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Tol-like receptor (TLR) agonists, as potent adjuvants, have gained attention 
in vaccine research for their ability to enhance immune responses. This 
study focuses on their application in improving vaccine efficacy against 
key viral infections, including hepatitis B virus (HBV), hepatitis C virus (HCV), 
human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and 
flaviviruses, including West Nile virus, dengue virus, and chikungunya virus. 
Vaccines are crucial in preventing microbial infections, including viruses, 
and adjuvants play a vital role in modulating immune responses. However, 
there are still many diseases for which effective vaccines are lacking 
or have limited immune response, posing significant threats to human 
health. The use of TLR agonists as adjuvants in viral vaccine formulations 
holds promise in improving vaccine effectiveness. By tailoring adjuvants to 
specific pathogens, such as HBV, HCV, HIV, SARS-CoV-2, influenza virus, 
and flavivirus, protective immunity against chronic and emerging infectious 
disease can be elicited.
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Introduction

Viral infections pose a significant threat to human health, and while vaccines exist for 
many viruses, there are still numerous viruses without approved vaccines. Additionally, 
the limited treatment options for viral infections, as antibiotics are ineffective against 
viruses, further highlight the importance of viral vaccines in prevention. Developing safe 
and efficient vaccines to combat viral infections is of utmost importance. Adjuvants, 
substances used in vaccines to stimulate and enhance immune response, have gained 
significant research interest for improving vaccine effectiveness and durability (Pulendran 
and O'hagan, 2021).

The innate immune system is a key component of host immunity that plays a 
significant role in the host defense against invading pathogens, including viruses 
(Medzhitov and Janeway, 2000). Germ-line encoded pattern recognition receptors 
(PRRs), including Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-
like receptors (NLRs), and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) 
recognize conserved structures of microbes, which are known as pathogen-associated 
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molecular patterns (PAMPs), directly activate immune cells (Kawai 
and Akira, 2009; Mogensen, 2009; Wicherska-Pawlowska et al., 2021). 
TLRs are transmembrane receptors that can be found both on the cell 
surface and in intracellular membranes, and NLRs and RLRs are 
intracellular receptor molecules (Wicherska-Pawlowska et al., 2021). 
Along with TLRs, NLRs and RLRs also play significant role in the 
recognition of different viruses, including hepatitis B virus (HBV), 
hepatitis C virus (HCV), influenza virus, human immunodeficiency 
virus (HIV), Zika virus, measles virus, etc. and subsequently cause 
innate immune activation for shaping adaptive immunity (Kato et al., 
2006; Wicherska-Pawlowska et al., 2021).

Toll-like receptors (TLRs) are the best studied PRRs, playing a 
key role in sensing PAMPs and induce immune responses that shape 
adaptive immunity (Janeway and Medzhitov, 2002; Kayesh et al., 
2021c). To date, 10 TLRs (TLR1–TLR10) have been identified in 
humans, and 13 in mice, and different studies have revealed their 
respective TLR ligands (Takeda and Akira, 2005). Respective TLR 
agonist can activate specific TLR signaling, and following recognition 
of ligands, TLRs recruit adapter molecules such as myeloid 
differentiation primary response protein 88 (MyD88), TIR domain-
containing adapter protein (TIRAP)/MyD88 adaptor–like protein 
(MAL), Toll–IL-1–resistance (TIR) domain-containing adapter 
inducing IFN-β (TRIF; also known as TICAM1) and TRIF-related 
adapter molecule (TRAM; also known as TICAM2) culminate in the 
activation of nuclear factor (NF)-κB or interferon (IFN) regulatory 
factor (IRF), regulating immunomodulation (Takeda and Akira, 
2005; Kawai and Akira, 2006; Figure 1). MyD88 is the common 
downstream adaptor recruited by all TLRs, except for TLR3 
(Takeuchi et al., 2000; Figure 1). TLRs activate multiple steps in the 

induction of inflammatory reactions toward eliminating the 
invading pathogens and help in the systemic defense (Iwasaki and 
Medzhitov, 2004). A strong activation of the innate immune system 
is important for maturation and activation of immune cells as well 
as production of cytokines and chemokines to induce a potent 
adaptive immune response (Edwards et al., 2017). Moreover, TLRs 
play role in multiple dendritic cell functions and induce signals that 
are critical for initiation of the adaptive immune responses (Iwasaki 
and Medzhitov, 2004). For further details on TLR signaling that 
culminate in the production of cytokines/chemokines, please see 
other published reviews (Kawai and Akira, 2006; Brown et al., 2011; 
Duan et al., 2022).

Numerous investigations are currently underway to develop an 
effective adjuvant system using TLR agonists to enhance vaccine 
efficacy (Dowling, 2018; Kayesh et  al., 2021a,c; Pulendran and 
O'hagan, 2021). TLRs are a family of type I transmembrane receptors 
containing three domains: an N-terminal extracellular leucine-rich 
repeat domain that recognizes specific PAMPs, a single 
transmembrane domain, and an intracellular Toll-interleukin 1 
receptor (TIR) domain required for downstream signal transduction 
(Kawai and Akira, 2010).

Agonists come from a variety of sources, both natural and 
synthetic, and specific natural ligands have been identified for 
different TLRs. Examples include lipoproteins and peptidoglycans 
for TLR2, double-stranded RNA of viral origin for TLR3, bacterial 
lipopolysaccharide (LPS) and lipoteichoic acid for TLR4, bacterial 
flagellin for TLR5, single-stranded RNA for TLR7 and TLR8, 
unmethylated CpG motifs found in bacterial DNA or viruses for 
TLR9, and viral protein/viral RNP complexes for TLR10 (Weeratna 

FIGURE 1

An overall mechanism of activation of TLR with respective TLR agonist.
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et al., 2005; Lee et al., 2014; Bezemer and Garssen, 2020; Fore et al., 
2020). Synthetic TLR agonists, developed by mimicking the 
molecular patterns and the immunostimulatory activities of their 
natural ligands, have been investigated for specific applications 
(Yang et al., 2022). Synthetic TLR agonists, such as Pam3CSK3 for 
TLR2 and TLR6, Poly I:C for TLR3, monophosphoryl lipid A 
(MPLA) for TLR4, imidazoquinoline-like molecules, imiquimod 
(R-837), resiquimod (R-848), S-27609, and guanosine analogs (e.g., 
loxoribine) for TLR7/8, as well as unmethylated CpG DNA for 
TLR9, have been reported (Gorden et  al., 2005; Kaczanowska 
et al., 2013).

Cyclic dinucleotides (CDNs), including cyclic di-adenosine 
monophosphate, cyclic di-guanosine monophosphate, cyclic 
GMP-AMP (cGAMP) are ubiquitous small molecule second 
messengers synthesized by bacteria, which can activate different 
immune pathways, including the stimulator of interferon genes 
(STING; Dubensky et al., 2013; Gogoi et al., 2020). CDNs have 
been used as a relatively new class of vaccine adjuvants in many 
vaccine formulations, and shown to increase potency of bacterial 
vaccines (Ogunniyi et al., 2008; Hu et al., 2009; Yan et al., 2009). 
In addition, it has been shown that CDNs-adjuvanted subunit 
vaccine can elicit both Th1 and Th17 immune response, 
providing long-lasting protective immunity to Mycobacterium 
tuberculosis in mouse model (Van Dis et al., 2018). Therefore, the 
investigation of CDNs as an adjuvant in the viral vaccines could 
also be promising.

For an effective immunization approach, an effective vaccine is 
required, capable of generating long-lasting high titers of neutralizing 
antibodies with minimal antigen content. An important factor in 
meeting these requirements is the selection of an appropriate 
adjuvant. Until recently, alum was the only adjuvant approved for 
human use in the United States (Baylor et al., 2002). However, in 
2009, the U.S. Food and Drug Administration granted licensure for 
human use to the first TLR ligand-vaccine, a TLR4 agonist-
adjuvanted human papillomavirus vaccine (Centers for Disease 
Control and Prevention, 2010). Accordingly, numerous studies are 
focused on developing vaccines with novel adjuvant formulations for 
refining or developing vaccines against various infections (Reed 
et al., 2013).

Notably, the selection of an appropriate vaccine adjuvant is critical 
for effective vaccine efficacy, which plays an important role in 
augmenting the immune response against particular pathogens (Reed 
et al., 2013). Although actual mechanisms of adjuvants remain poorly 
understood, several potential mechanisms have been proposed, 
including the formation of depots for slow antigen release, activation 
of immune cells and antigen processing, and induction of cytokines 
and chemokines, all of which contribute to enhancing vaccine 
effectiveness (Awate et al., 2013). Adjuvants can influence vaccine 
response through various means, such as increasing functional 
antibody titers, increasing effector T cells, facilitating the rapid 
induction of protective responses, reducing antigen dosage and 
number of injections, enhancing memory and persistence (B and T 
cells), boosting responses in the immunocompromised individual, 
and broadening the scope of the immune response (Maisonneuve 
et al., 2014).

In modern vaccines, subunit components of pathogens are 
frequently used for vaccine preparation instead of employing whole, 

killed, or attenuated pathogens. However, this approach may reduce 
immunogenicity, requiring vaccine adjuvants to be incorporated with 
the antigens to enhance the immune response (Luchner et al., 2021). 
Aluminum-containing adjuvants, the first human vaccine adjuvants 
approved in clinical use, induce strong humoral immunity but do not 
equally stimulate cellular immunity, rendering them ineffective 
against intracellular virus infections (Igietseme et al., 2004; Oleszycka 
et al., 2018; Wang and Xu, 2020). There is an increasing interest in the 
use of TLR agonists as immunomodulators that can influence the 
outcome of treatment of infection (Kayesh et al., 2021a,c; Jimenez-
Leon et al., 2023). TLR agonists have shown high potency in activating 
innate immunity in a number of vaccine adjuvants and 
immunomodulatory agents against infectious diseases and cancers 
(Luchner et al., 2021). The use of TLR agonists as vaccine adjuvants 
remains the current focus of research aimed at increasing vaccine 
efficacy. In this study, we review the progress and useability of TLR 
agonists as vaccine adjuvants in different viral vaccines, particular 
focusing on hepatitis B virus (HBV) and SARS-CoV-2 vaccines, and 
other vaccines, including hepatitis C virus (HCV), human 
immunodeficiency virus (HIV), influenza virus, and flavivirus 
[dengue virus (DENV), West Nile virus (WNV), Chikungunya virus 
(CHIKV)] vaccines.

Prospects of TLR agonists in viral 
vaccines

TLR agonists are extensively studied as adjuvants to enhance 
vaccines effectiveness (Pulendran and O'hagan, 2021). These agonists 
have gained significant attention as potent immunomodulators 
capable of inducing the production of IFN, proinflammatory 
cytokines, and chemokines. They show promise against various viral 
infections, including HBV, HCV, HIV-1, influenza virus, and SARS-
CoV-2 (Martinsen et al., 2020; Kayesh et al., 2021a,c, 2022, 2023; 
Jimenez-Leon et al., 2023; Yin et al., 2023). However, further studies 
are needed to identify potential TLR agonists for vaccine adjuvants. 
For example, a recent study compared three TLR agonists [TLR1/2 
(Pam3Cys), TLR7/8 (R848), or TLR9 (CpG ODN)] as vaccine 
adjuvants in combination with inactivated porcine reproductive and 
respiratory syndrome virus (iPRRSV). The study found no detectable 
antigen-specific immune response after intramuscular (i.m.) or 
subcutaneous vaccination. However, a non-antigen-specific IFN-γ 
production was observed by the TLR9 agonist group, which reduced 
viremia upon challenge compared to that in the non-vaccinated 
animals (Vreman et al., 2019).

The development of effective peptide and DNA vaccines is 
hindered by poor immunogenicity. To address this challenge, 
researchers are exploring novel adjuvants, including TLR agonists, 
which offer immunomodulating and immunotherapeutic effects 
(Surendran et al., 2018; Mullins et al., 2019). TLR stimulation mediates 
TH1 and TH17 immune responses (Agrawal et  al., 2003), and the 
synergistic activation of TLRs and NLRs has been reported to elicit 
these immune responses (Fritz et al., 2007; Magalhaes et al., 2008, 
2011). The increasing understanding of TLR agonists has captured the 
attention of vaccinologists (Dowling, 2018), and the COVID-19 
pandemic further accelerated clinical research on vaccines 
incorporating TLR agonist-based adjuvants (Yang et al., 2022). The 
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inclusion of TLR agonists in vaccine development holds promise for 
enhancing vaccine efficacy.

TLR agonists as vaccine adjuvants in 
HBV vaccines

Despite the availability of an effective preventive vaccine for HBV, 
chronic HBV infection remains a global health problem (Ezzikouri 
et al., 2020). According to the World Health Organization (WHO), an 
estimated 296 million people were affected by chronic HBV infection 
in 2019, with 1.5 million new infections occurring annually (World 
Health Organization, 2022). While the currently available recombinant 
HBV vaccines demonstrate excellent safety and immunogenicity 
(Assad and Francis, 1999), they still face challenges in inducing 
protective immunity in poor vaccine responders, including 
immunocompromised people, older adults, diabetics, and those with 
chronic kidney disease (Lee and Lim, 2021).

Immune tolerance poses a significant obstacle in the cure of 
HBV infection (Tran, 2011). The mechanism behind immune 
tolerance is not well understood, but HBV-specific T-cell 
hyporesponsiveness may impair antigen processing and transport 
to major histocompatibility complex class I molecules (Sukriti et al., 
2010). In an investigation of overcoming HBsAg-specific immune 
tolerance state in humanized mice model, immunization with 
CL097 (TLR7/8 agonist)-conjugated HBV-Ag was found to reverse 
immune tolerance in HBV-Tg mice, and induced antigen-specific 
immune responses (Wang et  al., 2014). TLR7/8 agonists 
demonstrated potent adjuvant properties in inducing antigen-
specific Th1 responses in an immune tolerant state (Wang et al., 
2014). In the woodchuck model of chronic HBV, GS-9688, an oral 
selective small molecule agonist of TLR8, effectively reduced serum 
viral load by over five logs and also suppressed woodchuck hepatitis 
surface antigen in 50% of treated woodchucks (Daffis et al., 2021). 
Another study showed that GS-9688 induced cytokines in human 
peripheral blood mononuclear cells, leading to the activation of 
antiviral effector function by increasing the frequency of 
HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, 
and mucosal-associated invariant T cells (Amin et al., 2021). In our 
previous study, we  observed that HBV infection in tree shrew 
model could induce a significant suppression of IFN-β response at 
31 weeks post-infection, contributing to the chronicity (Kayesh 
et al., 2017a). In addition, no induction of TLR3 and suppression of 
TLR9 was found (Kayesh et al., 2017a).

HEPLISAV-B is a recombinant HBV vaccine composed of 
HBsAg combined with the CpG 1,018 adjuvant, which stimulates 
innate immunity through TLR9 (Lee and Lim, 2021). In a Phase 
III clinical trial, HEPLISAV-B demonstrated the ability to rapidly 
and consistently produce high titers of sustained seroprotection 
with fewer immunizations, including in individuals with poor 
response to vaccination (Eng et  al., 2013). Compared to 
Engerix-B, HEPLISAV-B has shown superior and earlier 
seroprotection, while maintaining a favorable profile (Lee and 
Lim, 2021). Notably, HEPLISAV-B was found to induce higher 
seroprotection rates in the poor vaccine responders such older 
adults, diabetics, and those with chronic kidney disease, 
surpassing the effectiveness of Engerix-B (Lee and Lim, 2021). 
This suggests that HEPLISAV-B is more efficacious in these 

individuals. Historically, persons living with HIV (PLWH) have 
exhibited poor responses to HBV vaccination, with low 
seroprotection rates ranging from 35% to 70% following a 3-dose 
series. However, according to a press release regarding the study 
findings of an ongoing phase 3 clinical trial (ClinicalTrials.gov, 
ID: NCT04193189) presented by the National Institute of Allergy 
and Infectious Diseases (NIAID), HEPLISAV-B, an HBV vaccine 
containing recombinant HB surface antigen and a CpG-based 
TLR9 agonist, has been found to be effective in protecting adults 
living with HIV who have never been vaccinated against or 
infected with HBV (National Institutes of Health, 2022).

Adjuvant System 04 (AS04) combines aluminum hydroxide with 
the TLR4 agonist 3-O-desacyl-4′-monophosphoryl lipid A 
(Didierlaurent et al., 2009). FENDrix (GlaxoSmithKline Biologicals), 
an adjuvanted HBV vaccine consists of recombinant HBsAg 
formulated with aluminum phosphate and MPL, a purified, detoxified 
derivative of the lipopolysaccharide molecule found in the bacterial 
wall of Salmonella minnesota (Garcon et al., 2007). This vaccine has 
been investigated for its ability to elicit a better immune response. 
FENDrix is administered in a four-dose scheme: on day 0, month 1, 
month 2, and month 6 (after day 0). Due to the improved adjuvant 
system, FENDrix induces higher concentrations of protective 
antibodies more rapidly (Kundi, 2007). In a prospective cohort study, 
HB-AS04 showed a higher efficacy in patients on maintenance 
dialysis, although a significant number of non-responders were still 
present (Fabrizi et al., 2015). Another open-label, non-randomized 
trial showed the persistence of anti-HBs antibody among responder 
patients during a long follow-up period (Fabrizi et al., 2020). In a 
multicenter phase 3 comparative study involving adults receiving 
hemodialysis who had previously received HBV vaccination but were 
not seroprotected, a booster dose of HEPLISAV-B was found to 
induce a higher seroprotection rate (52.8%; 95% confidence interval 
[CI]: 38.6, 66.7%) compared to Engerix-B (32.6%; 95% CI: 19.5, 
48.0%) and FENDrix (43.1%; 95% CI: 29.3, 57.8%) recipients (Girndt 
et al., 2022).

HIV/HBV co-infection may lead to increased morbidity and 
mortality compared to HBV or HIV mono-infection (Whitaker 
et al., 2012; Kayesh et al., 2023). Although the immunogenicity 
of HBV vaccines is impaired in HIV-infected patients (de Vries-
Sluijs et al., 2020), immunization with a HBV vaccine is the most 
effective way to prevent infection in people with HIV. To enhance 
the vaccine response in immunocompromised individuals, new 
strategies are needed, such as the addition of new adjuvants or 
increased vaccine doses (Whitaker et al., 2012; Catherine and 
Piroth, 2017). A randomized controlled trial in HIV-infected 
patients revealed an insignificant (p = 0.09) increase in 
anti-HBs ≥ 10 IU/L response rate at week 28 following FENDrix 
(85.7%) and Engerix (65.0%) vaccination (de Vries-Sluijs et al., 
2020). Notably, a recent multicenter open-label study of TLR9 
agonist-adjuvanted HEPLISAV-B vaccine in HIV-positive 
individuals without prior HBV vaccination found that all 68 
participants achieved HBV seroprotective titers after the 3-dose 
series in the primary analysis, with no unexpected safety concerns 
(Marks et  al., 2023). These findings highlight the increased 
immunogenicity of HBV vaccines and the immunomodulator 
potential of TLR agonists in enhancing vaccination efficacy. The 
TLR agonist adjuvants currently under development for HBV 
vaccines are listed in Table 1.
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TLR agonists as vaccine adjuvants in 
HCV vaccines

HCV causes chronic liver infection and is a leading cause of liver 
cancer. According to the WHO, 58 million people worldwide are 
chronically infected with HCV, with an annual approximately 1.5 
million new infections [World Health Organization (WHO), 2022]. 
Although newly approved direct-acting antivirals (DAAs) have shown 
great therapeutic success for HCV infection (Li and De Clercq, 2017), 
DAA therapy is costly and often results in side effects, limiting its 
accessibility to patients. Notably, DAA therapy has been associated 
with an increasing risk of hepatocellular carcinoma (HCC) in patients 
treated with DAAs (Chinchilla-Lopez et al., 2017; Tajiri et al., 2022). 
Currently, there is no licensed protective vaccine against HCV, making 
the development of an effective preventive vaccine is critical (Behmard 
et al., 2022).

Scientists are diligently working on different strategies to develop 
an effective HCV vaccine. Immunoinformatics-based multi-epitope 
constructs, along with the use of TLR3 and TLR4 agonists, have 
shown immunogenicity, non-allergenicity, and non-toxicity (Behmard 
et al., 2022), requiring further investigation into the protective traits 
and safety of these designed candidates. The improved efficacy of 
HCV vaccine candidates due to TLR agonists has been reported in 
several studies. In a phase 1 study, TLR9 agonist CpG 10,101 was 
found to dose-dependently increase immune marker activation while 
simultaneously decreasing HCV RNA levels (McHutchison et  al., 
2007), supporting the future exploration of CpG 10,101 as a vaccine 
adjuvant for HCV candidates. Furthermore, including TLR7 and 
TLR9 agonists in HCV vaccine candidates has been shown to promote 
the maturation of plasmacytoid dendritic cells, leading to improved 
antigen presentation and enhanced viral immunization (Dominguez-
Molina et al., 2018). In an earlier study, an induction of TLR3, TLR7 
and TLR8 mRNA was observed in HCV-infected tree shrew liver, 
compared to uninfected liver tissues (Kayesh et al., 2017b).

HCV virus-like particle (VLP)-based vaccines adjuvanted with 
TLR2 agonist Pam(2)Cys [E(8)Pam(2)Cys] induced significant 
HCV-LP and E2-specific antibody responses mice. In comparison to 
traditionally alum-adjuvanted VLPs, a single dose of VLPs formulated 
with this lipopeptide achieved antibody titers equivalent to those 
obtained with up to three doses of traditionally alum-adjuvanted VLPs 
(Chua et al., 2012).

TLR agonists as vaccine adjuvants in 
HIV vaccines

Developing a HIV-1 vaccine that can generate high titers of 
functional antibodies against HIV-1 remains a high priority. Single or 
combined effect of TLR agonists is now also being investigated for the 
development of TLR agonist-adjuvanted HIV-1 vaccines (Moody 
et al., 2014; Rozman et al., 2023). It has been shown that HIV Gag 
protein conjugated to TLR7/8 agonist (3 M-012) could enhance the 
magnitude of Th1 and CD8+ T cell responses in nonhuman primates 
(Wille-Reece et al., 2005). In a rhesus macaque model, it has been 
shown that TLR agonists can enhance epitope-specific HIV-1 Env 
reactive antibody levels (Moody et al., 2014). It was also observed that 
the combination of TLR7/8 and TLR9 agonists could elicit higher 
titers of neutralizing and ADCC-mediating antibodies (Moody 
et al., 2014).

Studies have shown that combining ligands for three TLRs 
(TLR2/6, TLR3, and TLR9) can increase the production of DC IL-15, 
promoting DC activation and stimulation of NK cells (Mattei et al., 
2001; Anguille et  al., 2015). This combination has also greatly 
increased the protective efficacy of HIV envelope peptide vaccines in 
mice models (Zhu et al., 2010).

A recent study reported that intranasal administration of TLR7/
NOD2L agonist in conjunction with the NP-p24 HIV vaccine resulted 
in a potent adjuvant effect, inducing high-quality humoral and 
adaptive immune responses both in systemic and mucosal 
compartments (Gutjahr et al., 2020). Long-lived plasma cells (LLPCs), 
primarily residing in the bone marrow, are critical mediators of 
durable antibody responses (Liu et al., 2022). It has been reported that 
3 M-052, a TLR7- and TLR8-agonist adjuvant can induce notably high 
and persistent (up to ~1 year) frequencies of Env-specific LLPCs in the 
bone marrow and serum antibody responses in rhesus macaques 
(Kasturi et al., 2020). A recent study showed that TLR4 agonist-based 
nanoparticle adjuvant, saponin/MPLA nanoparticles (SMNP) can 
enhance lymph flow and antigen entry into lymph nodes in animal 
models (Silva et  al., 2021). Silva et  al. reported that a single dose 
vaccination with Env trimers combined with SMNP adjuvant could 
lead to seroconversion in all vaccinated male and female Indian rhesus 
monkeys (Macaca mulatta) with excellent HIV neutralizing antibody 
titers (Silva et al., 2021), whereas previous studies observed little or no 
Env-specific IgG in non-human primates after single immunizations 

TABLE 1 TLR agonists as vaccine adjuvants in HBV vaccines.

Vaccine 
name

Sponsor/
company

TLR agonist 
adjuvant

Target 
TLR

Clinical 
phase

Disease 
target

Effects on host 
immunity

Clinical Trials. 
Gov identifier/
reference

HEPLISAV-B Dynavax 

Technologies 

Corporation

CpG 1,018 TLR9 Phase III Hepatitis B Strongly favors 

development of the 

Th1 subset of helper T 

cells

Hyer and Janssen 

(2018)

HEPLISAV-B Dynavax 

Technologies 

Corporation

CpG 1,018 TLR9 Phase III Hepatitis B 

(HIV 

coinfection)

Induces seroprotective 

titers in all participants 

with HIV without 

prior HBV vaccination

Marks et al. (2023)

HBV-AS04 GlaxoSmithKline Monophosphoryl-

Lipid A (MPLA)

TLR4 Phase III Hepatitis B Improves seroresponse Fabrizi et al. (2015, 

2020)
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of HIV Env trimers with various adjuvants, suggesting SMNP as a 
promising vaccine adjuvant candidate to be used for further studies 
for clinical use in HIV infection. TLR7, an endosomal receptor and 
nucleotide-binding oligomerization domain 2 (NOD2), a cytosolic 
receptor, are widely expressed at mucosal levels, functioning as key 
innate receptors (Gutjahr et  al., 2020). It has been reported that 
chimeric TLR7/NOD2 agonist was highly potent to stimulate DC 
maturation both in vitro and in vivo. Intranasal administration of 
TLR7/NOD2L agonist with NP-p24 HIV vaccine was found effective 
in inducing both humoral and adaptive immune response in systemic 
and mucosal compartments (Gutjahr et al., 2020).

TLR agonists as vaccine adjuvants in 
SARS-CoV-2 vaccine

Respiratory virus infections, such as SARS-CoV-2, remain a major 
global human health concern requiring appropriate preventive 
measures. Despite success in vaccinating populations against SARS-
CoV-2 infection, there are still concerns that need to be addressed, 
such as duration of immunity, efficacy against emerging variants, 
protection from infection and transmission, and worldwide availability 
of vaccines (Atalis et al., 2022). To tackle these issues related to SARS-
CoV-2 infection, the use of TLR agonists as vaccine adjuvants can 
be investigated. Studies have shown that intranasal administration of 
the TLR2/6 agonist INNA-051 in ferret model significantly reduced 
SARS-CoV-2 viral RNA levels in the nose and throat (Proud et al., 
2021). TLR agonists are potent immunomodulators that can improve 
and broaden the efficacy and durability of vaccine responses 
(Pulendran and O'hagan, 2021), making them valuable in the 
development of potent SARS-CoV-2 vaccines.

Furthermore, SARS-CoV-2 subunit vaccines adjuvanted with 
TLR4 and RIG-I agonists have demonstrated the ability to induce 
robust and unique route-specific adaptive immune responses against 
SARS-CoV-2 (Atalis et al., 2022). SARS-CoV-2 spike subunit vaccine 
adjuvanted with a dual TLR ligand liposome induced robust systemic 
neutralizing antibodies in a mouse model of COVID-19, and 
completely protected against a lethal SARS-CoV-2 challenge 
(Abhyankar et al., 2021). Another study reported varying degrees of 
protection based on different adjuvant platform against SARS-
CoV-2 in rhesus macaques. AS37, a TLR7 agonist adsorbed to alum, 
and AS03, an α-tocopherol-containing oil-in-water emulsion, induced 
substantial neutralizing antibody titers in rhesus macaque, promoting 
protective immunity against SARS-CoV-2 (Arunachalam et al., 2021). 
These findings highlight the need for further research to identify an 
ideal adjuvant for SARS-CoV-2 vaccine.

A recent study reported that TLR7-nanoparticle (TLR7-NP)-
adjuvanted influenza and SARS-CoV-2 subunit vaccines induced 
broad neutralizing antibodies in a mouse model, which protected 
against respective multiple viral variants (Yin et al., 2023). Importantly, 
the TLR7-NP adjuvant can induce cross-reactive antibodies targeting 
both dominant and subdominant epitopes and antigen-specific CD8+ 
T-cell responses in mice (Yin et al., 2023). Intranasal vaccination with 
CpG nanoparticle-adjuvanted HA influenza vaccine has been shown 
to increase protective efficacies in mice (Dong et  al., 2022). 
Comparatively, PEI-HA/CpG nanoparticles generated more robust 
and balanced IgG1/IgG2a neutralizing antibody responses and 
Fc-mediated antibody-dependent cellular cytotoxicity, whereas 

PEI-HA nanoparticles primarily elicited IgG1-dominant antibody 
responses (Dong et  al., 2022). Another study reported an overall 
magnitude of the immune response induced by SARS-CoV-2 spike 
glycoprotein (CoVLP) vaccine candidate adjuvanted with CpG 1,018 
or AS03 (Ward et al., 2021).

Recent reports have highlighted the efficacy of TLR7 agonist-
adjuvanted vaccines in inducing robust immune responses against 
SARS-CoV-2. Vaccination with the S1 subunit of the SARS-CoV-2 
spike protein, adjuvanted with TLR7 agonist, has been shown to 
induce potent humoral and cellular immunity in mice. This approach 
resulted in a balanced Th1/Th2 immune response and effectively 
induced neutralizing antibodies against SARS-CoV-2 and all variants 
of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, 
and B.1.1.529/omicron), suggesting a great potential of this adjuvant-
protein conjugate vaccine candidate (Zhang et al., 2022). Another 
study also reported that a subunit SARS-CoV-2 vaccine with clinically 
relevant adjuvants such as alum, AS03 (a squalene-based adjuvant 
supplemented with α-tocopherol), AS37 (a TLR7 ligand emulsified in 
alum), CpG1018 (a TLR9 ligand emulsified in alum), O/W 1849101 
(a squalene-based adjuvant) induced durable protection in mice. 
However, TLR-agonist-based adjuvants CpG1018 and AS37 induced 
Th1-skewed CD4+ T cell responses. In contrast, alum, O/W, and AS03 
induced a balanced Th1/Th2 response (Grigoryan et al., 2022). Further 
supporting the potential of TLR agonists as adjuvants, a multicenter, 
double-blind, randomized, placebo-controlled trial demonstrated that 
SCB-2019 (30 μg, adjuvanted with 1·50 mg CpG-1018 and 0·75 mg 
alum) provided notable protection against the entire severity spectrum 
of COVID-19 caused by circulating delta, gamma, and mu variants of 
SARS-CoV-2 (Bravo et  al., 2022). These findings highlight the 
promising role of TLR agonists as potential adjuvants. The TLR 
agonists adjuvants currently under development for SARS-CoV-2 
vaccines are listed in Table 2.

TLR agonists as vaccine adjuvants in 
influenza virus vaccine

The development of more effective vaccines is required to combat 
influenza virus infection, and remains as a major goal of modern 
medical research. The use of TLR agonists in enhancing the influenza 
virus vaccine is under development. A reduced influenza-associated 
secondary pneumococcal infections has been reported in mice with 
co-administration of an inhaled TLR2 agonist with an inactivated 
vaccine (Hussell and Goenka, 2016), also highlight the effectiveness 
of TLR agonist use in influenza vaccine. Lopez et  al. reported an 
enhanced vaccine efficacy with enhanced antibody response in case of 
Encevac TC4 vaccine administration along with TLR9 agonist, CpG 
oligodeoxynucleotides (Lopez et al., 2006). Flagellin, the structural 
component of bacterial flagella, is known as the TLR5 agonist that can 
cause the induction of cytokines and chemokines (Gewirtz et al., 2001; 
Lu and Sun, 2012). TLR5 also shows the potential to activate the 
immune cells and can initiate innate and adaptive immune response 
(Hajam et al., 2017). The use of bacterial flagellin as TLR5 agonist in 
viral vaccine appears promising (Hajam et al., 2017). Notably, flagellin 
has been extensively investigated as a mucosal adjuvant in epitope-
based influenza vaccines, and appeared promising (Ben-Yedidia and 
Arnon, 2007; Song et al., 2008; Adar et al., 2009; Liu et al., 2011; Taylor 
et al., 2011).
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In murine model, Goff et  al. reported that recombinant 
hemagglutinin (HA) from the A/Puerto Rico/8/1934 strain (rPR/8 
HA) in combination with TLR4 (1Z105, a substituted pyrimido[5,4-b]
indole specific for the TLR4-MD2 complex) and TLR7 ligands 
(1 V270, a phospholipid-conjugated agonist) can induce rapid and 
sustained humoral immunity that is protective against lethal challenge 
with a homologous virus (Goff et  al., 2015). Another study also 
showed that a dual combination of TLR4 and TLR7 ligands in 
recombinant influenza virus HA vaccine can induce a broader 
immune response (Sato-Kaneko et  al., 2020). A previous study 
reported an enhanced efficacy of split-virus vaccines (SVVs)-mediated 
protection against influenza in older adults when combined with 
TLR4 agonist glucopyranosyl lipid adjuvant–stable emulsion 
(GLA-SE; Behzad et al., 2012). In a phase 2 clinical trial, an enhanced 
efficacy of H5N1 plant-made virus-like particle vaccine was observed 
when co-administered with GLA-SE (Pillet et al., 2018). A sustained 
polyfunctional and cross-reactive HA-specific CD4+ T cell response 
was observed in all vaccinated groups (Pillet et al., 2018).

Among the imidazoquinoline compounds, 1-benzyl-2-butyl-1H-
imidazo[4,5-c]quinolin-4-amine (BBIQ) is a potential TLR7 agonist, 
and it was shown that recombinant influenza HA protein vaccine 
administered with BBIQ significantly enhanced anti-influenza IgG1 
and IgG2c response in mice (Kaushik et al., 2020), suggesting BBIQ 
as a promising influenza vaccine adjuvant for further study. In another 
study, a licensed quadrivalent inactivated influenza vaccine (QIV) 
administered with RIG-I (SDI-nanogel) and TLR7/8 agonist 
(Imidazoquinoline) enhanced antibody and T cell responses, 

correlating with the protection against lethal influenza virus infection 
(Jangra et al., 2022). Clemens et al. reported that stem region of the 
HA adjuvanted with R848 (TLR7/8 agonist) could impact multiple cell 
types such as influenza-specific T follicular helper cells as well as Tregs 
that have the potential to contribute to the HA-stem response 
(Clemens et al., 2022). Overall, the use of TLR agonists in influenza 
vaccine might help in the development of more effective influenza 
vaccine in the near future.

TLR agonists as vaccine adjuvants in 
vaccines against flavivirus infections, 
including West Nile virus, dengue 
virus, and chikungunya virus

TLR agonist adjuvants represent a promising tool toward 
enhancing the protective capacity of flavivirus vaccines and 
broadening of antiviral antibody responses with reduced dose and 
dosage (Van Hoeven et al., 2018). Currently there is no approved 
human vaccine for WNV. In a recent study, it has been shown that 
WNV recombinant E-protein vaccine (WN-80E) adjuvanted with 
TLR4 agonist SLA or the saponin adjuvant, QS21 was capable of 
inducing long-lasting immune responses in preclinical models with 
sterilizing protection in WNV challenge, reducing viral titers 
following WNV challenge to below detection levels in Syrian hamsters 
(Mesocricetus auratus; Van Hoeven et al., 2018). Flagellin has also been 
investigated as a mucosal adjuvant to be used in WNV recombinant 

TABLE 2 TLR agonists as vaccine adjuvants in SARS-CoV-2 vaccines.

Vaccine name Sponsor/
company

TLR agonist 
adjuvant

Target 
TLR

Clinical 
phase

Disease 
target

Effects on host 
immunity

Clinical 
Trials. Gov 
identifier/
reference

SCB-2019 - CpG-1018 TLR9 Phase II/III COVID-19 Provides notable protection 

against all circulating delta, 

gamma and mu variants of SARS-

CoV-2

Bravo et al. (2022)

SCB-2019 

Recombinant SARS-

CoV-2 Trimeric 

S-protein Subunit 

Vaccine

Zhejiang Clover 

Biopharmaceuticals, 

Inc.

CpG 1,018/

Alum-adjuvanted

TLR9 Phase II COVID-19 Results yet to be published NCT04954131

CoVac-1 (COVID-19 

peptide vaccine)

The University 

Hospital Tübingen

TLR 1/2 agonist 

XS15

TLR 1/2 Phase I COVID-19 CoVac-1-induces IFN-γ T cell 

responses; induces broad, potent 

and variant of concern-

independent T cell responses

Heitmann et al. 

(2022)

SARS-CoV-2 subunit 

vaccine

Georgia Institute of 

Technology, USA

MPLA TLR4 Phase I COVID-19 In mice model, MPLA+PUUC 

NPs enhanced CD4+ CD44+ 

activated memory T cell responses 

against spike protein in the lungs 

while MPLA NPs increased anti-

spike IgA in the bronchoalveolar 

fluid and IgG in the blood

Atalis et al. (2022)

TLR7-NP adjuvanted 

SARS-CoV-2 vaccine

Stanford University, 

USA

Toll-like receptor 

7 agonist 

nanoparticle 

(TLR7-NP)

TLR7 Phase I COVID-19 Induces cross-reactive Abs for 

both dominant and subdominant 

epitopes and antigen-specific 

CD8+ T-cell responses in mice

Yin et al. (2023)
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protein vaccine with the induction of protective immune response 
(McDonald et al., 2007).

A DENV vaccine that is equally effective against all four serotypes 
is urgently needed. Toward the development of a panserotype dengue 
vaccine, the suitability of using TLR agonist as an adjuvant could 
be  helpful (Kayesh et  al., 2021b). A recent study investigated the 
immunogenicity and protective capacity of recombinant DENV NS1 
administered with CDNs. It was observed that NS1-CDN 
immunizations could induce serotype-specific and cross-reactive 
antibody and T-cell responses in mice model. Further, NS1-CDN 
vaccinations showed efficacy in homotypic and heterotypic protection 
from DENV2-induced morbidity and mortality (Espinosa et  al., 
2019). It has been shown that dengue subunit vaccine consisted of 
recombinant DENV2 envelope domain III combined with TLR 
agonists induced strong immunological signatures involving immune 
cell trafficking, IFNs, and proinflammatory and T-cell responses, 
however, unexpectedly only partial protection was obtained against 
viral challenge (Bidet et al., 2019).

Until recently, there was no clinically approved CHIKV vaccine 
for immunization, however, on 9th November 2023, the U.S. Food and 
Drug Administration approved the first chikungunya vaccine, Ixchiq/
VLA1553 (developed by Valneva Austria GmbH) for individuals 
18 years of age and older who are at increased risk of exposure to 
CHIKV (U.S. Food and Drug Administration, 2023). In a multicenter, 
randomized, placebo-controlled phase 3 clinical study, CHIKV 
vaccine VLA1553 was found generally safe and equally well tolerated 
in younger and older adults that induced seroprotective chikungunya 
virus neutralizing antibody levels in 263 (98·9%) of 266 participants 
(Schneider et al., 2023). A recent study reported an enhanced efficacy 
of inactivated CHIKV-MPLA combination, which could induce 
higher neutralizing antibodies compared to unadjuvanted CHIKV 
vaccine (Gosavi and Patil, 2022). Although further studies are 
warranted, however, TLR4 agonist appears as a promising adjuvant 
candidate to be used for enhancing the efficacy of CHIKV vaccine 
(Gosavi and Patil, 2022).

Discussion

Appropriate selection of specific pattern recognition receptor 
ligands (adjuvants) is critical for formulating the next generation 
vaccines, which will aim to induce an efficient adaptive immune 
response with minimal adverse reactions. Both the existing vaccines 
and new vaccine development could benefit from the use of TLR 
agonists as vaccine adjuvants, especially for viral vaccines targeting 
particular pathogens (Kayesh et al., 2021a). However, it is important 
to emphasize the need for comparative studies before selecting a TLR 
agonist as an adjuvant, and there is a currently a lack of research 
comparing the nature of immune responses induced by different 
candidate adjuvants.

Limitation and future perspectives

Although TLR agonists appear as potent immune activators for 
immunomodulation, however, TLR activation-induced signaling 

may act as a double-edged sword, which may enhance immune-
mediated pathologies instead of protection (Salaun et  al., 2007; 
Huang et  al., 2008; Yokota et  al., 2010). Therefore, a clear 
understanding of TLR interactions with particular virus is critical 
for judicious use of TLR agonist in the vaccine. More preclinical 
studies are essential to perform for investigating the challenges of 
TLR use both in vaccines as well as in therapy. In addition, as 
combined use of TLR agonists is assumed to enhance the immune 
response, therefore, more future studies are warranted for 
investigating the combinatorial use of multiple TLR agonist and 
their effects on vaccine use (Albin et al., 2019). Also, the use of TLR 
agonist as vaccine adjuvants can be extended for investigation in 
other viral vaccines.

Conclusion

The use of TLR agonists as vaccine adjuvant has revolutionized 
the modern vaccine science due to its potential in improving vaccine 
effectiveness. In addition, TLR agonist has opened up a new research 
window for enhancing efficacy of the existing vaccines as well as for 
developing the new vaccines. Many TLR agonist candidates are under 
investigation, and by proper tailoring of TLR agonists in vaccine 
formulation, the vaccine effectiveness can be improved that should 
help in protecting chronic and emerging viral diseases.
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