated within the bacteria 
sequences of the GTDB (bac120_ssu_r89.fna). Branches, strips, and labels are uniquely colored according to phyla.
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FIGURE 4

Pruned phylogenetic trees of the (A) Patescibacteria super-phylum [Candidate phyla radiation (CPR)], combines 40 representative unassigned OTUs 
(bold); (B) Elusimicrobiota; (C) Nitrospirota; and (D) Planctomycetota. The tree is pruned from the phylogenetic tree in Figure 3. Branches, strips, and 
labels are uniquely colored according to phyla.
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TABLE 1 Six representative sequences used for validation using re-sequencing by MiSeq Illumina with self-designed specific primers.

Seq ID Original seq length Amplified seq length % similarity F-primer R-primer

R001 449 225 100 CGTAGGCGGTTTCTTAAGTTTTGA ACTCGGGTTTCTAATCCTCTTCG

R003 449 271 98.15 AAAGCCTGATCCAGCCACAT ACTCTCCTCTCCCTTCCTCT

A016 495 439 95.91 TCAGGGTGAACGCTGGTAAC TCCACCGGTACAGTCAACCT

A054 469 392 100 GCAAGTCAAACCCCGCTTAT CCGGTGCTATTTGCAGGAGT

A073 521 318 97.17 ACCGGATAGGATGGCTCTCT CGTCAGGTACCGTCATACCAG

A080 498 458 100 GGCTCAGAATGAACGCTTGAAA GCCAGGGCTTCTTCTTTAGGT

Only sequences with high levels of similarity (>95%) and 100% query cover are shown.

TABLE 2 Bins (draft genomes) with high similarity (genus level) to the MDMS (blastn results) and bin information (completeness and contamination level).

Environment MDMS seq 
ID

seqid % similarity Overlap 
length

Seq length Node 
length

Completeness Contamination Size

Confined aquifers
A034 bin.2.permissive_NODE_252 100 370 514 2,362 83.51 0.959 1,528,181

A010 bin.8.permissive_NODE_72 99.707 341 542 14,242 94.64 4.444 5,203,795

Unconfined 

aquifers

A020 bin.10.permissive_NODE_12 99.603 504 504 23,198 55.87 0.094 686,180

A014 bin.40.orig_NODE_559 99.788 471 471 29,535 61.46 0 954,011

A078 bin.32.strict_NODE_9 98.11 529 530 155,909 96.47 0.352 2,729,365

Biofilm from 

aquifers

A083 bin.7.orig_NODE_10041 96.603 471 471 2,996 54.38 0 529,863

A054 bin.26.permissive_NODE_64 99.787 469 469 4,606 59.33 0.854 834,322

A146 bin.34.permissive_NODE_1 99.656 291 558 52,977 56.38 0 621,998

Har Michya R008 bin.15.strict_NODE_164 98.795 166 445 656 95.95 3.636 6,110,660

https://doi.org/10.3389/fmicb.2023.1247119
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Barak et al. 10.3389/fmicb.2023.1247119

Frontiers in Microbiology 10 frontiersin.org

such as OmcS (outer-membrane hexaheme c-type cytochrome) and 
PilA (pilin monomers) that are typical in members of the 
Desulfuromonadota group and indicate their potential to transfer 
electrons extracellularly either to iron mineral particles or to microbial 
syntrophs, including methanogens (Elul et al., 2021). Given its origin 
from water aquifers, this bacterium could play a crucial part in carbon 
cycling and nutrient transformations within aquatic ecosystems.

4. Conclusion

Microbial dark matter (MDM) comprises an immense diversity 
of yet-uncultivated bacteria. While cultivation independent 

techniques have been exploited in recent years to expand our 
knowledge about MDM, the bulk of microbial ecology studies 
continue to use 16S rRNA gene amplicon sequencing to 
characterize the microbial communities in a wide range of 
environments. When using this technique, researchers encounter 
groups of sequences that cannot be classified under known lineages 
in the existing databases, sequences that are now identified as 
belonging to the group of microbial dark matter sequences 
(MDMS). While these sequences are discarded from most 
analytical pipelines, they may still play important roles in 
environmental functioning. Furthermore, while in some well-
studied environments, the ecological contribution of the MDMS 
may be  negligible, their presence in the community in certain 
under-studied environments may be essential. Illuminating their 
functional contribution in these cases may facilitate a more robust 
and better understanding of the unique microbial community 
structures of these environments.

Here, in addition to demonstrating that microbial dark matter 
indeed present in amplicon sequencing, we present a pipeline to 
examine the MDM hidden in amplicon sequencing analysis. This 
study demonstrates that these abundant unidentified OTUs might 
be an essential part of their ecosystems. Therefore, we encourage 
researchers to retain these sequences and examine them as they 
might correspond to complete genomes containing metabolic 
functions critical to their ecosystems. Though they must be treated 
carefully, the results of MDMS investigations can be used to expand 
microbial databases and to situate these microorganisms in the tree 
of life, which together will promote a better comprehension of their 
evolution and contribute to the evolving taxonomy of the 
microbial world.

FIGURE 5

Visualized map of the metabolic capacities of the putative MDMS A010 based on METABOLIC results and Prokka. Information for other genomes is in 
Supplementary Table S4.

TABLE 3 MDMS attribution to phyla based on 16S rRNA BLAST 
comparison to databases, location on the GTDB phylogenetic tree and 
information from the matchings with the draft genomes.

SeqID Phylum

A034 Nitrospirota (new class)

A010 Desulfuromonadota (new class/phylum)

A020 Paceibacteria

A014 Microgenomatia

A078 Gammaproteobacteria

A083 Paceibacteria

A054 Putative new candidate phyla

A146 Putative new candidate phyla

R008 Chloroflexota

https://doi.org/10.3389/fmicb.2023.1247119
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Barak et al. 10.3389/fmicb.2023.1247119

Frontiers in Microbiology 11 frontiersin.org

Data availability statement

The datasets associated with this study have been deposited in the 
National Center for Biotechnology Information (NCBI) database. A 
comprehensive overview of these datasets, including their 
corresponding accession numbers and types, is provided in 
Supplementary Table S5.

Author contributions

HB and NF implemented all bioinformatic analyses and wrote the 
main manuscript text. HB prepared all figures. IN and ML-N 
performed samples of rocks and aquifers samples collection and DNA 
extraction. AK and AS supervised the project. All authors reviewed 
the manuscript.

Acknowledgments

The authors gratefully acknowledge the support of the Ministry of 
Science and Technology (MOST), Israel Fund, Mekorot (Israel National 
Water Company) and the Ministry of Agriculture for partial funding. 
The authors also thank the Israel Nature and Parks Authorities (INPA) 
for granting them permission to sample, and Liran Bugoslavsky and 
Pradeep Kumar for sharing their data. Furthermore, the authors thank 
the Avram and Stella Goldstein-Goren fund for partial support.

In memoriam

This paper is dedicated to the memory of Prof. Alex Sivan, who 
participated in this study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/
full#supplementary-material

References
Alneberg, J., Bjarnason, B. S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., et al. 

(2013) CONCOCT: clustering contigs on coverage and composition. arXiv preprint 
arXiv:1312.4038 (2013).

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local 
alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2

Baker, B. J., and Dick, G. J. (2013). Omic approaches in microbial ecology: charting 
the unknown. Microbe 8, 353–359. doi: 10.1128/microbe.8.353.1

Barak, H., Brenner, A., Sivan, A., and Kushmaro, A. (2020). Temporal distribution of 
microbial community in an industrial wastewater treatment system following crash and 
during recovery periods. Chemosphere 258:127271. doi: 10.1016/j.chemosphere. 
2020.127271

Barak, H., Kumar, P., Zaritsky, A., Mendel, Z., Ment, D., Kushmaro, A., et al. (2019). 
Diversity of bacterial biota in Capnodis tenebrionis (Coleoptera: Buprestidae) larvae. 
Pathogens 8:4. doi: 10.3390/pathogens8010004

Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., et al. 
(2015). Unusual biology across a group comprising more than 15% of domain Bacteria. 
Nature 523, 208–211. doi: 10.1038/nature14486

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., 
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community 
sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/nmeth.f.303

Castelle, C. J., and Banfield, J. F. (2018). Major new microbial groups expand diversity 
and alter our understanding of the tree of life. Cells 172, 1181–1197. doi: 10.1016/j.
cell.2018.02.016

Chen, Y., Ye, W., Zhang, Y., and Xu, Y. (2015). High speed BLASTN: an accelerated 
MegaBLAST search tool. Nucleic Acids Res. 43, 7762–7768. doi: 10.1093/nar/gkv784

Elovitz, M. A., Gajer, P., Riis, V., Brown, A. G., Humphrys, M. S., Holm, J. B., et al. 
(2019). Cervicovaginal microbiota and local immune response modulate the risk of 
spontaneous preterm delivery. Nat. Commun. 10:1305. doi: 10.1038/s41467-019-09285-9

Elul, M., Rubin-Blum, M., Ronen, Z., Bar-Or, I., Eckert, W., and Sivan, O. (2021). 
Metagenomic insights into the metabolism of microbial communities that mediate iron 
and methane cycling in Lake Kinneret iron-rich methanic sediments. Biogeosciences 18, 
2091–2106. doi: 10.5194/bg-18-2091-2021

Firth, H. V., Richards, S. M., Bevan, A. P., Clayton, S., Corpas, M., Rajan, D., et al. 
(2009). DECIPHER: database of chromosomal imbalance and phenotype in humans 

using ensembl resources. Am. J. Hum. Genet. 84, 524–533. doi: 10.1016/j.
ajhg.2009.03.010

Green, S. J., Venkatramanan, R., and Naqib, A. (2015). Deconstructing the polymerase 
chain reaction: understanding and correcting bias associated with primer degeneracies 
and primer-template mismatches. PLoS One 10:e0128122. doi: 10.1371/journal.
pone.0128122

Harris, J. K., Kelley, S. T., and Pace, N. R. (2004). New perspective on uncultured 
bacterial phylogenetic division OP11. Appl. Environ. Microbiol. 70, 845–849. doi: 
10.1128/AEM.70.2.845-849.2004

Hedlund, B. P., Dodsworth, J. A., Murugapiran, S. K., Rinke, C., and Woyke, T. (2014). 
Impact of single-cell genomics and metagenomics on the emerging view of extremophile 
“microbial dark matter”. Extremophiles 18, 865–875. doi: 10.1007/s00792-014-0664-7

Herrmann, M., Wegner, C., Taubert, M., Geesink, P., Lehmann, K., Yan, L., et al. 
(2019). Predominance of cand. Patescibacteria in groundwater is caused by their 
preferential mobilization from soils and flourishing under oligotrophic conditions. 
Front. Microbiol. 10:1407. doi: 10.3389/fmicb.2019.01407

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., 
et al. (2016). A new view of the tree of life. Nat. Microbiol. 1, 1–6. doi: 10.1038/
nmicrobiol.2016.48

Hugerth, L. W., Wefer, H. A., Lundin, S., Jakobsson, H. E., Lindberg, M., Rodin, S., 
et al. (2014). DegePrime, a program for degenerate primer design for broad-taxonomic-
range PCR in microbial ecology studies. Appl. Environ. Microbiol. 80, 5116–5123. doi: 
10.1128/AEM.01403-14

Irit, N., Hana, B., Yifat, B., Esti, K., and Ariel, K. (2019). Insights into bacterial 
communities associated with petroglyph sites from the Negev Desert, Israel. J. Arid. 
Environ. 166, 79–82. doi: 10.1016/j.jaridenv.2019.04.010

Jiao, J., Liu, L., Hua, Z., Fang, B., Zhou, E., Salam, N., et al. (2021). Microbial dark 
matter coming to light: challenges and opportunities. Natl. Sci. Rev. 8:nwaa280. doi: 
10.1093/nsr/nwaa280

Jumpstart Consortium Human Microbiome Project Data Generation Working Group 
(2012). Evaluation of 16S rDNA-based community profiling for human microbiome 
research. PLoS One 7:e39315. doi: 10.1371/journal.pone.0051204

Kang, D. D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient tool for 
accurately reconstructing single genomes from complex microbial communities. PeerJ 
3:e1165. doi: 10.7717/peerj.1165

https://doi.org/10.3389/fmicb.2023.1247119
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1247119/full#supplementary-material
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1128/microbe.8.353.1
https://doi.org/10.1016/j.chemosphere.2020.127271
https://doi.org/10.1016/j.chemosphere.2020.127271
https://doi.org/10.3390/pathogens8010004
https://doi.org/10.1038/nature14486
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1016/j.cell.2018.02.016
https://doi.org/10.1016/j.cell.2018.02.016
https://doi.org/10.1093/nar/gkv784
https://doi.org/10.1038/s41467-019-09285-9
https://doi.org/10.5194/bg-18-2091-2021
https://doi.org/10.1016/j.ajhg.2009.03.010
https://doi.org/10.1016/j.ajhg.2009.03.010
https://doi.org/10.1371/journal.pone.0128122
https://doi.org/10.1371/journal.pone.0128122
https://doi.org/10.1128/AEM.70.2.845-849.2004
https://doi.org/10.1007/s00792-014-0664-7
https://doi.org/10.3389/fmicb.2019.01407
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1128/AEM.01403-14
https://doi.org/10.1016/j.jaridenv.2019.04.010
https://doi.org/10.1093/nsr/nwaa280
https://doi.org/10.1371/journal.pone.0051204
https://doi.org/10.7717/peerj.1165


Barak et al. 10.3389/fmicb.2023.1247119

Frontiers in Microbiology 12 frontiersin.org

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 
10.1093/molbev/mst010

Keshri, J., Mankazana, B. B., and Momba, M. N. (2015). Profile of bacterial 
communities in south African mine-water samples using Illumina next-generation 
sequencing platform. Appl. Microbiol. Biotechnol. 99, 3233–3242. doi: 10.1007/
s00253-014-6213-6

Krueger, F. (2012) Trim galore: a wrapper tool around Cutadapt and FastQC to 
consistently apply quality and adapter trimming to FastQ files, with some extra 
functionality for MspI-digested RRBS-type (reduced representation Bisufite-Seq) libraries. 
Available at: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ 
(Accessed April 28, 2016).

Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the 
display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–
W245. doi: 10.1093/nar/gkw290

Li, D., Liu, C., Luo, R., Sadakane, K., and Lam, T. (2015). MEGAHIT: an ultra-fast 
single-node solution for large and complex metagenomics assembly via succinct de 
Bruijn graph. Bioinformatics 31, 1674–1676. doi: 10.1093/bioinformatics/btv033

Lynch, M. D., Bartram, A. K., and Neufeld, J. D. (2012). Targeted recovery of novel 
phylogenetic diversity from next-generation sequence data. ISME J. 6, 2067–2077. doi: 
10.1038/ismej.2012.50

McDonald, D., Clemente, J. C., Kuczynski, J., Rideout, J. R., Stombaugh, J., Wendel, D., 
et al. (2012). The biological observation matrix (BIOM) format or: how I learned to stop 
worrying and love the ome-ome. Gigascience 1:7. doi: 10.1186/2047-217X-1-7

Méheust, R., Burstein, D., Castelle, C. J., and Banfield, J. F. (2019). The distinction of 
CPR bacteria from other bacteria based on protein family content. Nat. Commun. 10, 
1–12. doi: 10.1038/s41467-019-12171-z

Mise, K., and Iwasaki, W. (2022). Unexpected absence of ribosomal protein genes from 
metagenome-assembled genomes. ISME Commun. 2:118. doi: 10.1038/
s43705-022-00204-6

Morowitz, M. J., Carlisle, E. M., and Alverdy, J. C. (2011). Contributions of intestinal 
bacteria to nutrition and metabolism in the critically ill. Surg. Clin. 91, 771–785. doi: 
10.1016/j.suc.2011.05.001

Nakai, R. (2020). Size matters: ultra-small and filterable microorganisms in the 
environment. Microbes Environ. 35:ME20025. doi: 10.1264/jsme2.ME20025

Nawrocki, E. P. (2009). Structural RNA homology search and alignment using 
covariance models [dissertation/master’s thesis] Washington University in Saint Louis.

NCBI Resource Coordinators (2013). Database resources of the National Center for 
Biotechnology Information. Nucleic Acids Res. 41, D8–D20. doi: 10.1093/nar/gks1189

Needham, D. M., Sachdeva, R., and Fuhrman, J. A. (2017). Ecological dynamics and 
co-occurrence among marine phytoplankton, bacteria and myoviruses shows 
microdiversity matters. ISME J. 11, 1614–1629. doi: 10.1038/ismej.2017.29

Nir, I., Barak, H., Kramarsky-Winter, E., and Kushmaro, A. (2019). Seasonal diversity 
of the bacterial communities associated with petroglyphs sites from the Negev Desert, 
Israel. Ann. Microbiol. 69, 1079–1086. doi: 10.1007/s13213-019-01509-z

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). metaSPAdes: a 
new versatile metagenomic assembler. Genome Res. 27, 824–834. doi: 10.1101/
gr.213959.116

Panda, A. K., Bisht, S. S., Kaushal, B. R., De Mandal, S., Kumar, N. S., and Basistha, B. C. 
(2017). Bacterial diversity analysis of Yumthang hot spring, North Sikkim, India by Illumina 
sequencing. Big Data Anal. 2, 1–7. doi: 10.1186/s41044-017-0022-8

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P., 
et al. (2018). A standardized bacterial taxonomy based on genome phylogeny 
substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004. doi: 10.1038/nbt.4229

Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P., Woodcroft, B. J., Evans, P. N., 
et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially 
expands the tree of life. Nat. Microbiol. 2, 1533–1542. doi: 10.1038/s41564-017-0012-7

Pascoal, F., Costa, R., and Magalhães, C. (2021). The microbial rare biosphere: current 
concepts, methods and ecological principles. FEMS Microbiol. Ecol. 97:fiaa227. doi: 
10.1093/femsec/fiaa227

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2–approximately 
maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.1371/journal.
pone.0009490

Prodan, A., Tremaroli, V., Brolin, H., Zwinderman, A. H., Nieuwdorp, M., and 
Levin, E. (2020). Comparing bioinformatic pipelines for microbial 16S rRNA amplicon 
sequencing. PLoS One 15:e0227434. doi: 10.1371/journal.pone.0227434

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012). The 
SILVA ribosomal RNA gene database project: improved data processing and web-based 
tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219

Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J., et al. 
(2013). Insights into the phylogeny and coding potential of microbial dark matter. 
Nature 499, 431–437. doi: 10.1038/nature12352

Santos, A., van Aerle, R., Barrientos, L., and Martinez-Urtaza, J. (2020). Computational 
methods for 16S metabarcoding studies using nanopore sequencing data. Comput. 
Struct. Biotechnol. J. 18, 296–305. doi: 10.1016/j.csbj.2020.01.005

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., 
et al. (2009). Introducing mothur: open-source, platform-independent, community-
supported software for describing and comparing microbial communities. Appl. 
Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.01541-09

Schulz, F., Eloe-Fadrosh, E. A., Bowers, R. M., Jarett, J., Nielsen, T., Ivanova, N. N., 
et al. (2017). Towards a balanced view of the bacterial tree of life. Microbiome 5, 1–6. doi: 
10.1186/s40168-017-0360-9

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 
2068–2069. doi: 10.1093/bioinformatics/btu153

Solden, L., Lloyd, K., and Wrighton, K. (2016). The bright side of microbial dark 
matter: lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 31, 
217–226. doi: 10.1016/j.mib.2016.04.020

Staley, J. T., and Konopka, A. (1985). Measurement of in situ activities of 
nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. 
Microbiol. 39, 321–346. doi: 10.1146/annurev.mi.39.100185.001541

Tian, R., Ning, D., He, Z., Zhang, P., Spencer, S. J., Gao, S., et al. (2020). Small and 
mighty: adaptation of superphylum Patescibacteria to groundwater environment drives 
their genome simplicity. Microbiome 8, 1–15. doi: 10.1186/s40168-020-00825-w

Tringe, S. G., and Hugenholtz, P. (2008). A renaissance for the pioneering 16S rRNA 
gene. Curr. Opin. Microbiol. 11, 442–446. doi: 10.1016/j.mib.2008.09.011

Vigneron, A., Cruaud, P., Langlois, V., Lovejoy, C., Culley, A. I., and Vincent, W. F. 
(2020). Ultra-small and abundant: candidate phyla radiation bacteria are potential 
catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol. Oceanogr. 
Lett. 5, 212–220. doi: 10.1002/lol2.10132

Wiegand, S., Dam, H. T., Riba, J., Vollmers, J., and Kaster, A. (2021). Printing 
microbial dark matter: using single cell dispensing and genomics to investigate the 
patescibacteria/candidate phyla radiation. Front. Microbiol. 12:1512. doi: 10.3389/
fmicb.2021.635506

Yan, L., Hermans, S. M., Totsche, K. U., Lehmann, R., Herrmann, M., and Küsel, K. 
(2021). Groundwater bacterial communities evolve over time in response to recharge. 
Water Res. 201:117290. doi: 10.1016/j.watres.2021.117290

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K., et al. 
(2014). Uniting the classification of cultured and uncultured bacteria and archaea 
using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645. doi: 10.1038/
nrmicro3330

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. L. (2012). 
Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. 
BMC Bioinformatics 13:134. doi: 10.1186/1471-2105-13-134

Yoon, S., Ha, S., Kwon, S., Lim, J., Kim, Y., Seo, H., et al. (2017). Introducing 
EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and 
whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613. doi: 10.1099/
ijsem.0.001755

Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V., and Conesa, A. (2021). A network 
approach to elucidate and prioritize microbial dark matter in microbial communities. 
ISME J. 15, 228–244. doi: 10.1038/s41396-020-00777-x

Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014). PEAR: a fast and accurate 
Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620. doi: 10.1093/
bioinformatics/btt593

Zhou, Z., Tran, P., Liu, Y., Kieft, K., and Anantharaman, K. (2019). METABOLIC: a 
scalable high-throughput metabolic and biogeochemical functional trait profiler based 
on microbial genomes. bioRxiv

https://doi.org/10.3389/fmicb.2023.1247119
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1007/s00253-014-6213-6
https://doi.org/10.1007/s00253-014-6213-6
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://doi.org/10.1093/nar/gkw290
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1038/ismej.2012.50
https://doi.org/10.1186/2047-217X-1-7
https://doi.org/10.1038/s41467-019-12171-z
https://doi.org/10.1038/s43705-022-00204-6
https://doi.org/10.1038/s43705-022-00204-6
https://doi.org/10.1016/j.suc.2011.05.001
https://doi.org/10.1264/jsme2.ME20025
https://doi.org/10.1093/nar/gks1189
https://doi.org/10.1038/ismej.2017.29
https://doi.org/10.1007/s13213-019-01509-z
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1186/s41044-017-0022-8
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1093/femsec/fiaa227
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0227434
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1038/nature12352
https://doi.org/10.1016/j.csbj.2020.01.005
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1186/s40168-017-0360-9
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1016/j.mib.2016.04.020
https://doi.org/10.1146/annurev.mi.39.100185.001541
https://doi.org/10.1186/s40168-020-00825-w
https://doi.org/10.1016/j.mib.2008.09.011
https://doi.org/10.1002/lol2.10132
https://doi.org/10.3389/fmicb.2021.635506
https://doi.org/10.3389/fmicb.2021.635506
https://doi.org/10.1016/j.watres.2021.117290
https://doi.org/10.1038/nrmicro3330
https://doi.org/10.1038/nrmicro3330
https://doi.org/10.1186/1471-2105-13-134
https://doi.org/10.1099/ijsem.0.001755
https://doi.org/10.1099/ijsem.0.001755
https://doi.org/10.1038/s41396-020-00777-x
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btt593

	Microbial dark matter sequences verification in amplicon sequencing and environmental metagenomics data
	1. Introduction
	2. Materials and methods
	2.1. Total genomic DNA extraction
	2.2. Next generation amplicon sequencing
	2.3. Metataxonomic data analysis
	2.4. Taxonomic analysis of putative MDMS
	2.5. Phylogenetic analysis of putative MDMS
	2.6. MDMS existence validation
	2.7. Metagenomic analysis, putative MDMS screening, and genome characterization

	3. Results and discussion
	4. Conclusion
	Data availability statement
	Author contributions

	References

